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Multi-Sensor-Based Aperiodic Least-Squares
Estimation for Networked Systems With

Transmission Constraints
Haiyu Song, Wen-An Zhang, Li Yu, and Ling Shi

Abstract—This paper investigates the least-squares estimation
problem for networked systems with transmission constraints. A
group of sensors are deployed tomeasure the outputs of a plant and
send themeasurements to an estimator through a common commu-
nication channel. Due to the transmission constraints caused by the
heterogenous or long-distance deployed sensors, only one sensor is
allowed to transmit its measurement over one time slot. In this re-
gard, a stochastic competitive transmission strategy is proposed to
schedule the transmission permissions. By using the least-squares
estimation approach, an aperiodic multi-step estimation algorithm
is proposed for the estimator to aperiodically generate the esti-
mates. Performance analysis is presented for the estimation system
with bounded noises and random noises. An upper bound is de-
rived for the expectation of the estimation error and a sufficient
condition is presented to ensure the convergence of the obtained
upper bound. An illustrative example is provided to demonstrate
the effectiveness of the proposed results.
Index Terms—Least-squares estimation, multi-sensor-based es-

timation, networked systems, stochastic competitive transmission,
transmission constraints.

I. INTRODUCTION

A multi-sensor-based estimation system is composed of
several spatially distributed sensors with abilities of

sensing and communication. Generally speaking, the use of
a multi-sensor-based estimating structure is motivated by
the following: 1) Outputs of a plant have to be observed
by heterogenous sensors [1]–[3]; 2) The output terminals
are long-distance deployed, or a plant consists of several
separated parts and the outputs cannot be measured by one
sensor [4]–[6]; 3) The robustness and estimation precision of a
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multi-sensor-based estimation system are much better than that
of a single-sensor-based one [7]–[9]. Over the past decades, the
multi-sensor-based estimation problem has attracted increasing
research attention due to its wide applications in areas such as
target tracking, battlefield surveillance, traffic monitoring, etc
[10]–[12].
In a typical centralized estimation structure, a number of sen-

sors perform sensing and data communication, while an esti-
mator provides data processing. During two consecutive esti-
mating instants, an estimator collects sampled information from
the deployed sensors, and generates estimates at the end of the
estimating interval using prior estimates and the received mea-
surements. In a general state estimation problem, only one esti-
mate is provided by the estimator at any estimating instant. Re-
cently, several estimation algorithms have been presented for
the multi-step estimation [13]–[17], i.e., the estimator is ex-
pected to generate more than one estimate at each estimating
instant. There are two general classes of estimation schemes: pe-
riodic estimation and aperiodic estimation. In the former case,
the estimator computes estimates with a fixed period, while the
lengths of the estimating interval in the latter case are not nec-
essarily the same. In those dynamic processes with low state
updating rates, the states evolve very slowly during some time
intervals. In this scenario, it is not necessary to frequently carry
out the estimation and the estimating instants are not necessary
periodic. To the best of the authors' knowledge, we are the first
to address the aperiodic multi-step estimation problem, which
gives us the first motivation in this paper.
Between two consecutive estimating instants, the sensors

are able to convey the sampled information to the estimator
through the communication channel. Note that it is wasteful and
complicated to assign each sensor an individual communication
channel. Letting all the sensors share a common communication
channel is more economical and practical. When the sensors
are heterogenous or long-distance deployed, it is impossible to
encapsulate all the measurements from different sensors into
one packet. In this scenario, the estimator is able to receive
information from only one sensor over one time-slot. In other
words, in a single-channel environment, any two sensors cannot
send their measurements to the estimator simultaneously. This
phenomenon is usually termed as transmission constraints or
communication constraints. Recently, some results have been
presented for estimation with the communication constraints,
see for example, [17]–[20]. By minimizing the expected steady
state estimation error covariance, a stochastic sensor selection
strategy was proposed in [21] such that only one sensor takes
a measurement at every time step. In [22], a multi-step sensor
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selection strategy was proposed to schedule sensors such
that only a subset of them are able to send their observations
to the fusion center at each time step. In [23], an optimal
probabilistic measurement-independent strategy was derived
to decide when to transmit estimates from each sensor. Two
optimal sensor schedules are obtained in [24] by minimizing
the terminal error covariance and the average error covariance
of the estimator, respectively. In [25], an explicit construction
of an optimal periodic sensor schedule is provided for two
Gauss-Markov systems by minimizing the sum of the average
estimation error covariance of each system. The sensor sched-
uling problems under limited communication resource can also
be found in [26]–[28] and the references therein. According
to the communication schemes considered in the literature,
only one communication (or several sensors communicate
with the estimator synchronously for one time) happens during
each estimating interval, which implies that only the sampled
information observed at current time step can be used by the
estimator for data processing. A possible improvement is to
supply the estimator with sampled information as much as
possible before the estimating instant begins. Following this
idea, the sensors can communicate with the estimator several
times and thus more sampled information can be received
by the estimator as long as the sensors' sampling frequency
and transmitting frequency are not limited. In this multiple
communications scenario, a critical issue is how to schedule
the transmission permissions during each estimating interval,
which is our second motivation to propose a competitive
transmission strategy.
In this paper, the aperiodic multi-step estimation problem

with transmission constraints is investigated. During each esti-
mating interval, the sensors independently measure the outputs
of a plant and send the measurements to an estimator through
a common communication channel. At each estimating instant,
the estimator runs a multi-sensor-based estimation algorithm to
estimate the state of the plant during the current estimating in-
terval. The main contributions of this paper are summarized as
follows:
1) The transmission constraint is mathematically formulated,

where the constraint conditions consist of two parts: firstly,
only one transmission is allowed to take place at any speci-
fied time instant; secondly, each sensor has only one chance
to obtain the transmission permission during each esti-
mating interval for the sake of fairness.

2) To avoid the transmission constraint, a stochastic competi-
tive transmission (SCT) strategy is proposed to schedule
the transmission permissions during each estimating in-
terval, where the transmission permissions are assigned
randomly according to a conditional probability.

3) Note that the proposed SCT strategy is actually a strictly
asynchronous communication mechanism by which the
measurements from different sensors may not be received
by the estimator simultaneously. In view of this, an ape-
riodic storage strategy is presented for each sensor to
maintain its measurement if it has not obtained a transmis-
sion permission at that time instant.

4) An aperiodic least-squares estimation algorithm is pro-
posed for the estimator to aperiodically generate estimates.
Performance analysis is presented for the estimation
system with both bounded and zero-mean random noises.

Moreover, an upper bound of the estimation error is de-
rived and a sufficient condition is provided to ensure the
convergence of the proposed upper bound.

The remainder of the paper is organized as follows.
Section II is devoted to the problem formulation. The analysis
and synthesis for the multi-sensor-based aperiodic multi-step
estimation algorithm are given in Section III. In Section IV, an
illustrative example is provided to demonstrate the effective-
ness of the proposed theoretical results. Finally, the conclusion
is given in Section V.
Notation: denotes the -dimensional Euclidean space, the

symbol T is the transpose, is themathematical expectation,
stands for the occurrence probability of the event “ ”,
denotes a block-diagonal matrix,

, where can be scalars, vectors or ma-
trices of appropriate dimensions. represents the Euclidian
norm of the matrix or vector , stands for the min-
imum eigenvalue of the real symmetric matrix . For any inte-
gers and , assume that if

II. PROBLEM FORMULATION

Consider a linear discrete-time stochastic system described
by the following state-space model:

(1)

where is the state, is the updating period of the
state, is the th measured output, and

are the process noise and the measurement noise,
respectively. , , and are known real matrices of appro-
priate dimensions. A set of sensors are deployed to observe the
measured outputs. In practice, the sensor failure phenomenon

is unavoidable due to presence of obstacles, badweather or other
unreliable sensing environment [29]–[35]. During the sampling
processes, the random failures are described by binary-valued
random variables as follows:

(2)
where , ,

and is called as the sensor failure rate. In
this paper, the variables , are assumed to
be independent of each other.
The sensors communicate with a remote estimator via a

common communication channel. Denote by
the set of the estimator's esti-

mating instants, where , is an integer and
is the set of the lengths of the estimating intervals1. The es-

timator collects the sampled information from the sensors in
between two consecutive estimating instants, and carries out
the estimation at the end of the estimating interval. Denote by

the estimator's received sampled information from sensor
during . The overall structure of the estimation system
is shown in Fig. 1, where and

1In this paper, we assume that the estimating instants of the estimator are
known and is a subset of the integers. Moreover, we also assume that
, because implies that the th estimating interval has a length

of , which is impossible in practice.
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Fig. 1. The structure of the estimation system.

. At the estimating instant , the estimator is expected
to generate state estimates of the state vec-
tors , by using the received sampled information

, where , .
During each estimating interval, the sensors are able to send

their measurements to the estimator via the common commu-
nication channel. Due to the transmission constraint, however,
only one transmission is allowed at any time instant. In view of
this, the following random variables are introduced to describe
the transmission situations in each sensor:

(3)

In this paper, the transmission permissions are assigned in
a competitive way. The architecture of the multi-sensor-based
multi-step estimation process with competitive transmissions is
shown in Fig. 2. Denote by the set of those sensors that have
obtained a transmission permission during ,

, where . Then a stochastic competitive
transmission strategy is introduced as follows.
Definition 1 (Stochastic Competitive Transmission, SCT):

For a set of sensors that contest the transmission permissions
randomly with the following two constraints and :

(4)

(5)

where . The probability of obtaining
a transmission permission is given by:
a) For , .
b) For ,

.
c) For ,

.
Remark 1: The content of the SCT strategy consists of two

parts: first, only one transmission is allowed at any time instant;

second, each sensor has at most one chance to obtain the trans-
mission permission during each estimating interval for the sake
of fairness. When , it follows from the setting in case
a) that for , i.e., there is no
transmission during . The purpose of such a set-
ting is to ensure that only the most recent sampled information
is received by the estimator from each sensor. Moreover, it will
cut down communications during the th esti-
mating interval for energy saving. For those sensors that have
not obtained transmission permissions during , case
b) specifies that each of them has the chance to obtain a trans-
mission permission with a probability at time instant

. In case c), it specifies that a sensor will have no chance to
compete for transmitting at if it has obtained a transmission
permission before .
Remark 2: According to the SCT strategy, the transmitting

instants are related to the length of the estimating interval and
the total number of sensors.When , then there is a trans-
mission at any time instant during the th estimating in-
terval, and sensors will have no chance to send their sam-
pled information to the estimator. For the case , all the
sensors can forward their measurements to the estimator during

, and the transmissions happen at instants
. An illustrative example is provided

in Fig. 3 to show the transmission sequences in different esti-
mating intervals with the cases , and ,
where .
According to the definition of the SCT strategy, the following

statement holds.
Proposition 1: During each estimating interval, the proba-

bility of obtaining a transmitting permission for each sensor
is uniform, i.e., for any

.
Proof: See Appendix A.

Remark 3: It follows from Proposition 1 that the probability
of obtaining a transmitting permission is uniform. In this sense,
there are two ways of realizing the SCT mechanism. The first
way is a distributed one, where each sensor knows the esti-
mator's estimating instants and the total number of sensors. At
each transmitting instant, the sensors transmit their stored mea-
surements to the estimator similar to that “several phones try to
call to another phone at the same time”, although they have the
same probability to communicate with the estimator, only one of
them can transmit successfully. The second way is a centralized
one, where the transmission permissions are assigned by a host
computer. At the beginning of the th estimating interval, the
host computer randomly generates a communication sequence
satisfying the constraints and , and sends orders to let
sensors know when they should transmit their stored measure-
ments. Though it is more appropriate to be called as a stochastic
scheduling strategy in this case, we still use the term “SCT” to
avoid confusion as it only causes the differences in the naming
sense.
The SCT strategy specifies that each sensor has one chance

at most to send its sampled information to the estimator during
each estimating interval. In this scenario, although an output has
been observed by the related sensor, it still cannot be transmitted
to the estimator if the sensor has not obtained a transmitting
permission at that instant. In view of this, a buffer is embedded
in each sensor to store the sampled information. Denote by
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Fig. 2. The architecture of the multi-sensor-based estimation process with competitive transmission.

Fig. 3. The transmission sequences for .

the stored sampled information in sensor at time , then
an aperiodic mixed storage strategy is proposed as follows.
Definition 2 (Aperiodic Mixed Storage, AMS): For a set of
sensors with random failures, the storage process in each

sensor's buffer during the estimating interval is set as
follows:

s=1;

.
(6)

Remark 4: There are two general mechanisms for compen-
sating the missing measurements: the zero-input mechanism
and the hold-input mechanism [36]–[41]. In fact, the proposed
AMS strategy is a combination of these two mechanisms (a
zero-input mechanism at time and a hold-input mecha-
nism at time ). According to the AMS
strategy, the sampled information will only be used for one
time at the current estimating interval, and the buffer in each
sensor flushes out the oldest measurements at the beginning

of the next estimating interval. It is quite different from the
conventional compensation mechanism (for example, the mea-
surements in a hold-input mechanism may be used repeatedly
when consecutive sensor failures occur).
Remark 5: According to the SCT and the AMS strategies, the

estimator receives packets during the th
estimating interval, and each packet contains the latest measure-
ment that was collected by the corresponding sensor before it
carries out the transmission. Once a sensor obtains the access
to the communication channel, the stored measurement is im-
mediately sent to the estimator. It should be pointed out if no
successful sampling happens during the current estimating in-
terval, then the sensor stops to carry out the transmission as no
available measurement is obtained.
Considering the sensor failures, denote

;

.
(7)

where and . Then it follows from the
AMS strategy that

(8)

Thus, the estimator's received sampled in-
formation from sensor during is

, which can be re-
combined as , where

. Denote by ,
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then the estimator's received sampled information from
the sensors during can be expressed in
the form of , where

, and
.

At each estimating instant , the objective of the estimator
is to generate estimates of the state vectors
by using the sampled information and the prediction
of the state . In this paper, the least-squares estimation ap-
proach will be used to generate the estimates. To this end, the
following cost function is introduced:

(9)

where the weighted parameters and are positive scalars
that represent the weights of the prior estimated information
and the sampled information, respectively. Then, at any esti-
mating instant, a multi-sensor-based aperiodic multi-step esti-
mation problem is stated as follows.
Problem 1: Based on the prediction and the sampled in-

formation , find the optimal estimates , ,
that minimize the cost (9) and satisfy the constraints

(10)

where the prediction is obtained as ,
and is the initial value of the estimate.

Remark 6: At the estimating instant , only the sampled
information and the prediction of the state can
be obtained by the estimator. In other words, the estimates

are generated based on and . In view
of this, only the estimation error in time is considered in
the cost function (9). Note that the cost function (9) consists of
the prediction estimation error and the output estimation error.
Thus, the estimates are obtained by minimizing the weighted
value of these two classes of errors.
Remark 7: As the measurements are time-stamped and the

transmitting processes are real-time, the value of is known
to the estimator. Here the “multi-step estimation” means that
more than one estimates will be generated at any estimating in-
stant. Note that there are three rates in the estimating system:
sampling rate, estimating rate and transmitting rate, where the
former two have the period of and , respectively, while
the latter one is stochastic. Lifting technique is a typical ap-
proach to deal with the multi-rate problems, see [42]–[44]. In-
stead of augmenting the systemmodel as in these literatures, the
dimensions of the state vectors in this paper are the same as the
original system, which reduces the computational complexity
significantly.

III. MAIN RESULTS

In this section, a multi-step least-squares estimation algo-
rithm is proposed for the estimator to aperiodically generate the
state estimates. By regarding the noises as bounded ones and
random ones, respectively, the estimation performance is ana-
lyzed and an upper bound of the expectation of the estimation
error is derived. Moreover, a sufficient condition is given to en-
sure the convergence of the obtained upper bound.

Denote , and
, where . Then

a multi-sensor-based aperiodic multi-step least-squares estima-
tion algorithm is obtained as follows.
Theorem 1: For the given weighted parameters and ,

Problem 1 has a unique solution

(11)

where and
. Moreover, denote the estimation error at

by , then one has

(12)

(13)

where

Proof: See Appendix B.
Theorem 1 provides an aperiodic multi-step estimation algo-

rithm for the estimator to aperiodically generate the estimates.
At estimating instant , the estimator generates state es-
timates by using the sampled information

and the prior predicted information . The detailed esti-
mating process is summarized in Algorithm 1.
Remark 8: The matrix in (11) is positive-definite

for any sensor failure situations and transmission sequences,
which means that the inverse of the matrix always
exists. Thus, (11) always holds. Note that the derived estima-
tion algorithm can be used to estimate a dynamic process with
any unknown process noises and measurement noises, which is
different from the well-known Kalman filtering method [45],
where the statistics of the noises are assumed to be known.
Moreover, in Algorithm 1, it does not need to compute the ex-
pected estimation error covariance matrix at each estimating in-
stant, which will not increase the computation cost of the esti-
mator.
Remark 9: In Algorithm 1, Steps 2–6 are related to the sen-

sors that have not obtained transmission permissions during the
current estimating interval. The time instants in Steps 3–4 are
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Algorithm 1: The multi-sensor-based aperiodic
multi-step estimation algorithm with SCT and
AMS

Step 1. Initialize: , .

Step 2. Set and .

Step 3. For the sensors ,
update the stored sampled information in their
buffers as follows:

Step 4. If , then , and
return to Step 3; and if , go
to Step 5.

Step 5. For the sensors ,
assign the transmission permissions according
to the SCT strategy and set:

Step 6. If , then and return to
Step 3; and if , then go to Step 7.

Step 7. Run the equation (11) in the estimator
to generate .

Step 8. , return to Step 2.

, where , and the ones in Steps 5–6 are
, where . Step 7 is executed in

the estimator.
Denote

Before giving the analysis of the estimation performance,
three useful propositions related to the SCT and AMS strate-
gies are first presented as follows.
Proposition 2: Under the constraints and , the values

of and , , ,
can be computed as follows:

;

;
.

(14)

;
.

(15)

Proof: See Appendix C.
Proposition 3: According to the AMS strategy, the values

of , , , can be computed as
follows:

(16)

Proof: The results follow from the definitions of sensor
failure rate and the AMS strategy, and the proof is thus omitted
here.
Proposition 4: It follows from the definition of the SCT

strategy that

(17)

where . Moreover, the ex-

pectations of and , ,
, can be computed as follows:

(18)

;
;
;

;
.
(19)

where

Proof: See Appendix D.
Remark 10: According to the definition of the SCT strategy,

the computations of , , and are subjected
to the constraints and , which are different from that of
a conventional transmission strategy without these two con-
straints. For example, if or

and is equivalent to if and , whereas the one
subjected to and is given by (14). Compare with the value
of in (15), if no constraint
is introduced.
Remark 11: In Proposition 3, the meaning of the probability

in consists of two parts: first, the time-stamp of the trans-
mission permission obtained by sensor during is

; second, the measurement received by the estimator at time
is .
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Firstly, we focus on the analysis of the estimation perfor-
mance when the process noises and measurement noises are
norm-bounded. An upper bound of the norm of the estimation
error and a sufficient condition for the convergence of the pro-
posed upper bound are presented in the following theorem.
Theorem 2: Suppose that and , where

and are bounded sets. Then the norm of the estimation error
is bounded as

(20)

where the sequence is given by
(21)
(22)

with

Ξ Ξ

Ξ Ξ Ξ

Ξ Ξ Ξ Ξ

Ξ

Ξ

Ξ

Ξ

Ξ

and is the initial value of the state.
Moreover, if the weighted parameters and satisfy

(23)

where , then converges to a ball
of radius

(24)

centered at the origin, where ,
and .

Especially, when , then

(25)

Proof: See Appendix E.
Remark 12: In Theorem 2, an upper bound is derived for

the expectation of the estimation error at any time instant. It is
shown that the proposed upper bound will converge to a ball
of radius if the weighted parameters and satisfy (23). In
fact, the condition (23) is easy to be satisfied for any value of .
For the case , then (23) holds for any and .
For the case , then (23) holds if the parameters and
satisfy , and .
Remark 13: It can be seen from (21) and (22) that the upper

bound at each time instant monotonically increases with the in-
creasing of the initial estimation error . In view of this,
the initial estimate should be chosen as close to as pos-
sible. Moreover, it follows from (24) that the initial estimation
error does not influence on the convergence radius .
Remark 14: Denote by

Ξ Ξ
Ξ Ξ

Ξ
Ξ Ξ

and

Ξ

Then one has Ξ and
Ξ . Thus, the convergence radius can be rewritten as

, from
which we can see that the convergence radius is proportional to
the bounds, and , of the noises.
Remark 15: Generally speaking, there are two classes of

estimation performance indexes: the first one is absolute esti-
mation error or expected estimation error, and the second one
is mean square estimation error. When the mean-square error
(MSE) is used to analyze the convergence of the proposed
estimation algorithm, there is a term

in the expression of , where
. Note that the el-

ements of are stochastic and correlated with each
other, then the strongly coupled stochastic elements of

lead to the difficulty in computing
, which is one of the reasons that we prefer

to the expected estimation error analysis. In the simulation sec-
tion, the MSE is used to measure and compare the estimation
performance.
Remark 16: There are some related results to deal with the

estimation problem where the statistics of the process noises
and measurement noises are not necessarily to be known, e.g.,
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Fig. 4. Structure of the weir system.

[46]–[49]. The main differences of the proposed estimation al-
gorithm and those approaches in [46]–[49] lie in the following
three aspects:
• The proposed estimation algorithm is based on multiple
sensor data, while the ones in [46]–[49] are related to single
sensor.

• In [46]–[49], the estimator has to compute the expected es-
timation error covariance matrix at each estimating instant,
which will greatly increase the computation cost of the es-
timator. Thus, the computation complexity of the proposed
estimation algorithm is lower than the ones in [46]–[49].

• As is pointed out in Remark 15, it is difficult to compute
the expected estimation error covariance matrix if the pro-
posed stochastic competitive transmission and aperiodic
mixed storage strategies are used. In this sense, the ap-
proaches in [46]–[49] are difficult to be implemented to
solve those estimation problems with transmission con-
straints.

In what follows, we will consider the case where the process
noises and measurement noises are zero-mean. The properties
of the expectation of the estimation error and its norm are pre-
sented in the following corollary.
Corollary 1: Suppose that and are zero-mean

noises, then
a) If the initial values satisfy , then

.
b) If the condition (23) holds, then

.
Proof: The results follow directly from Theorem 2, and the

proof is thus omitted here.

IV. ILLUSTRATIVE EXAMPLES

Consider an artificial weir system [50] consisting of three
water reservoirs as shown in Fig. 4. The dynamic of the weir
system is described by a three-order state-space model as fol-
lows:

(26)

where , ,
and represent the fill levels of the three water reser-
voirs. Three sensors are deployed to observe the three outputs
with the observation matrices , ,

Fig. 5. Lengths of estimating intervals.

, and themeasurement noise matrices
. The sensor failure rates are 0.2, i.e.,

.
The estimating instants of the estimator is ,

, where the estimating intervals are depicted in
Fig. 5. It can be seen that there are six estimating intervals that
have the length of , which implies that six communications
in all are reduced during the whole estimation process. In the
simulation, the centralized method stated in Remark 3 is used
to implement the SCT mechanism. Note that ,
then one can calculate that and

. According to condition (23), the
weighted parameters and of the cost function (9) should
satisfy . Choose and . At each
estimating instant , the estimator is expected to generate
state estimates , given the initial condition

and . The noises and
are independently uniformly distributed with
and , where . To compare the
actual estimation error with the derived upper bound, we define
the MSEs of the state estimates as follows:

(27)
where is the number of the Monte Carlo runs and rep-
resents the estimate of from the
-th Monte Carlo simulation. Through 10000 simulation runs,
the MSEs and the corresponding upper bounds are depicted in
Fig. 6. The actual states and their estimates are shown in Fig. 7.
It can be seen from the simulations that the proposed estimation
algorithm performs well and the estimation errors are bounded
in a mean sense.
Next, we turn to illustrate the relationship between the

weighted parameters and the upper bounds of the estimation
errors. Consider the case , then the set of the optional
transmitting instants is .
By fixing and , respectively, the trajectories
of , , and are depicted in Figs. 8 and 9.
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Fig. 6. The MSEs and the corresponding upper bounds.

It can be seen from Figs. 8 and 9 that the upper bounds of
the estimation errors and the ratio of to are not directly
related. In this example, the values of , , 2, 3, 4, are
minimized when the ratio of to is about 1:10. The results
imply that the estimation performance is not only related to the
prior estimates, but also related to the sampled information that
was obtained during the current estimating interval.
By setting the initial estimation error
as , , and

, respectively, the corresponding upper
bounds of the norm of the estimation errors are depicted in
Fig. 10. It is shown that a larger initial estimation error will lead
to a more delayed convergence of the derived upper bounds.
However, it can be seen from Fig. 10 that the limits of the upper
bounds are not influenced by the initial estimation error, which
is consistent with the analysis in Remark 13.
Note that the proposed SCT strategy in this paper allows that

multiple communications occur during each estimating interval,
while the single communication scheme in [17], [18] and [19]
specifies that the sensors' sampling instants and transmission
instants are the same as the estimator's estimating instants. To
compare the estimation precisions of the algorithm (11) with
the single communication scheme and the multiple communi-
cations scheme, the MSEs through 10000 simulation runs are
illustrated in Fig. 11. It is shown in Fig. 11 that the estimation
precision with multiple communications are higher than that of
the single communication. A reasonable explanation of the ben-
efit from the multiple communications scheme is that more sam-
pled information is used by the estimator during each estimating
interval.
Consider the case that the estimator has a fixed estimation

rate, i.e., the lengths of estimating intervals are uniform. It
should be pointed out that when , the estimator's
received sampled information is real-time. When , then

measurements are transmitted with delays. For different
, the MSEs and the corresponding upper bounds with the

initial estimation error are depicted in
Fig. 12, and the values of are given in Table I. It can be

concluded from Fig. 12 and Table I that a larger length of the
estimating interval leads to a more conservative upper bound of
the estimation error. In other words, the proposed upper bounds
are more conservative if the estimator has a larger estimating
period.
Lastly, we illustrate the effect of the bounds of noises on the

convergence radius. Choose and . The conver-
gence radiuses with different bounds of noises are shown in
Fig. 13, where and are the same. As is consistent with Re-
mark 14, the convergence radius is proportional to the bounds
of noises.

V. CONCLUSION

In this paper, the multi-sensor-based aperiodic multi-step es-
timation problem was investigated. A stochastic competitive
transmission strategy was proposed to deal with the transmis-
sion constraints, where only one transmission happened at each
transmitting instant and each sensor had one chance at most
to send its measurement to the estimator for the sake of fair-
ness. An aperiodic mixed storage strategy was proposed for the
sensors to store the measurements. Based on the received sam-
pled information from the sensors, an aperiodic multi-step es-
timation algorithm was derived for the estimator to aperiodi-
cally generate several estimates. Estimation performance anal-
ysis was presented for both cases where the noises are bounded
and random.Moreover, an upper bound was provided for the ex-
pectation of the estimation error and a sufficient condition was
given to ensure the convergence of the proposed estimation al-
gorithm.

APPENDIX A
PROOF OF PROPOSITION 1

Note that

(28)

When , it follows from the case a) of Definition 1 that

(29)

When , then

(30)
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Fig. 7. Trajectories of the states and their estimates.

Fig. 8. Relationship between and .

For any , it follows from the case
b) of Definition 1 that

(31)

Substituting (29), (30) and (31) into (28) leads that

(32)

Thus, the proof is completed.

Fig. 9. Relationship between and .

APPENDIX B
PROOF OF THEOREM 1

The first order partial derivative of the cost function (9) with
respect to is

(33)

Note that the necessary condition on the minimum of (9) is
, from which one has

(34)
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Fig. 10. Upper bounds under different initial estimation errors.

Fig. 11. Comparison of the MSEs with the single communication scheme and
the multiple communication scheme.

Fig. 12. The MESs and the corresponding upper bounds with different lengths
of estimating intervals .

TABLE I
VALUES OF WITH DIFFERENT

Fig. 13. Convergence radiuses with different bounds of noises.

As and are positive and is positive semi-definite, then
the inverse of exists, which is sufficient to ensure the
unique optimal value . Thus, one obtains (11) by applying
(10).
Note that

(35)

Then

(36)

Substituting (36) into (34) leads to

(37)

Due to the fact that

(38)
and

(39)
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Then it follows from (37) that

(40)

According to

(41)

(13) holds. Similarly, (12) can be obtained. Thus, the proof is
completed.

APPENDIX C
PROOF OF PROPOSITION 2

According to Proposition 1, one has

(42)

It follows from the SCT strategy that for all
and for all . Additionally, the case a) in

Definition 1 implies that only if
. Note that for any ,

one has

(43)

Similar to the proof of Proposition 1, one can show that

(44)

from which it can be concluded that (14) and (15) hold.

APPENDIX D
PROOF OF PROPOSITION 4

Note that

(45)

According to Definition 1, for all , then (17)
holds.

It follows from the case a) in Definition 1 that

(46)
By using

(47)

Then it follows from Propositions 2 and 3 that (47) holds.
Note that

(48)
For the case and , one has

(49)

When , it follows from that

implies that and
. Thus, one has

(50)

which follows from (18) that

(51)

Similarly, for the case and , one can obtain that

(52)
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For the case , one has (53) at the bottom of the page, and

(54)

By using Propositions 2 and 3, it can be concluded that

(55)

and

(56)

When , it follows from the SCT strategy that
for all . Thus,

(19) holds and the proof is completed.
APPENDIX E

PROOF OF THEOREM 2
It follows from (13) that

(57)

Note that

(58)

(59)

(60)

(61)

By using (18), one has . Thus, (58) and
(59) are equivalent to

(62)

(63)

According to (17), one has

(64)

(53)



2362 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 9, MAY 1, 2015

Thus, it follows from (18) and (19) that (60) and (61) are equiv-
alent to

(65)

(66)

Substituting (62), (63), (65) and (66) into (57) leads to

(67)

Thus,

(68)

Note that

(69)

Then one has

(70)

Similarly, one has

(71)

Thus, (20)–(22) hold.

If condition (23) holds, then , from which one
obtains

(72)

Thus, the proof is completed.
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