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Abstract—In networked systems, state estimation is hampered by
communication limits. Past approaches, which consider scheduling sen-
sors through deterministic event-triggers, reduce communication and
maintain estimation quality. However, these approaches destroy the
Gaussian property of the state, making it computationally intractable
to obtain an exact minimum mean squared error estimate. We propose
a stochastic event-triggered sensor schedule for state estimation which
preserves the Gaussianity of the system, extending previous results from
the single-sensor to the multi-sensor case.

I. INTRODUCTION

Networked Control Systems (NCSs), spatially distributed systems
where sensors, actuators, and controllers exchange information over
a shared, bandlimited communication network, have become a topic
of significant interest. As noted by [1], the use of NCSs in practice
provides for flexible architecture and reduces costs in installation
and maintenance. Thus, NCSs have been used in several applica-
tions including public transportation, health care, and mobile sensor
networks. Nonetheless, remote state estimation remains a significant
challenge in NCSs [2]. Traditionally, state estimates are computed at
an estimation center using information from sensors which sample
and send measurements periodically. While it is reasonable to assume
that remote state estimation centers are well equipped, in most cases,
sensors have a limited power supply and are difficult to replace.
Moreover, bandwidth constraints in a communication network may
restrict the number of sensors which can communicate at any given
time [3], [4], [5]. One way to address these issues is to simply reduce
the communication rate. This solution however degrades estimation
quality. In this paper, we propose a sensor scheduling scheme which
allows us to achieve a desired tradeoff between communication rate
and estimation performance. Specifically, we design a stochastic
multi-sensor event-based scheduler which extends the single sensor
results from [6].

Before continuing, we briefly document recent attempts to address
the problem of remote estimation via sensor scheduling. We first ex-
amine offline schemes where sensors are scheduled based on system
parameters prior to use. Yang et. al. [7] determined that given fixed
communication constraints, an optimal deterministic offline schedule
should allocate sensor transmission times as uniformly as possible
over a finite time horizon. Moreover, Shi et. al. [8] specifically con-
sidered the 2-sensor problem with bandwidth constraints and found
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that a periodic sensor schedule minimized average error covariance.
In addition to offline designs, previous work has considered event-
based designs, where sensor transmissions are scheduled in real
time based on an occurrence related to a sensor measurement or
current system parameters. Astrom and Bernhardsson [9] show that
for certain systems, event based sampling offers better performance
than periodic sampling. Additionally, Imer et. al. [10] consider a
single sensor sequential estimation problem where communication
is limited over a finite horizon and propose a stochastic solution.
Furthermore, Xu et. al. [11] consider scheduling a single, smart sensor
which computes and sends a local estimate of the state. The authors
propose a stochastic event trigger, where the rate of transmission is
a quadratic function of the state estimation error.

While not utilized in [9], [10], and [11], event-based approaches
can allow the estimator to extract information about the state from
the absence of a measurement, and thus improve its estimate. For
instance, Ribeiro et. al. [12] require the transmission of the sign of
the innovation and derive an approximate minimum mean squared
error (MMSE) estimator. Also, the authors in [13] design a threshold
scheme on the normalized innovation vector to trigger communication
and derive an approximate MMSE estimate. Deterministic schemes
as discussed by [12, 13, 14] destroy the Gaussian property of the
innovation process in traditional Kalman filtering, thus rendering the
closed-form derivation of the exact MMSE estimator computationally
intractable. Symmetric triggers such as those proposed in [15] and
[6] allow the remote estimator to compute an MMSE estimate.
Here, the triggers are designed so that a priori and a posteriori
estimates are identical if a measurement is dropped which implicitly
requires that the sensor has access to the same information as the
estimator. However, this is not feasible in the multi-sensor case
without substantially increasing communication in the network.

Han et. al. in [6] incorporate a stochastic decision rule, which
not only allows the remote estimator to use information contained
in the absense of a measurement, but also maintains the Gaussian
distribution of the current state. A key advantage of the proposed
method over most deterministic triggers is that in addition to ob-
taining an exact MMSE estimator, by preserving Gaussianity, [6]
maintains an exact distribution of the state xk and the estimation
error ek for all time k. Thus, the proposed stochastic event-based
trigger is useful in scenarios where real time error analysis is critical.
In this paper, we extend the same stochastic decision rule to the
multi-sensor case where there exists a unique decision variable for
each of m sensors. The main contribution of this paper relative to
[6], which considers a binary transmit or drop policy for a single
trigger, is the derivation of a two-step estimation filter to account for
multiple independent triggers, a modified optimization problem to
design each trigger, and a realistic simulation example on data center
energy management. For this scenario, we also obtain expressions
for sensor communication rates and upper and lower bounds on the
error covariance. A preliminary study for this paper was previously
presented [16]. Here a three-step recursive filter is proposed which
computes a state distribution conditioned on all previous information,
newly received measurements, and the identity of sensors which do
not transmit sequentially. In this article, we obtain an equivalent two-
step recursive filter which combines the last two stages, allowing
us to directly obtain an a posteriori state distribution without any
intermediary steps. We also extend [16] by accounting for vector
sensor measurements with correlated sensor noise as well as through
our optimization problem and simulation example.

The remainder of the paper is organized as follows. Section II
formulates the multi-sensor state estimation problem and proposes
a stochastic event-based sensor scheduler. Section III introduces
a recursive filtering algorithm to obtain the MMSE estimator of
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the state and its error covariance. Section IV derives results about
communication rate and estimation performance. Section V proposes
a semi-definite program to intelligently select trigger parameters.
Section VI consists of a simulation. A conclusion summarizes future
work.

Notation: X ′ denotes the transpose of matrix X . Sn+ and Sn++

are the sets of n × n positive semi-definite and positive definite
matrices. When X ∈ Sn+, we simply write X ≥ 0 (or X > 0 if
X ∈ Sn++). N (µ,Σ) denotes a Gaussian distribution with mean µ
and covariance matrix Σ. E[·] denotes the expectation, Pr(·) denotes
the probability of a random event, ρ(·) denotes the spectral radius of
a matrix. diag(X1, · · · , Xs) is the block diagonal matrix with square
submatrices X1, · · · , Xs. 1 and 0 denote vectors with entries 1 and
0 respectively and In is the identity matrix of size n× n. 1X is the
indicator function. Finally, {A}0 is the matrix obtained by deleting
all 0 rows from A.

II. PROBLEM SETUP

We define the following linear system:

xk+1 = Axk+wk, y
(i)
k = C(i)xk+v

(i)
k , i = 1, · · · ,m. (1)

Here xk ∈ Rn is the state vector, while y
(i)
k ∈ Rsi is the ith

of m vector sensor measurements. In addition, wk ∈ Rn and
vk , [v

(1)′
k , · · · , v(m)′

k ]′ ∈ Rs are mutually uncorrelated Gaussian
noises with covariances Q > 0 and R > 0, respectively and s =∑m
i=1 si. To simplify notation, we define yk , [y

(1)′
k , · · · , y(m)′

k ]′.
The initial state x0 is zero-mean Gaussian random variable with
covariance matrix Σ0 > 0, and is uncorrelated with wk and v

(i)
k

for all k ≥ 0. We assume that (A,C) is detectable where we define
C , [C(1)′, · · · , C(m)′]′.

To reduce the rate of sensor to estimator communication, we intel-
ligently transmit a fraction of our sensor measurements. Note that we
choose to transfer sensor measurements as opposed to local estimates.
This reduces sensor computation as well as size of packets for n > si.
We specify γ(i)

k ∈ {0, 1} as the binary decision variable for sensor
i at time k. When γ

(i)
k = 1, a transmission occurs while when

γ
(i)
k = 0, no measurement is sent. Collecting our decision variables

over m sensors, we have γk = [γ
(1)
k , · · · , γ(m)

k ]′. Also, suppose
at each time k, lk sensors drop their measurements and m − lk
sensors transmit their measurements. The sensors which transmit have
indices p1, · · · , pm−lk . Define the vector of received measurements
yrk ∈ Rm−lk at time k by yrk = [y

(p1)′
k , · · · , y

(pm−lk
)′

k ]′. To obtain
a MMSE estimator given all previous and current measurements, we
perform a two-step process. The first step is a time update where we
obtain the MMSE estimator of xk given the information set up to
time k−1. This is denoted by Ik−1 , {γ0, · · · , γk−1, y

r
0 , · · · , yrk−1}

where I−1 , ∅. In the second step, we update our estimate of xk,
using our previous information set, the received measurements at
time k, (yrk), and the knowledge that certain sensors did not send a
measurement (γk). Thus, we update using Ik.

We now define the following estimation parameters:

x̂−k , E[xk|Ik−1], P−k , E[(xk − x̂−k )(xk − x̂−k )
′|Ik−1],

x̂k , E[xk|Ik], Pk , E[(xk − x̂k)(xk − x̂k)′|Ik]. (2)

Here x̂−k is an a priori MMSE estimate and x̂k is an a posteriori
MMSE estimate. When all measurements are sent to the estimator,
computation of x̂k and Pk, the error covariance, reduces to the
standard Kalman filter. As done by [6], to maintain the Gaussian
distribution of xk, we consider a stochastic trigger. A stochastic
trigger takes a measurement y(i)k and computes a function ϕ(i) :
Rsi → [0, 1] to determine the probability sensor i does not transmit.
While deterministic triggers assign probabilities equal to 1 or 0 for

each measurement, the chosen trigger assigns probabilities in [0, 1].
To do this, at time k, each sensor i generates an i.i.d. uniform random
variable ζ(i)k over [0, 1] and computes γ(i)

k .

γ
(i)
k =

{
0 ζ

(i)
k ≤ ϕ

(i)(y
(i)
k )

1 ζ
(i)
k > ϕ(i)(y

(i)
k )

, ϕ(i)(α) , exp

(
−1

2
α′Y (i)α

)
.

(3)
Here Y (i) ∈ Ssi++ are trigger parameters and we define Y ∈ Ss++

as Y , diag (Y (i), · · · , Y (m)). Note that P (γ
(i)
k = 0|y(i)k ) has the

shape of a scaled Gaussian distribution. In the next section, we will
show this allows the state to remain Gaussian. For the chosen trigger
we consider stable systems, i.e. ρ(A) < 1. If the system is unstable,
any sensor i which measures an unstable state will have y(i)k grow
unbounded. In this case, by (3) sensor i will always transmit.

In order to maximize performance with respect to communication
and mean squared error (MSE) in state estimation, the choice of the
function ϕ(i) should be considered in conjunction with a choice of es-
timator. We observe that there may exist other, possibly deterministic,
triggers and estimators which achieve better MSE and communication
performance than the proposed trigger. Previous work [17] suggests
in the scalar case, without sensor noise, a symmetric threshold based
detector of the error yk − ŷ−k , along with a Kalman filter is optimal
among deterministic triggers.

Motivated by this result, [6] considers a closed loop trigger where
α = y

(i)
k − E[y

(i)
k |Ik−1]. This design outperforms the proposed

trigger but requires estimator to sensor communication at each step,
which substantially increases communication cost. As a result, we do
not consider this approach. Instead, we consider α = y

(i)
k ≈ y

(i)
k −

E[y
(i)
k |I−1] as k → ∞. For multidimensional systems, a challenge

in selecting ϕ(i) is the ability to obtain computationally tractable
MMSE estimates. The advantage of the proposed design of ϕ(i) is
that an exact MMSE estimator can be obtained. Moreover, from [6]
as well the simulation section, the proposed trigger outperforms some
known deterministic designs.

III. MMSE ESTIMATOR DESIGN

In this section, based on the design of ϕ(i), we obtain a closed-
form solution to the MMSE estimation problem, given recursively by
the following theorem:

Theorem 1. Consider remote state estimation with event-
based scheduler (3) and define the matrix Ψk ∈ Rs×s ,
diag(γ1Is1 · · · γmIsm) to store the m decision variables. Also, for
simplicity let Zk , CP−k C

′ + R. Assume f(x0|I−1) ∼ N (0,Σ0)
so x̂−0 = 0, P−0 = Σ0. Then, f(xk|Ik) ∼ N (x̂k, Pk) and
f(xk|Ik−1) ∼ N (x̂−k , P

−
k ) where x̂k, x̂−k and Pk, P

−
k satisfy the

following recursive equations:
Time update:

x̂−k = Ax̂k−1, P−k = APk−1A
′ +Q, (4)

Measurement update:

x̂k = x̂−k +Kk(Ψkyk − Cx̂−k ), (5)

Pk = P−k −KkCP
−
k , Kk = P−k C

′(Zk + (I −Ψk)Y −1)−1, (6)

Proof. To simplify the proof of the theorem, we define the following
notation which will allow us to distinguish among parameters associ-
ated with sent measurements versus dropped measurements. Suppose
at time k, there exists lk sensors j1, · · · , jlk that do not trigger a
transmission and m − lk sensors, p1, · · · , pm−lk which trigger a

transmission. We define the matrix Γk ∈ R
(∑m−lk

1=1 spi

)
×s and Γ̄k ∈
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Rm−lk×m to select sensors which transmit and Λk ∈ R
(∑lk

1=1 sji

)
×s

and Λ̄k ∈ Rlk×m to select sensors which do not transmit as

Γk = {Ψk}0,
(
Γ̄k
)
u,v

,

{
1 v = pu

0 otherwise
,

Λk = {I −Ψk}0,
(
Λ̄k
)
u,v

,

{
1 v = ju

0 otherwise
. (7)

We prove Theorem 1 using induction on the distribution
f(xk|Ik−1) ∼ N (x̂−k , P

−
k ).

Case n = 0: For n = 0, we have Ik−1 = ∅. Thus, f(x0|I−1) =
f(x0) ∼ N (0,Σ0) and the initial conditions holds.
Case assume for n = k: We assume that f(xk|Ik−1) ∼
N (x̂−k , P

−
k ).

Case prove for n = k+ 1: We first verify the measurement update
step.
Measurement Update Step: Consider the joint conditional pdf of xk
and Λkyk given Ik

f(xk,Λkyk|Ik) = f(xk,Λkyk|yrk, Γ̄kγk = 1, Λ̄kγk = 0, Ik−1)

= f(xk,Λkyk|Γkyk, Λ̄kγk = 0, Ik−1),

=
Pr(Λ̄kγk = 0|xk, yk, Ik−1)f(xk,Λkyk|Γkyk, Ik−1)

Pr(Λ̄kγk = 0|Γkyk, Ik−1)
.

(8)

The second equality follows since the knowledge of the values of sent
measurements Γkyk implies that the decision variables Γ̄kγk = 1.
The last equality is derived from Bayes rule.

By our induction assumption, f(xk,Λkyk,Γkyk) is jointly
Gaussian distributed given Ik−1. As a result, the distribu-
tion f(xk, Λkyk|Γkyk, Ik−1) is also Gaussian. We observe
f(xk,Λkyk,Γkyk|Ik−1) has mean [x̂−′k , (ΛkCx̂

−
k )′, (ΓkCx̂

−
k )′]′

and covariance P−k P−k C
′Λ′k P−k C

′Γ′k
ΛkCP

−
k ΛkZkΛ′k ΛkZkΓ′k

ΓkCP
−
k ΓkZkΛ′k ΓkZkΓ′k

 . (9)

Given a joint Gaussian distribution f(xk,Λkyk,Γkyk|Ik−1), it is
easy to compute f(xk,Λkyk|Γkyk, Ik−1) which is also Gaussian
[18]. The conditional means are

µx = x̂−k + P−k (ΓkC)′(ΓkZkΓ′k)−1Γk(yk − Cx̂−k ), (10)

µy = ΛkCx̂
−
k + ΛkZkΓ′k(ΓkZkΓ′k)−1Γk(yk − Cx̂−k ). (11)

Furthermore, the covariance of xk and Λkyk given Γkyk and Ik−1

is Φk =

[
Σxx Σxy
Σ′xy Σyy

]
, where

Σxx = P−k − P
−
k (ΓkC)′(ΓkZkΓ′k)−1(ΓkC)P−k , (12)

Σyy = ΛkZkΛ′k − ΛkZkΓ′k(ΓkZkΓ′k)−1ΓkZkΛ′k, (13)

Σxy = P−k (ΛkC)′ − P−k (ΓkC)′(ΓkZkΓ′k)−1ΓkZkΛ′k. (14)

Having obtained f(xk,Λkyk|Γkyk, Ik−1), we observe

Pr(Λ̄kγk = 0|xk, yk, Ik−1) = exp

(
−1

2
y′kΛ′kΛkY Λ′kΛkyk

)
.

Using (8), we can thus obtain the joint probability density function
for the state xk and the dropped measurements Λkyk. That is we have

f(xk,Λkyk|Ik) = β−1
k exp(−1

2
θk), where βk ∈ R and θk ∈ R are

defined respectively as

βk , Pr(Λ̄kγk = 0|Γkyk, Ik−1)

√
det(Φk)(2π)n+

∑lk
i=1 sji , (15)

θk ,

[
xk − µx

Λkyk − µy

]′ [
Σxx Σxy
Σyx Σyy

]−1 [
xk − µx

Λkyk − µy

]
+ (Λkyk)′ΛkY Λ′k(Λkyk). (16)

We now introduce the following Lemma with proof found in [19].

Lemma 1. The scalar θk ∈ R is given by

θk =

[
xk − x̄k

Λkyk − ȳk

]′
Θ−1
k

[
xk − x̄k

Λkyk − ȳk

]
+ ck, (17)

where x̄k ∈ Rn, ȳk ∈ R
∑lk

i=1 sji , ck ∈ R and Θk ∈ S
∑lk

i=1 sji+n

++ are
given by

x̄k = x̂−k + P−k C
′(Zk + (I −Ψk)Y −1)−1(Ψkyk − Cx̂−k ), (18)

ȳk =
[
I + ΣyyΛkY Λ′k

]−1
µy, (19)

Θk =

[
Θxx,k Θxy,k

Θ′xy,k Θyy, k

]
, ck = µ′y(Σyy + ΛkY

−1Λ′k)−1µy, (20)

where

Θxx,k = P−k − P
−
k C

′(CP−k C
′ +R+ (I −Ψk)Y −1)−1CP−k ,

Θxy,k = Σxy(I + ΛkY Λ′kΣyy)−1,

Θyy,k =
[
Σ−1
yy + ΛkY Λ′k

]−1
.

Thus, the joint pdf of our state and unknown measurements are
given as follows

f(xk,Λkyk|Ik) =
1

βk
exp

(
−ck

2

)
× exp

(
−1

2

[
xk − x̄k

Λkyk − ȳk

]′
Θ−1
k

[
xk − x̄k

Λkyk − ȳk

])
. (21)

Since f(xk,Λkyk|Ik) is a pdf, its integral normalizes to one which
implies that f(xk,Λkyk|Ik) are jointly Gaussian. Moreover, this
implies that xk is conditionally Gaussian given Ik with mean x̂k
and covariance Pk. Therefore, (5) and (6) hold for the measurement
update step.
Time Update Step: We have proved f(xk|Ik) ∼ N (x̂k, Pk). By the
conditional independence of xk and wk, we see

f(xk+1|Ik) = f(Axk + wk|Ik) ∼ N (Ax̂k, APkA
′ +Q). (22)

Thus, (4) holds. By induction, f(xk|Ik−1) ∼ N (x̂−k , P
−
k ). More-

over, from this result, and the proof of the measurement update step,
f(xk|Ik) ∼ N (x̂k, Pk), which concludes the proof.

Remark 1. The estimation filter can be formulated as a Kalman
filter with time-varying sensor noise R+(I−Ψk)Y −1 and innovation
Ψkyk−Cx̂−k . This similarity allows for computational simplicity and
easy implementation.

Remark 2. With an imperfect channel, the estimator will have to
differentiate between intended packet drops by the sensor due to the
stochastic trigger and unintended drops due to the channel. If packet
drops are IID Bernoulli, the state will be distributed according to a
Gaussian mixture model corresponding to each possible trajectory of
γk. The resulting distribution however is intractable as k →∞.

Remark 3. In the case that we wish to model uncertainties or partial
knowledge of the matrices A and C, for instance through unknown
parameters ∆A and ∆C, the results of theorem 1 do not hold. As
with the standard Kalman filter, uncertainty in system parameters will
destroy the Gaussianity of the system state and make computation of
the MMSE estimator intractable. Nonetheless, we know simply from
the stability of the system that any error in the estimate due to system
uncertainty will be bounded. Moreover, the state estimate will be a
continuous function of parameters in A and C.
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IV. PERFORMANCE ANALYSIS

In proposing an event-based trigger, our goal is to address the trade-
off between estimation performance and power consumed through
communication by sensor nodes. The communication rate λ(i) ∈
[0, 1] for sensor i can be defined as

λ(i) , lim sup
T→∞

1

T + 1

T∑
k=0

E[γ
(i)
k ]. (23)

Knowledge of the communication rate λ(i) of each sensor will
allow designers to determine the required system bandwidth and
to estimate the lifetime of each sensor. To obtain an expression
for the communication rate λ(i) for each sensor, we first define
Σ ∈ Sn++,Π

(i) ∈ Ssi++ by

Σ , lim
k→∞

Cov(xk) = AΣA′ +Q,

Π(i) , lim
k→∞

Cov(y
(i)
k ) = C(i)ΣC(i)′ +R(i),

where R(i) , E[v
(i)
k v

(i)′
k ]. With these results, we arrive at an

expression for the communicate rate of each sensor with proof in
[6] .

Theorem 2. Consider a stable linear system (1) with a stochastic
event-based sensor schedule given by (3). The communication rate
λ(i) for each sensor i = 1, · · · ,m is given by

λ(i) = 1− 1√
det (I + Π(i)Y (i))

. (24)

We next verify that the properties established for the expected
communication rate over several runs, apply to a single sample path,
the proof of which is found in [6].

Theorem 3. The following equality almost surely holds.

lim
N→∞

1

T + 1

T∑
k=0

γ
(i)
k

a.s
= λ(i). (25)

Furthermore, for any finite integer l ≥ 0, define the event of l
sequential packed drops over all m sensors Ek,l and the event of l
sequential packet arrivals over all m sensors Ek,l as follows

Ek,l , {γk = 0, · · · , γk+l−1 = 0},
Ek,l , {γk = 1, · · · , γk+l−1 = 1}.

Then almost surely Ek,l and Ek,l happen infinitely often.

We next examine the estimation performance by analyzing the
statistical properties of P−k .

Theorem 4. Consider a stable system (1) with scheduler given by
(3). Let

gW (X) , AXA′ +Q−AXC′(CXC′ +W )−1CXA′.

1) There exists an M ∈ Sn++, such that for all k, P−k is uniformly
bounded above by M .

2) For any ε > 0, there exists an N such that for all k ≥ N , the
following inequalities hold

X − εI ≤ P−k ≤ X + εI, (26)

where X and X are the unique solutions X = gR(X) and
X = gR+Y−1(X) respectively.

3) For any ε > 0, almost surely for infinitely many k′s, we have
P−k ≥ X − εI and almost surely for infinitely many k′s, we
have P−k ≤ X + εI .

The first statement shows that regardless of the choice of Y (i)

(communication rate), the error covariance is bounded. The second

statement obtains upper and lower bounds while the third statement
shows that during a sample path, P−k will approach these bounds
infinitely many times, a consequence of Theorem 3, where we expect
long strings of transmissions and drops.

V. OPTIMIZATION OF TRIGGER PARAMETERS

Before we continue, we introduce the following Corollary with
proof found in the appendix.

Corollary 1. Define P , X −XC′(CXC′ +R+ Y −1)−1CX.

1) For any ε > 0, ∃ an N such that for all k ≥ N , Pk ≤ P + εI .
2) For any ε > 0, almost surely for infinitely many k′s, we have

Pk ≥ P − εI

Thus, it is a worthy goal to design Y (i) to limit P . We address
the estimation and communication tradeoff by minimizing the system
communication rate subject to this bound.

Problem 1: Y (i)
∗ = arg min

Y (i)≥0, i=1,··· ,m

m∑
i=1

λ(i), s.t P ≤ ∆.

1 Here, the matrix ∆ serves as an upper bound on our worse case error
covariance, thus providing a robust bound on our estimation quality.
Unfortunately, Problem 1 is a nonconvex minimization problem
which cannot easily be solved. However, we observe the following.

Lemma 2. Define f(x) , 1−(1+x)−
1
2 and g(x) = 1−exp(x)−

1
2 .

Given λ(i) from (23), Π(i) > 0 and Y (i) > 0, the following inequality
holds

f

(
m∑
i=1

tr
(

Π(i)Y (i)
∗

))
≤ λopt ≤ mg

(
1

m

m∑
i=1

tr
(

Π(i)Y (i)
∗

))
(27)

where λopt is the global minimum of Problem 1.

Proof. Let u =
∑m
i=1 ui and ui = tr

(
Π(i)Y

(i)
∗

)
. We observe that

f(u) ≤
m∑
i=1

f(ui) ≤ λopt ≤
m∑
i=1

g(ui) ≤ mg
( u
m

)
(28)

The first equality holds for u = 0. The inequality holds since partial
derivatives of

∑m
i=1 f(ui) with respect to ui are greater than or equal

to those of f(u). The second and third inequalities are proved in [6].
Applying Jensen’s inequality to g which is concave, we get the last
inequality.

Since the optimum value of our objective function can be bounded
by two increasing functions of

∑m
i=1 tr

(
Π(i)Y (i)

)
, we propose the

following convex relaxation to Problem 1.

Problem 2: Y (i)
∗ = arg min

Y (i)≥0, i=1,··· ,m

m∑
i=1

tr
(

Π(i)Y (i)
)
,

subject to P ≤ ∆. (29)

There exist challenges with the constraint since P is only defined
through X which itself is defined through an implicit function
gw . The following theorem allows us to obtain an equivalent set
of constraints and thus formulate the problem as a semi-definite
program. The proof is found in [19].

Theorem 5. The optimal Y (i) satisfying Problem 2 can be found by
solving the following problem.

Solve: Y (i)
∗ = arg min

Y (i)≥0, i=1,··· ,m

m∑
i=1

tr
(

Π(i)Y (i)
)
,

1Y (i) ≥ 0 is chosen to ensure the problem is feasible for solvers. To ensure
Y ∈ Sm++, consider Y (i) ≥ εI where ε > 0.
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 Q−1 − S + C′R−1C Q−1A C′R−1

A′Q−1 A′Q−1A+ S 0
R−1C 0 Y +R−1

 ≥ 0,

Y (i) ≥ 0, S ≥ ∆−1.

VI. NUMERICAL ANALYSIS

To assess performance, we consider a thermal model for data
centers, introduced in [20]. The size of data centers has been growing
both in number and capacity, resulting in rising energy costs. To
conserve energy, [20] considers the following thermal model for
energy control.Ṫ outs

Ṫ outc

Ṫ outo

 =

ks(Ψss − 1) ksΨsc ksΨso

kcΨcs kc(Ψcc − 1) kcΨco

koΨos koΨoc ko(Ψoo − 1)

T outs

T outc

T outo


+Bu,

(30)T insT inc
T ino

 =

Ψss Ψsc Ψso

Ψcs Ψcc Ψco

Ψos Ψoc Ψoo

T outs

T outc

T outo

+Du. (31)

Here the state x is a collection of output temperatures of devices
while the measured values y are the input temperatures of devices
which require multiple sensors. The subscripts represent different
nodes under consideration, where ‘s’ corresponds to servers, ‘c’
corresponds to air conditioners, and ‘o’ corresponds to other devices.
The inputs include a reference temperature for the air conditioners,
power consumed, and temperature of heat sources. Ψ gives weight to
how the temperature output of each node affects the temperature into
each node and k is a set of thermal constants. Addressing the trade-off
between estimation and communication in this example will reduce
energy expenditures and data storage necessary for thermal control.

To obtain a model consistent with (1), we linearize the system
around its stable equilibrium, and assume the inputs remain at or near
their equilibrium values for all time, a valid assumption during the
night or backup periods. Furthermore, we sample the system at a rate
of 1

150
Hz. We consider a system with 16 servers, 3 air conditioners,

and 1 other device. The matrices Q and R are generated as a product
of a random matrix with entries uniform from 0 to 1 multiplied by
its transpose. The matrices are scaled so that the average magnitude
of error in wk is 0.1 Kelvin and in vk is 0.5 Kelvin.

In Fig 1, we plot the apriori mean squared error in the state estimate
as a function of the average communication rate, where each data
point is obtained over a run of 10,000 trials. We consider 4 main
designs. We first consider a random design where for each sensor
at each time step, the probability of transmission is λavg . We also
consider a stochastic design where each sensor communicates at the
same rate, and an optimized design from Problem 2.

Finally, for comparison we include a deterministic trigger defined
according to the rule γ(i)

k = 1‖y(i)
k
‖>δ(i) . δ(i) are chosen so sensor

i communicates at the same rate as sensor i in the optimized
stochastic trigger. A sub-optimal estimator is incorporated here where
a posteriori estimates x̂k as well as Pk are obtained using a Kalman
filter for just the received measurements, (10) and (12). We note
that even approximate MMSE or maximum likelihood estimators as
proposed by [13] and [14] are computationally inefficient for the
given trigger centered around y

(i)
k = 0 and thus cannot be used

to improve the estimate. [13] requires multidimensional numerical
integration across the entire state. Meanwhile, sensors which do not
transmit measurements in [14] are formulated as constraints in an
optimization problem. To solve, we must evaluate all 3lk possible
combinations of active constraints, which becomes a computational
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Fig. 2. Percent improvement of designed stochastic triggers and deterministic
trigger compared to random triggers

burden for a large number of sensors. Also shown are upper and
lower bounds for the un-optimized approach.

In Fig 2, we plot the percent improvement of the stochastic and
deterministic designs relative to the random design in terms of the
mean squared error plotted in Fig 1. An un-optimized stochastic
design provides as much as 15% improvement, a deterministic design
offers as much as 20% improvement, and the optimized stochastic
design offers as much as 30% improvement.

VII. CONCLUSION

In this paper we considered a stochastic event trigger for the
sensor scheduling problem in multi-sensor networked systems. The
stochastic trigger has inherent advantages over offline triggers which
can not improve estimates using information contained by the absence
of a measurement. Moreover, it maintains the Gaussian properties of
the state, an advantage over previous event triggered approaches. We
thus could derive a recursive filter to obtain the MMSE estimator
and error covariance. Additionally, we obtained an expression for
sensor communication rate as well as asymptotic bounds for our
error covariance. Finally, we introduced an optimization problem
that will allow designers to reduce the overall communication rate
in the system subject to some upper bound on the worst case
error covariance. Future work consists of considering the stochastic
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trigger in a system with control inputs and incorporating inter-sensor
cooperation.
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VIII. APPENDIX

Proof. (Corollary 1) To begin we define function h(X,Ψ) : Sn++×
{0, 1}s → Sn++ as

h(X,Ψ) , X −XC′
(
CXC′ +R+ (I − diag(Ψ))Y −1)−1

CX.
(32)

Using the matrix inversion lemma

h(X,Ψ) =
(
X−1 + C′

(
R+ (I − diag(Ψ))Y −1)−1

C
)−1

.

This implies h is monotonically increasing in X , and maximized for
Ψ = 0s. From Theorem 1, we observe that

Pk = h(P−k , [γ
(1)
k 1′s1 · · · γ

(m)
k 1′sm ]′). (33)

By Theorem 4.2, we have that P−k ≤ X + ε̃I for k ≥ N̄(ε̃). By the
monotonicity of h, we obtain

Pk ≤ h(X + ε̃I,0)

= (X + ε̃I)−
(X + ε̃I)C′(C(X + ε̃I)C′ +R+ Y −1)−1C(X + ε̃I).

Moreover, by the continuity of h in X , for any ε > 0 there exists
ε̃ > 0 such that

Pk ≤ h(X + ε̃I,0)

≤ X −XC′(CXC′ +R+ Y −1)−1CX + εI

= P + εI, (34)

for k ≥ N̄(ε̃) = N(ε). We must now show that Pk approaches
this upper bound infinitely many times. To do this, define function
h̄ : Sn++ → Sn++ as

h̄(X) , (AXA′ +Q)−
(AXA′ +Q)C′(C(AXA′ +Q)C′ +R+ Y −1)−1C(AXA′ +Q)

= h(AXA′ +Q,0). (35)

Note that h̄ is monotonically increasing in X since h is monotonically
increasing in its first argument and AXA′ + Q is monotonically
increasing in X . Utilizing Proposition 1 of [6], we know there exists
an l > 0 such that

h̄l(0) ≥ X −XC′(CXC′ +R+ Y −1)−1CX − εI = P̄ − εI.

If event Ēk,l occurs, then we know that

Pk+l = h̄l(Pk) ≥ h̄l(0) ≥ P̄ − εI. (36)

By Theorem 3, the event Ēk,l almost surely occurs infinitely often
and thus the result holds.


