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Optimal Parameter Estimation Under Controlled
Communication Over Sensor Networks

Duo Han, Keyou You, Lihua Xie, Fellow, IEEE, Junfeng Wu, and Ling Shi

Abstract—This paper considers parameter estimation of linear
systems under sensor-to-estimator communication constraint. Due
to the limited battery power and the traffic congestion over a large
sensor network, each sensor is required to reduce the rate of com-
munication between the estimator and itself. We propose an obser-
vation-driven sensor scheduling policy such that the sensor trans-
mits only the important measurements to the estimator. Unlike
the existing deterministic scheduler, our stochastic scheduling is
smartly designed to well compensate for the loss of the Gaussianity
of the system. This results in a nice feature that the maximum-like-
lihood estimator (MLE) is still able to be recursively computed in
a closed form, and the resulting estimation performance can be
explicitly evaluated. Moreover, an optimization problem is formu-
lated and solved to obtain the best parameters of the scheduling
policy under which the estimation performance becomes compa-
rable to the standard MLE with full measurements under a mod-
erate transmission rate. Finally, simulations are included to vali-
date the theoretical results.
Index Terms—Wireless sensor networks, maximum likelihood

estimation, Cramer-Rao bounds, event-based communication.

I. INTRODUCTION

D ESPITE the benefits such as abundant information
without geographical limit that wireless sensor networks

provide [1], estimation theory encountered new challenges
imposed by wireless communication in recent years. For in-
stance, the measurement quantization effects on the estimation
performance have been extensively studied in [2]–[7]. The
unreliability of the communication channel such as data packet
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delay or dropout has also been considered in [8]–[12]. In this
paper, we investigate a class of problems called controlled
communication for estimation [13]. The concept of controlling
communication between the sensors and the remote estimator
is rooted in the limited communication resources for each
single sensor. What we refer to as communication resources are
generally classified into two broad categories, namely, sensor
energy and network bandwidth. The most common dilemma the
estimation system has to face is that, the sensors are required
to temporally and spatially provide as much information as
possible to the estimator, but on the other hand the sensors
cannot work at full load due to limited battery power or traffic
congestion over a network. In other words, provided a limited
energy budget, the total number of transmission of one sensor,
i.e., the number of data reporting jobs a sensor can do, is finite.
Also, when a network of sensors are used, reducing the number
of sensors reporting data at the same time relieves the traffic
burden and saves the cost of constructing an expensive channel
with high bandwidth.
As for the bandwidth-constrained estimation problem, many

existing works attack the problem by using one or several bits
to represent an analog measurement such that the limited band-
width is sufficient for a distributed sensor network [2], [6], [7],
[14]–[16]. For example, a problem of parameter estimation with
binary quantized measurement is studied in [2]. The maximum
likelihood estimator (MLE) is conceptually derived and an opti-
mization problem is formulated to find the optimal nonidentical
thresholds for binary quantization. The similar idea of binary
quantization is applied to the Kalman filtering in [17] and an
approximate minimum mean square error (MMSE) estimator is
obtained. Marelli et al. [7] studied the identification problem
for an ARMA model with intermittent and quantized measure-
ments and implemented the MLE estimator using the EM-based
algorithm. The energy-constrained estimation problem is also
widely studied in [18]–[22]. For example, Li et al. [20] explored
the tradeoff between the subset of active sensors and the energy
used by each active sensor to minimize the estimation error.
Mo et al. [21] proposed a stochastic sensor selection policy in
a sensor network with tree topology to satisfy a limited energy
budget.
It is known that the communication unit consumes more

power than any other functional block of a sensor [1], [23].
Moreover, a typical data packet usually consists of many bits of
header and thus the cost of transmitting one packet is relatively
high no matter how much the payload is. Therefore, the burden
of limited energy and bandwidth can be effectively lightened
by controlling the rate of packet transmission. In the sequel we
refer to the packet transmission rate as the transmission rate.
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Fig. 1. Parameter estimation framework.

We focus on the parameter estimation under the constrained
transmission rate in this paper. The sensor measurements are
used to estimate an unknown but deterministic vector param-
eter. However, not all the measurements are transmitted to
the estimator for some reasons, such as extending a sensor’s
life span, relieving the traffic congestion, etc. An alternative
countermeasure is that the sensor is allowed to send its mea-
surements periodically. The length of the period is designed
based on the desired tradeoff between the performance quality
and the communication cost. In this method, the sensor treats
all the measurements with equal importance. However, this
method is shown to provide a worse tradeoff than an adaptive
one which can differentiate the importance of each sensor [24],
[25]. A better idea is that by defining some metric to measure
the importance, the sensor at each time intentionally discards
the unimportant data packets to save their communication
resources. This concept has been widely used for estimating the
state of a dynamical system [25]–[28]. A closely related work
[29] studied the asymptotically optimal parameter estimation
problem with scheduled measurements. They derived the MLE
with a subset of measurements and analyzed the asymptotic
properties of the estimator. Their MLE lacks a simple form and
is computationally demanding.
We consider the remote estimation scheme shown in Fig. 1,

where the sensor observes the vector parameter through a
time-invariant or time-varying observation matrix with ad-
ditive Gaussian noise. To save the communication cost, the
sensor decides whether to send the measurement to the
estimator. In the spirit of [27] which dealt with the MMSE
state estimation of a linear time-invariant system, we propose
a stochastic scheduling solution to the transmission rate con-
strained parameter estimation problem. The solution results in
a closed-form MLE and a recursive algorithm to compute the
MLE, which possesses a main advantage over the deterministic
threshold-type mechanism in [29]. Unlike [27], we analytically
present extensive asymptotic results on the proposed MLE
which show the consistency and asymptotic normality. We
also formulate an optimization problem to find the optimal
parameters in the scheduling policy. The main contributions of
this work are summarized as follows.
1) We design a stochastic scheduling policy to reduce the

transmission rate while preserving sufficient estimation ac-
curacy. Then, we derive a closed-form MLE which is im-
possible in the existing work and present a recursive MLE
algorithm.

2) Though it is biased in general, the MLE is proved to be
asymptotically unbiased and consistent. We derive an
analytical expression of the Cramér-Rao lower bound
(CRLB), which the covariance of the MLE asymptotically
reaches under some mild assumption. Moreover, we ex-
tend the result into the case where the observation matrix
is random.

3) The proposed stochastic scheduling policy with two new
design parameters can be adjusted to achieve an arbitrary
tradeoff between the estimation quality and the communi-
cation. A general optimization problem is formulated, with
respect to the new design parameters, to find the optimal
tradeoff balance. The optimization problem is successfully
relaxed and the tight upper and lower bounds of the op-
timal solution are solved using semidefinite programming
(SDP).

4) When the prior knowledge of the parameter to be estimated
is available to the estimator, we study the maximum a pos-
teriori estimation problem and more generally, the Bayes
estimation problem.

The remainder of this paper is organized as follows. In
Section II we describe the parameter estimation problem of
interest and present a novel scheduling solution. Then we
solve the MLE in a closed-form and study some variations in
Section III. In Section IV we carry out asymptotic analysis
of the derived estimator. In the following section we discuss
how to search the optimal parameters in the scheduling policy
by formulating an optimization problem. In Section VI we
discuss how to incorporate prior knowledge of the parameter
to be estimated into the MLE. Some numerical results and
concluding remarks are given in Section VII and VIII.
Notations: Let be a random vector on a probability

space . We use to represent a probability den-
sity function (abbreviated as pdf) of . means that
a sequence of random vectors indexed by converges almost
surely to the random vector . means that a sequence
of random vectors indexed by converges in distribution to
the random vector . and are the gradient and the
Hessian matrix of a scalar function . is the identity ma-
trix of rank . is the determinant of the square matrix
. is the spectral radius of the matrix , i.e., the largest

eigenvalue in magnitude of . and are the set of
positive semidefinite and definite matrices. To compare

two matrices, we denote if ,
likewise. is the Moore-Penrose pseudoinverse of
. is the -norm of a matrix , i.e., the max-

imum of the absolute row sums. Given a positive definite matrix
, is the weighted norm of the vector .

II. PROBLEM STATEMENT

Consider a parameter estimation problem of estimating
described as

(1)

where is the measurement and is the i.i.d.
zero-mean additive Gaussian noise random vector with covari-
ance matrix . The observation matrix
satisfies . The parameter is unknown and
to be identified. The sensor measures the contaminated value
of the parameter and sends the measurement to a remote esti-
mator for estimating .
Taking both the estimation quality and the communication

cost into account, we choose a subset of measurements to
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transmit for an estimation task, according to a certain crite-
rion. We consider designing a sensor scheduling policy such
that those more important measurements are more likely to
be received by the estimator. Consequently, we expand the
sensor lifetime in an average sense. Let be the indicator
whether the sensor is authorized to transmit data at time ,
i.e., permitted when and denied when . Many
criteria for determining which measurement is important have
been proposed. For example, a sensor scheduling policy
is considered in [29]:

if ,
otherwise,

(2)

where and are given. When the real function of the scalar
measurement exceeds the threshold , a transmission is trig-
gered.
In this work we consider the following stochastic sensor

scheduling policy : given a specific , the transmission
indicator is a Bernoulli random variable with the probability
of failure , i.e.,

(3)

where the sequence of vectors and the
sequence of positive definite matrices

are the parameters to be designed. Note that the conditional
random variable is defined with a known distribution
but the probability of success of itself is unknown, which will
be shown later.
An observation from (3) is that the probability of is

lower when is closer to , namely, a transmission is less
likely when is closer to . The intuition behind (3) is that,
from a viewpoint of the estimator, implies that is
around the known reference with a high probability, and thus
the estimator is still able to make a good guess of even when
the measurement is dropped for communication saving. The pa-
rameters and , of which the estimator has a knowledge,
play roles of known reference and scaling factor, respectively.
It is worthwhile to notice that the probability of is a
binary function of the value of the predefined function of in
(2) while the probability of is a continuous function of
the value of the predefined function of in (3). The exponen-
tial function of and in (3) resembling the Gaussian pdf
renders the derivation of the MLE tractable, which we shall see
later.
Remark 1: The drawback of the deterministic scheduling

policy in [29] is the lack of an explicit expression of the resulting
MLE. In the case of vector measurements, the computational
complexity of the multivariate integration is demanding. This
motivates us to find a stochastic policy to reduce the computa-
tion burden and also achieve a good tradeoff between estimation
and communication.
The operation principle of the sensor is described as follows.

The sensor collects the observation and computes the real-
valued function . Then

the sensor generates a Bernoulli random variable with the
probability of success to determine whether to transmit .
To facilitate the derivation, we denote the information set at

the estimator side as

(4)

where

when ,
when .

We use to represent the event of . Notice that
there is a notation conflict between the case where and

, and the case where . Since the probability
measure of when is 0, the fact that
only represents the event of will not affect the analytical
results in the sequel. Furthermore, the average transmission rate
is denoted to be

(5)

The remaining questions after we propose the scheduling
policy for the parameter estimation problem are
1) Under the stochastic scheduling policy, how shall we cal-

culate theMLE based on the information set ? And how
shall we evaluate the average transmission rate ?

2) With respect to an increasing number of measurements,
what is the asymptotic stochastic properties of the param-
eter estimation, in terms of the unbiasedness, consistency
and normality?

3) Is it possible to jointly optimize the estimation quality and
the transmission rate by making use of the design freedom

and ? If so, how do we solve the resulting optimiza-
tion problem?

4) If there is some prior statistical knowledge of the unknown
parameter, how can we incorporate that information into
the parameter estimation process?

In the following sections, we will give answers to all these
questions.

III. MAXIMUM LIKELIHOOD ESTIMATION WITH
SCHEDULED MEASUREMENTS

In this section we present the MLE with the information set
in (4). The first step to derive the MLE is to find the joint pdf of

. To this end, we need some preliminary results. We know
that is independently Gaussian distributed, i.e.,

(6)

Let us define an auxiliary function for the pdf given a
pair of ,
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where

(7)
We need the following intermediate result to facilitate the

derivation of the MLE, which shows that the product of the aux-
iliary function and the density function is still Gaussian.
Lemma 1: For any given pair of , the following

equality holds:

(8)

where

(9)
(10)

Proof: The result is proved by completion of squares,

It is shown that the product
of two Gaussian-like function is still a Gaussian-like function.
The constant is a normalized constant to ensure to be
a Gaussian pdf. The transformed mean and covariance
play important roles in the subsequent sections. Now we have
an immediate result on the probability of a measurement being
selected to transmitted.
Lemma 2: Given the stochastic sensor scheduling rule in (3),

the probability of transmission permission for the sensor at time
is given by

(11)

Proof: The probability of success of the Bernoulli random
variable depends on the Gaussian random variable from
(3). To obtain the probability of , we take the expectation
of the probability of success of the conditional random variable

in (3) over . Thus we have that

The first equality is due to Bayes’ theorem and the third
equality is due to .

By a little abuse of notation, we use and inter-
changeably to denote the pdf of . From Lemma 2, the joint
pdf of with the unknown parameter is given by

(12)

Then the log-likelihood function is written as

Abbreviating to for simplicity, then
we have,

(13)

For the ease of derivation, we define the following functions
of ,

(14)
(15)

We are now ready to present the MLE under the information set
(4). We shall see that the resemblance between the threshold in
the selection policy (3) and the Gaussian distribution facilitates
the MLE derivation.
Theorem 1: Consider the estimation problem in (1) and the

scheduling policy in (3). The MLE based on is given as

(16)

Proof: Taking the gradient of in (13) over , we have

(17)

Also taking the Hessian matrix of , we have

(18)

Note that since . Thus
is a concave function over . Letting

, we obtain is the MLE
which completes the proof.
Remark 2: In [29] the MLE with the deterministic sched-

uler cannot be explicitly written and some algorithms are pro-
posed to numerically find the MLE. The high computational
complexity restricts the practical use, especially when the multi-
variate integration is involved for vector measurements. On the
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contrary, our scheduling policy and the corresponding MLE can
be easily implemented and analyzed.
By invoking the techniques of least squares estimator (LSE)

[30], we can write the MLE in a recursive way. Denote
as the estimate of after measurements and

as the estimation error
covariance. The following algorithm can be used to find the
MLE iteratively.1

Algorithm 1: Iterative MLE

Initialization:
Initialize and .
Repeat:
Compute the gain matrix

(19)

Update the estimate and the covariance according to

(20)

(21)

Until: , output and .

It is worth noting that the MLE is biased and depends
on . To see it clearly, we first show that , where

is defined in (14). The proof is reported in the Appendix.
Lemma 3: Consider defined in (14). For any
, .

Now, we use a simple example to illustrate that the estimator
is generically biased. Considering that the MLE with only

one observation as , from (16) we have

(22)

Then we have

(23)

1In the initialization is a constant representing the initial confidence level
about how accurate is, i.e., for a confident guess or for a
very rough guess.

where . The
second equality is due to Lemma 1 and 3. Note that even the
one-measurement estimator is biased unless . In fact,
we do not know the exact value of .
To maintain the unbiasedness of the MLE under the proposed

policy in (3), we let for (21) in Algorithm 1.
To be specific, the adaptive estimator is denoted as

(24)

The next theorem presents some statistical properties of .
Theorem 2: Let and assume to be invertible.

The following statements hold.
1) The adaptive estimator is unbiased, i.e., .
2) The error covariance of is

(25)

Proof:
1) Let . From (21), we have

where we denote
and . Since

, we inductively conclude that .
2) From (19) and (20), we can rewrite the covariance recur-

sion as

Assuming the initial covariance to be invertible, we can
compute the covariance in (25).

IV. ASYMPTOTIC ANALYSIS OF THE MLE WITH
SCHEDULED MEASUREMENTS

In this section we study the asymptotic properties of the
MLE in (16). We show that is consistent and asymptotically
normal with an explicit form of the stationary covariance.
Moreover, we manage to calculate the average transmission
rate. First we need to introduce the following persistent exci-
tation [31] assumption which is essential for the asymptotic
convergence of the MLE with full measurements.
Assumption 1: There exists a real number such that

(26)

In the next proposition we give the CRLB for any unbiased
estimator with the information set . The proof is reported in
the Appendix.
Proposition 1: Let the Fisher information matrix to be

(27)
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Then the CRLB for any unbiased estimator based on in
(4) is given by , i.e.,

(28)

Next we present the asymptotic properties of the MLE. We
show that the covariance of the MLE asymptotically reaches the
CRLB and thus the MLE is asymptotically optimal from Propo-
sition 1. The mild condition of persistent excitation in Assump-
tion 1 is needed to guarantee the consistency and asymptotic
normality.
Theorem 3: Under Assumption 1 and the assumptions of

and , the MLE in (16)
has the following asymptotic statistical properties.
1) Consistency: .
2) Asymptotic unbiasedness: .
3) Asymptotic normality: assume that exists,

, where

(29)

4) Average transmission rate: assume that
exists, the average transmission

rate is

(30)

The proof is reported in the Appendix.
Remark 3: The Fisher matrix for the MLE with full measure-

ments is . Under the scheduling policy (3),
the fisher matrix is reduced by .
This quantitatively reflects the degradation of the estimation
performance due to the missing measurements. By designing
and , we can adjust and to meet the estimation quality
requirement.
When the MLE is in the recursive form in Algorithm 1, we

show the asymptotic properties of the recursiveMLE in (24).
Theorem 4: Under Assumption 1 and the assumptions of

and , let
and the MLE in (16) has the following asymptotic statis-
tical properties.
1) Consistency: .
2) Asymptotic normality: assume that exists,

, where

(31)

3) Average transmission rate: assume that
exists,

(32)

The proof is reported in the Appendix.
Remark 4: Comparing Theorem 3 and 4, we see that
and for the same . Notice that the low

transmission rate and the small error covariance are favorable.
Though not clear now, we will show that is
generally asymptotically optimal in terms of the rate and the
error covariance later.
In the aforementioned asymptotic results, is assumed

to be a deterministic sequence. The asymptotic properties still
apply if we give a sufficient condition of wide-sense stationary
ergodicity for . The following result can be easily proved
by using the Birkhoff’s ergodic theorem.
Corollary 1: If is a wide-sense stationary ergodic

random process with uniformly bounded -th moment, then
the asymptotic normality in Theorem 3 and Theorem 4 still
holds.

V. DESIGN OF OPTIMAL PARAMETERS IN THE
SCHEDULING POLICY

For vector measurements, the mapping between the transmis-
sion rate and the error covariance is not one-to-one. We can thus
design the parameters and in the policy (3) to obtain an
optimal tradeoff between the rate and the covariance. We quan-
tify the communication cost and the estimation performance and
then formulate a constrained optimization problem. As for the
communication cost, we treat as the transmission
intention at time . For the case of the infinite horizon, it is rea-
sonable to uniformly bound the transmission intention such that
the communication budget is satisfied. On the other hand, since
the MLE reaches the CRLB when , we use the CRLB
as the estimation performance index. To measure the size of the
CRLB, we use the spectral radius. In this work, we denote the
sequence of the parameters as

Denote the set of all possible sequences to be Ξ. Given
a rate constraint , we can have a feasible set of sequences

Ξ

to satisfy the communication requirement. Thus the question is
how to find the optimal solution of that minimizes the
spectral radius of the CRLB and satisfies the transmission rate
constraint. Mathematically, we are interested in the following
optimization problem.
Problem 1:

Ξ
(33)

(34)

where is the spectral radius of . We first give a
necessary condition for the optimal and then find the optimal
, which enables that and can be separately designed.
Lemma 4: The optimal is given by . The

proof is given in the Appendix. Letting , we trans-
form Problem 1 into
Problem 2:

(35)

(36)
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Practically, is not exactly known. Since we are more con-
cerned about the performance after a long period, we use

to approximate due to the consistency of
given by Theorem 4. By introducing a random variable , we
can rewrite Problem 2 into
Problem 3:

(37)

(38)
(39)

By changing the variable , we can see
that is equivalent to

(40)

(41)

where is an intermediate matrix variable. It is straightfor-
ward to see from (41). Then from (40)
we have

by the Schur complement condition for the positive semidefi-
niteness. From (39), we can transform (41) into

(42)

Since , by checking Schur complement condition
we have

Next we turn to the constraint in (34). Since is a log-
concave function of , we relax the constraint by replacing
with its lower bound. From [27, Lemma 2], we use the following
lower bound of ,

Hence we obtain the relaxed constraint

(43)

Then we have a relaxed SDP optimization problem. The lower
bound of optimal solution to Problem 3 can be found by
solving the following SDP problem.
Problem 4:

(44)

(45)

(46)

(47)

(48)

The optimal solution to Problem 4 is the lower bound of the
optimal solution to Problem 1. In particular, if the optimal
to the Problem 4 satisfies (34), then .
Similarly we can find the upper bound of the optimal solution.

By using [27, Lemma 2], we have the upper bound of ,

The upper bound of optimal solution to Problem 3 can be found
by solving the following SDP problem.
Problem 5:

The tightness of the upper and lower bounds will be shown in
the numerical examples later.

VI. PARAMETER ESTIMATION UNDER CONSTRAINED
TRANSMISSION RATE WITH PRIORI KNOWLEDGE

In this section we study the maximum a posteriori (MAP)
estimation and the Bayes estimation problems when the priori
information of is given. It is well known that if we have the
priori statistical knowledge of , the ML estimation problem be-
comes the maximum a posteriori (MAP) estimation problem.
More generally, to find the a posteriori distribution of the pa-
rameter, the ML estimation problem can be reformulated into
the Bayes estimation problem. The simplicity of the MLE in
(16) facilitate the two problems compared with theMLE in [29].

A. MAP Estimation
Assume we have the a priori distribution function of
, from Bayes’ theorem,

(49)

Since is independent of , the MAP estimator
is thus given by

where is given in (13). Note that if is log-concave
then is concave due to the concavity of . In that
case the global maximizer is easy to obtain via analytical or
numerical methods.
Example 5 (Gaussian Case): Let and set

the gradient of to be zero, i.e.,
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Then we have

(50)

Note that if we have the non-informative a priori distribution
for instance , then . Particularly, when

, the MAP estimator asymptotically converges to the
MLE, i.e., .

B. Bayes Estimation
The MAP estimation gives us the value where the a poste-

riori distribution function attains its maximum value. To ob-
tain the a posteriori distribution function in (49),
we resort to solving the Bayes estimation problem. Usually,
the most challenging part is to compute

where the integration may
involve intractable computation. It is known that for a given
likelihood function like , a conjugate prior

is the a priori distribution which renders the a poste-
riori distribution own the same algebraic form
as the the a priori does. In practice one reasonably assumes a
Gaussian a priori distribution function for since it is the con-
jugate prior for a Gaussian likelihood function.
One advantage of our scheduling policy is the computational

simplicity of the resulting MLE. This is inherent in the deriva-
tion of the Bayes estimation. We can easily obtain the a poste-
riori distribution when the conjugate prior is used. If

, then we have

(51)

where is given in (50) and in (25). For a recursive
MMSE estimator, we recommend [27] to the readers.
Remark 5: The Gaussian conjugate prior is assumed due to

the Gaussian noise assumption. This is commonly adopted for
simplicity despite any scheduling scheme is used. For other
types of the distribution of noise, one may need to adjust the
form of the policy in (3) to simplify the integration in (51).

VII. NUMERICAL SIMULATIONS

In this section we present some numerical examples to show
the main results and illustrate the performance of the proposed
scheduling policy.

A. Some Properties of the MLE
We consider the following linear system model (1)

with the parameter . The observation matrix
is chosen with each entry uniformly distributed,

i.e., . The white Gaussian noise
covariance . In Fig. 2(a) we show the consistency of

Fig. 2. (a) Comparison among the proposed MLE, the MLE with random drop
policy and the LSE with full measurements. (b) MAP estimation under the
proposed policy or with full measurements. The a priori distribution of is

.

the MLE estimator in (16) with and .
We choose the transmission rate constraint to be 0.46.
As a reference we also plot the estimate of an LSE with full
measurements and the estimate of an MLE with random trans-
mission access at the same rate of 0.46. The MLE with random
transmission is equivalent to the LSE with an arbitrary subset
of measurements, of which the expected cardinality over the
cardinality of the full set is the transmission rate. We can see
that the convergence rate of the proposed MLE is much faster
than that of the MLE with random transmission. Moreover, all
the estimators are consistent due to the law of large number.
In Fig. 2(b) we illustrate the MAP estimation. Assume the a
priori distribution is . It can be seen that the
estimate is closer to the a priori mean and then converges to
the true value after a long time. To see what the scheduling
pattern is like, we zoom in on the time horizon in Fig. 2(a). The
realization of within [450,500] is plotted in Fig. 3(b). It can
be seen that the estimates of given by the proposed MLE
and LSE are quite close in Fig. 3(a) but the transmission rate
has been reduced to 0.46. In Fig. 4 we plot the expected ML
estimate versus time with 5000 simulation runs. The biased-
ness can be seen clearly when . But the asymptotic
unbiasedness is noticed when becomes larger. In Fig. 5, the
tradeoff between the transmission rate and the mean squared
error (MSE) is shown. The trace of the MSE in dB is defined
as .
The time horizon is 500 and . The different rates are
chosen by adjusting .

B. Comparison With the MLE Under Deterministic Scheduler
In this subsection we aim to compare the proposed MLE with

the MLE under the deterministic scheduler in [29]. In Fig. 6, we
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Fig. 3. (a) Zoom in on the horizon of [450,500]. Estimate of given by the
proposed MLE and LSE. (b) Realization of .

Fig. 4. Biasedness and asymptotic unbiasedness. The proposed MLE is biased
at the beginning. The number of Monte Carlo simulation runs is 5000.

Fig. 5. Tradeoff between the transmission rate and the MSE in dB. The time
horizon is 500.

Fig. 6. Trace of the stationary error covariance for different estimators.

Fig. 7. Comparison with the deterministic scheduler.

compare the performance of the proposed MLE and the MLE
with the deterministic policy in [26] under the same transmis-
sion rate 0.7. The thresholds in both policies are chosen to be

for simplicity. The empirical asymptotic MSE under the
proposed policy matches the theoretical MSE. In Fig. 7, we
compare the performance of both policies under different trans-
mission rates. To experimentally obtain an accurate transmis-
sion rate, we choose the time horizon to be 10000. It can be
shown that the MSE under the proposed policy is larger since
we add some random noise when the sensor is making a trans-
mission decision. This reflects a tradeoff between the computa-
tion complexity and estimation performance. When the rate is
larger, i.e. , it is more likely to use the proposed policy
since the performance gap is very small.

C. Parameter Design

In Section V, we relax Problem 1 into Problem 4 and 5 to
find an upper bound and lower bound of the optimal objective
function. If we denote as the op-
timal objective functions by solving Problem 1, Problem 4 and
Problem 5, respectively, it can be easily seen that
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Fig. 8. Tightness of the upper and lower bounds of the optimal objection func-
tion.

In practice we can solve Problem 5 to obtain a suboptimal
schedule satisfying the transmission rate constraint in (34).
Thus the gap, , can quantify the per-
formance difference between the optimal schedule and the
suboptimal one. The tighter the gap is, the more closer
and are to each other.
To illustrate the tightness of the upper and lower bounds, we

choose the system parameters in (1) as follows,

Then we solve the two SDP problems in Problem 4 and 5 for
each by using the toolbox. Fig. 8 shows that the upper
and lower bounds are tight for different transmission rate con-
straint, which means that the suboptimal schedule by solving
Problem 5 can replace the optimal one very well.

VIII. CONCLUDING REMARKS

We have investigated the optimal parameter estimation under
the transmission rate constraint in this work. We designed a
stochastic scheduling mechanism which defines the importance
of each measurement to obtain a better tradeoff between the
estimation quality and the transmission rate. By exploiting
the resemblance of the proposed stochastic mechanism and
the Gaussian density function, we obtained a closed-form
data-driven MLE with a subset of measurements. We explicitly
gave the CRLB of any unbiased estimator with the incomplete
measurements. The asymptotic results show the consistency
and asymptotic normality of the proposed MLE. The stationary
error covariance of the MLE reaches the CRLB asymptotically.
We also formulated an optimization problem to search the
optimal parameters in the scheduling mechanism to obtain the
optimal tradeoff between the estimation performance and the
transmission rate requirement. Due to the simplicity of the
MLE, we also easily incorporated the prior knowledge of the
parameter into the estimator.
One direction of the future work is to combine the temporal

and spatial communication scheduling among a network of sen-
sors. Our sensor scheduling policy is a temporal type which

cannot avoid the packet collision and interference with other
sensors. Taking the nodes in neighborhood into account while
transmitting the important data is an interesting open problem.

APPENDIX

Proof of Lemma 3: Taking expectation over (14), we have

(52)

The first integral is 0 due to . The second integral
is also 0 from Lemma 1.
Proof of Proposition 1: To obtain the CRLB we

need to first compute the Fisher information matrix
where is given in

(17). We have

(53)

(54)

The latter term in (53) results from the fact that is an
independent random process. Then from (3), (14) and (54), we
have

(55)
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From (6) and Lemma 1, the first expectation term in (55) is given
by

(56)

The second expectation term in (55) is given by

(57)

From (55), (56), (57) and Lemma 2, we have

(58)

Therefore, we have the CRLB for any unbiased estimator

Proof of Theorem 3:
1) Notice that , where

The functions and are defined in (14) and
(15). We now show that and

. From Lemma 2, we have

Since is independently distributed and
, from the Rajchman’s

strong law of large numbers (SLLN) [32, Theorem 5.1.2]
we conclude that

(59)

From (52) we have . From (56) and (57), we
can see that . Now we have

Since , from the
continuous mapping theorem [33, Theorem 2.3], we have
that

which proves the consistency of .
2) By the dominated convergence theorem [34], it is straight-

forward to obtain the result.
3) Pick an arbitrary and denote . We

shall show the Lyapunov condition [34] holds and prove
the asymptotic normality of . For , there exists an
upper bound such that

The first inequality comes from the inequality
[35, Chapter 6, Theorem 4]. The boundness is due to

and . On the other hand,
there exists an upper bound such that

Then we have

which shows the Lyapunov condition is satisfied. Since
Assumption 1 ensures that exists, applying the Linde-
berg-Feller central limit theorem [34, Theorem 7.3.1] and
from (58) we have

Note that

From (59) and the Slutsky’s theorem [35, Chapter 5, The-
orem 7], we have

4) From (11) and the SLLN, we immediately have (30) which
completes the proof.

Proof of Theorem 4: The consistency and asymptotic nor-
mality are not affected by the value of and their validity fol-
lows from Theorem 3. The stationary covariance is dif-
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ferent and needs to be revisited. From (27), we can rewrite the
new Fisher information matrix in case that ,

(60)

(61)

Since , we have . Two immediate
results are and
according to the continuous mapping theorem. Together with
(30) we have (32). Due to the asymptotic efficiency of the MLE,
we conclude the stationary covariance is .
Proof of Lemma 4: To facilitate the proof, we intro-

duce some definitions and notations. Denote the operator
where is given in (29). The increasing

operator monotonicity is asserted if and only if
for any , where .
We mean the sequence order by for
any .
It is straightforward to show that is operator monoton-

ically increasing. Now we shall prove the lemma by contradic-
tion. If we have the optimal solution to the Problem
1 where , there exists another solution
where and for the indices

and for the indices such
that

due to the continuity of . Thus both solutions lead to the
same . Due to the operator monotonicity of , we have

, thus which contra-
dicts the optimality assumption of . This completes the
proof.

REFERENCES
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A

survey on sensor networks,” IEEE Commun. Mag., vol. 40, no. 8, pp.
102–114, Aug. 2002.

[2] A. Ribeiro and G. B. Giannakis, “Bandwidth-constrained distributed
estimation for wireless sensor networks-part I: Gaussian case,” IEEE
Trans. Signal Process., vol. 54, no. 3, pp. 1131–1143, Mar. 2006.

[3] J. Li and G. AlRegib, “Rate-constrained distributed estimation in wire-
less sensor networks,” IEEE Trans. Signal Process., vol. 55, no. 5, pp.
1634–1643, May 2007.

[4] Z. Duan, V. P. Jilkov, and X. R. Li, “State estimation with quantized
measurements: Approximate MMSE approach,” in Proc. Int. Conf. Inf.
Fusion, 2008, pp. 1–6.

[5] M. Fu and C. E. De Souza, “State estimation using quantized measure-
ments,” presented at the IFAC, 2008.

[6] B. I. Godoy, G. C. Goodwin, J. C. Agüero, D. Marelli, and T. Wigren,
“On identification of FIR systems having quantized output data,” Au-
tomatica, vol. 47, no. 9, pp. 1905–1915, 2011.

[7] D. Marelli, K. You, and M. Fu, “Identification of ARMA models using
intermittent and quantized output observations,” Automatica, vol. 49,
no. 2, pp. 360–369, 2013.

[8] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and
S. S. Sastry, “Kalman filtering with intermittent observations,” IEEE
Trans. Autom. Control, vol. 49, no. 9, pp. 1453–1464, Sep. 2004.

[9] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S. Sastry,
“Foundations of control and estimation over lossy networks,” Proc.
IEEE, vol. 95, no. 1, pp. 163–187, Jan. 2007.

[10] M. Huang and S. Dey, “Stability of kalman filtering with Markovian
packet losses,” Automatica, vol. 43, no. 4, pp. 598–607, 2007.

[11] Y. Mo and B. Sinopoli, “Kalman filtering with intermittent observa-
tions: Tail distribution and critical value,” IEEE Trans. Autom. Control,
vol. 57, no. 3, pp. 677–689, Mar. 2012.

[12] T. Sui, K. You, M. Fu, and D. Marelli, “Stability of MMSE state esti-
mators over lossy networks using linear coding,” Automatica, vol. 51,
pp. 167–174, 2015.

[13] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proc. IEEE, vol. 95, no. 1, p. 138, Jan.
2007.

[14] L. Y. Wang, J.-F. Zhang, and G. G. Yin, “System identification using
binary sensors,” IEEE Trans. Autom. Control, vol. 48, no. 11, pp.
1892–1907, Nov. 2003.

[15] J.-J. Xiao, A. Ribeiro, Z.-Q. Luo, and G. B. Giannakis, “Distributed
compression-estimation using wireless sensor networks,” IEEE Signal
Process. Mag., vol. 23, no. 4, pp. 27–41, Jul. 2006.

[16] K. You, “Recursive algorithms for parameter estimation with adaptive
quantizer,” Automatica, vol. 52, pp. 192–201, 2015.

[17] A. Ribeiro, G. B. Giannakis, and S. I. Roumeliotis, “SOI-KF: Dis-
tributed Kalman filtering with low-cost communications using the
sign of innovations,” IEEE Trans. Signal Process., vol. 54, no. 12, pp.
4782–4795, Dec. 2006.

[18] A. Krasnopeev, J.-J. Xiao, and Z.-Q. Luo, “Minimum energy decen-
tralized estimation in a wireless sensor network with correlated sensor
noises,” J. Wireless Commun. Netw., vol. 2005, no. 4, pp. 473–482,
2005.

[19] J.-Y. Wu, Q.-Z. Huang, and T.-S. Lee, “Minimal energy decentralized
estimation via exploiting the statistical knowledge of sensor noise vari-
ance,” IEEE Trans. Signal Process., vol. 56, no. 5, pp. 2171–2176,May
2008.

[20] J. Li and G. AlRegib, “Distributed estimation in energy-constrained
wireless sensor networks,” IEEE Trans. Signal Process., vol. 57, no.
10, pp. 3746–3758, Oct. 2009.

[21] Y. Mo, E. Garone, A. Casavola, and B. Sinopoli, “Stochastic sensor
scheduling for energy constrained estimation in multi-hop wireless
sensor networks,” IEEE Trans. Autom. Control, vol. 56, no. 10, pp.
2489–2495, Oct. 2011.

[22] D. Han, P. Cheng, J. Chen, and L. Shi, “An online sensor power
schedule for remote state estimation with communication energy con-
straint,” IEEE Trans. Autom. Control, vol. 59, no. 7, pp. 1942–1947,
Jul. 2014.

[23] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wire-
less sensor networks: A survey,” Comput. Netw., vol. 38, no. 4, pp.
393–422, 2002.

[24] L. Shi, K. H. Johansson, and L. Qiu, “Time and event-based sensor
scheduling for networks with limited communication resources,” in
Proc. World Congr. IFAC, 2011, vol. 18, no. 1, pp. 13 263–13 268.

[25] J. Wu, Q.-S. Jia, K. H. Johansson, and L. Shi, “Event-based sensor
data scheduling: Trade-off between communication rate and estimation
quality,” IEEE Trans. Autom. Control, vol. 58, no. 4, pp. 1041–1046,
Apr. 2013.

[26] K. You and L. Xie, “Kalman filtering with scheduled measurements,”
IEEE Trans. Signal Process., vol. 61, no. 6, pp. 1520–1530, Mar. 2013.

[27] D. Han, Y. Mo, J. Wu, S. Weerakkody, B. Sinopoli, and L. Shi, “Sto-
chastic event-triggered sensor schedule for remote state estimation,”
IEEE Trans. Autom. Control, 2015, to be published.

[28] D. Shi, T. Chen, and L. Shi, “Event-triggeredmaximum likelihood state
estimation,” Automatica, vol. 50, no. 1, pp. 247–254, 2014.

[29] K. You, L. Xie, and S. Song, “Asymptotically optimal parameter esti-
mation with scheduled measurements,” IEEE Trans. Signal Process.,
vol. 61, no. 14, pp. 3521–3531, Jul. 2013.

[30] L. Ljung, Systems Identification-Theory for the User, 2nd ed. Upper
Saddle River, NJ, USA: Prentice-Hall, 1999.

[31] M.Green and J. B.Moore, “Persistence of excitation in linear systems,”
in Proc. Amer. Control Conf., 1985, pp. 412–417.

[32] K. L. Chung, A Course in Probability Theory. San Diego, CA, USA:
Academic Press, 2001.

[33] A. W. Van der Vaart, Asymptotic Statistics. Cambridge, U.K.: Cam-
bridge Univ. Press, 2000, vol. 3.

[34] R. B. Ash and C. Doleans-Dade, Probability and Measure Theory.
San Diego, CA, USA: Academic Press, 2000.

[35] G. G. Roussas, An Introduction to Measure-Theoretic Probability.
San Diego, CA, USA: Academic Press, 2004.



HAN et al.: OPTIMAL PARAMETER ESTIMATION UNDER CONTROLLED COMMUNICATION OVER SENSOR NETWORKS 6485

Duo Han was born in Heilongjiang, China, in 1990.
He received his B.Eng. (Hons) degree from City
University of Hong Kong, Hong Kong in 2011
and his Ph.D. degree in Electronic and Computer
Engineering from the Hong Kong University of
Science and Technology, Hong Kong in 2015. He
was a visiting student in Control and Dynamical
Systems at the California Institute of Technology,
Pasadena, CA, USA in 2014. He is currently a
research fellow at the School of Electrical and
Electronic Engineering of Nanyang Technological

University, Singapore. His reseach interests include cyber-physical systems,
wireless sensor scheduling and event-based state estimation.

Keyou You was born in Jiangxi Province, China,
in 1985. He received the B.S. degree in statistical
science from Sun Yat-sen University, Guangzhou,
China, in 2007 and the Ph.D. degree in electrical and
electronic engineering from Nanyang Technological
University (NTU), Singapore, in 2012.
From June 2011 to June 2012, he was with the

Sensor Network Laboratory at NTU as a Research
Fellow. Since July 2012, he has been with the De-
partment of Automation, Tsinghua University, China
as an Assistant Professor. He held visiting positions

at The Hong Kong University of Science and Technology, The University
of Melbourne, Politecnico di Torino and etc. His current research interests
include control and estimation of networked systems, distributed algorithms,
and sensor network.
Dr. You received the Guan Zhaozhi best paper award at the 29th Chinese

Control Conference in 2010, and a CSC-IBM China Faculty Award in 2014. He
was selected to the national “1000-Youth Talent Program” of China in 2014.

Lihua Xie (S’91–M’92–SM’97–F’07) received the
B.E. and M.E. degrees in electrical engineering from
Nanjing University of Science and Technology in
1983 and 1986, respectively, and the Ph.D. degree
in electrical engineering from the University of
Newcastle, Australia, in 1992. Since 1992, he has
been with the School of Electrical and Electronic
Engineering, Nanyang Technological University,
Singapore, where he is currently a professor. He
served as the Head of Division of Control and
Instrumentation from July 2011 to June 2014. He

held teaching appointments in the Department of Automatic Control, Nanjing
University of Science and Technology from 1986 to 1989.
Dr. Xie’s research interests include robust control and estimation, networked

control systems, multi-agent networks, and unmanned systems. He has served
as an Editor-in-Chief of Unmanned Systems, an editor of IET Book Series
in Control and an Associate Editor of a number of journals including IEEE
TRANSACTIONS ON AUTOMATIC CONTROL, Automatica, IEEE TRANSACTIONS
ON CONTROL SYSTEMS TECHNOLOGY, and IEEE TRANSACTIONS ON CIRCUITS
AND SYSTEMS-II.
Dr. Xie is a Fellow of IEEE and Fellow of IFAC.

Junfeng Wu received the B.Eng. degree from the
Department of Automatic Control, Zhejiang Univer-
sity, Hangzhou, China, in 2009 and the Ph.D. degree
in Electrical and Computer Engineering from the
Hong Kong University of Science and Technology,
Hong Kong, in 2013. From September to December
2013, he was a research associate in Department
of Electronic and Computer Engineering, the Hong
Kong University of Science and Technology, Hong
Kong. Dr. Wu is currently a postdoctoral researcher
at ACCESS (Autonomic Complex Communication

nEtworks, Signals and Systems) Linnaeus Center, School of Electrical Engi-
neering, KTH Royal Institute of Technology, Sweden. His research interests
include networked control systems, state estimation, and wireless sensor
networks, multi-agent systems.
Dr. Wu received the Guan Zhao-Zhi best paper award at the 34th Chinese

Control Conference in 2015.

Ling Shi received the B.S. degree in electrical and
electronic engineering from Hong Kong University
of Science and Technology, Kowloon, Hong Kong,
in 2002 and the Ph.D. degree in control and dynam-
ical systems from California Institute of Technology,
Pasadena, CA, USA, in 2008. He is currently an
associate professor at the Department of Electronic
and Computer Engineering, Hong Kong University
of Science and Technology. His research interests
include networked control systems, wireless sensor
networks, event-based state estimation and sensor

scheduling, and smart energy systems. He has been serving as a subject editor
for International Journal of Robust and Nonlinear Control from 2015. He also
served as an associate editor for a special issue on Secure Control of Cyber
Physical Systems in the IEEE TRANSACTIONS ON CONTROL OF NETWORK
SYSTEMS IN 2015.


