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Deterministic Sensor Selection for Centralized State
Estimation Under Limited Communication Resource

Chao Yang, Junfeng Wu, Xiaoqiang Ren, Wen Yang, Hongbo Shi, and Ling Shi

Abstract—This paper studies a sensor selection problem. A
group of sensors measure the state of a process and send their
measurements to a remote estimator. Due to communication
constraints, only limited sensors are allowed to communicate with
the estimator. The paper intends to answer which sensors should
be chosen such that the estimation performance of the estimator is
optimized. Both reliable and packet-dropping channels are consid-
ered. It is required to minimize the steady-state estimation error
covariance for reliable channels and to minimize the upper bound
of the expected estimation error covariance for packet-dropping
channels. For both scenarios, the original optimization problems
are transformed to problems which can be solved by convex
optimization techniques.
Index Terms—Networked state estimation, sensor scheduling,

sensor selection, convex optimization, modified algebraic Riccati
equation (MARE).

I. INTRODUCTION

I N the last 60s and 70s, the theory of optimal filtering in
signal processing had been well studied. In 1960, as the

connection of two streams of development, digital filtering and
statistical filtering, the theory of Kalman filtering was proposed
[1]. In the subsequent two decades, the theory of optimal fil-
tering further got substantially investigated and had become a
matured topic. Looking into the future at that time, the incorpo-
ration of the practical constraints associated with filter realiza-
tion into the mathematical statement of the statistical filtering
problem was of desire as mentioned in [2].
In the late 90s, networked control systems (NCSs) became an

attractive research topic. In its framework, the components of a
control system, namely actuator, controller, sensor, estimator,
etc, communicate through shared channels. Such a structure
brings in great flexibilities and it facilities the installation and
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Fig. 1. The general model of sensor scheduling.

maintenance of the system, and benefits a number of practical
applications, such as unmanned vehicle, surveillance, environ-
ment monitoring, and smart grid [3]. Simultaneously, it intro-
duces the issue in communication into the design of the system
and the analysis of the system performance, which has never
been of concern before. Accordingly, the filtering problem in
NCSs turns out to be in need of taking the modeling of commu-
nication into the classical setup, which has been expected in the
past as the future direction of traditional filtering as mentioned
before. The framework of NCSs brings new challenges to the
issue of filtering, which will see its new development.
Consequently, a number of novel problems related to filtering

in NCSs have been inspired. One class of them is the sensor
scheduling problem. Briefly speaking, in a sensor scheduling
problem, a group of sensors, usually constrained by such as lim-
ited sensor battery power, limited bandwidth, or heavy work
load, need a communication or service plan to optimize some
objective of the estimation performance of the system. A model
involved in a sensor scheduling problem generally contains the
following components: state processes, sensors, and estimators,
each of which can be single or multiple. Two stages of sched-
uling of sensors may be in need: which sensors take measure-
ments of the processes and which sensors transmit data to the
estimators (Fig. 1).
In general, the sensor scheduling problems are challenging.

First, this is due to the large size of the domain of feasible sched-
ules. If one sensor needs to be chosen out of ones at each time
within a horizon , then schedules are feasible. It is almost
impossible to directly compare the candidate schedules. Second
is the high nonlinearity in the form of estimation performance
criterion which usually appears in the objective function. For
example, for a Gauss-Markov system (one can refer to (1)–(2)),
the estimation error covariance is given by the recursion of al-
gebraic Riccati functions, which have a high nonlinearity. Con-
sequently, explicit solutions are difficult to obtain, unless the
system has special properties. Numerical algorithms are usually
applied to solve more general models, while relaxations may be
involved.
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The study on the model of a single state process, sensor,
and estimator provides basic results of the sensor scheduling
problem. In this model, one constraint of limited communi-
cation times is often taken into consideration where within
a finite time horizon only measurements can be
transmitted, which is motivated by the limited battery power
of the sensor. In [4], Savage and La Scala considered a par-
ticular scalar Gauss-Markov system under this constraint
and proposed the optimal schedule to minimize the terminal
estimation error variance. Yang and Shi [5] also studied a
general scalar Gauss-Markov system under the constraint of
limited communication times and used the average estimation
error variance as the performance metric, and proposed a
necessary condition for the optimal schedules. In part of [6],
a general higher-order system with a smart sensor which has
local computation capability was considered. The authors
gave the optimal schedule of the smart sensor to minimize the
average estimation error covariance under the constraint of
limited communication times. Besides limited communication
times, other forms of constraints are also investigated. Ren et
al. [7] considered that the sensor has two transmission energy
levels and the high level corresponds to a high packet reception
ratio. They gave the optimal dynamic schedule to minimize
the average estimation error for a fixed overall communication
energy budget. Online schedules are also applied to improve
the estimation performance, such as [8], [9], which made use of
real-time measurements based on the optimal offline schedules.
Another model is that multiple sensors measure one process

and communicate with a single estimator, which is often related
to the problem of centralized state estimation. For this model,
usually limited sensors are allowed to communicate at each time
instance, mainly resulted from constrained bandwidth. Gupta et
al. [10] investigated how to stochastically select one sensor for
estimating the dynamic state of a linear system and provided
upper and lower bounds of the expected error covariance. Joshi
and Boyd [11] studied a problem to select a subset out of a group
of sensors to estimate a static vector. They relaxed the orig-
inal problem and proposed solution by means of convex opti-
mization techniques. Mo et al. [12] considered how to select a
subset of sensors in a tree topology to communicate with an es-
timator at the root at each time step, in order to minimize the
asymptotic expected estimation error covariance. They relaxed
the objective to a lower bound of the original one and proposed
a stochastic sensor scheduling algorithm to randomly select a
subset of sensors according to a probability distribution to be
designed, which is solved by convex optimization algorithms.
Huber [13] investigated a scheduling problem where only one
sensor can transmit the measurement at each time and the av-
erage estimation error covariance over a finite time horizon is
to be minimized. The author viewed this scheduling problem
as tree searching and tackled the problem using standard tree
pruning algorithms. Zhao et al. [14] proved that when consid-
ering the cost function of the limit supremum of the average
error covariances over the infinite horizon, the optimal cost and
the corresponding optimal schedules are independent of the co-

variance of the initial state, and the optimal cost can be ap-
proached arbitrarily close by a periodic schedule. Smart sensors
are also involved in the model, such as in [6]. In [15], the sen-
sors are allowed to send a packet of past measurements to the
estimator and the optimal periodic schedule are proposed ex-
plicitly.
More complex models have also been investigated. For one

with a single process and multiple sensors and estimators, Yang
and Shi [16] considered an agent network where each agent
owns a sensor and an estimator, and limited communication
channels between them are available. They proposed the op-
timal schedules explicitly to minimize the global estimation per-
formance for scalar systems with general sensors and for higher-
order systems with sensors having identical sensing capability.
For the model with multiple processes, Xu and Hespanha [17]
studied a system consisting of two coupled processes each of
which is able to compute the estimates of both processes and
sends its local state to the other. They used dynamic program-
ming to solve the stochastic optimal schedule of data transmis-
sion which minimizes a cost counting both the estimation per-
formance and the transmission rates. Savage and La Scala [4]
also considered a group of state processes to be measured by
corresponding sensors and only one sensor is able to send the
data to an estimator. For several special systems, the authors
gave the optimal schedules to minimize a terminal cost at a par-
ticular time. Shi and Zhang [18] studied a case of two processes
measured by associated sensors which send the measurements
to a remote estimator, and they provided an explicit optimal pe-
riodic schedule of the sensor transmission to minimize the av-
erage estimation error over a given time horizon.
In this paper, we focus on the sensor selection problem (alter-

natively static sensor scheduling problem) for centralized state
estimation. A group of sensors take measurement of a state
process and send the data to a remote estimator for state estima-
tion while a limited number of sensors are allowed to transmit
the data. This paper intends to answer a basic question: if fixed
sensors are used during the working process, which ones should
be chosen? This question has not been satisfactorily answered
yet in the literature and needs to be deeply investigated. Besides,
seeing the nature that optimal time varying schedules are usually
difficult and complicated to obtain, the solution to this problem
provides a satisfactory suboptimal option for sensor scheduling
due to the simplicity in its realization.
The methods in the existing literature are not yet sufficient to

solve this problem. The bounds given in [10] are obtained by se-
lecting only one sensor at each time. In [11], though the problem
is solved efficiently by convex optimization algorithms, it only
applies to the estimation of a static vector and cannot be ex-
tended easily to the estimation of a dynamic process. For a
general setting without special properties of the sensors, the
tree pruning method in [13] cannot be applied and inefficient
searching algorithms have to be involved. In [12], the relaxed
objective to find a schedule to minimize a lower bound of the
objective is also not satisfactory. The novelty and contributions
of this paper are summarized as follows:
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1) For reliable communication channels, we give a closed-
form optimal selection for a class of systems where the
sensors satisfy some special conditions; and we transform
the problem into a convex optimization one for general
systems without special restrictions on the sensors.

2) This paper also investigates a model with packet-dropping
channels, while reliable channels were mostly considered
in sensor scheduling/selection problems in the existing lit-
erature. In this case, as the asymptotic estimation error does
not exist due to the uncertainty of the channel, one upper
bound of the expected estimation error covariance is found
and taken as the objective to minimize, and the problem is
also transformed to a convex one and solved efficiently.

The remainder of the paper is organized as follows.
Section II presents the basic mathematical setup and descrip-
tion of the problem to be studied. Sections III and IV consider
the sensor selection problem over reliable communications
and packet-dropping channels, respectively. Examples and
conclusions are given in the end.
Notations: is the set of non-negative integers.

is the time index. is the set of real numbers. is the -di-
mensional Euclidean space. (and ) is the set of by
positive semi-definite matrices (and positive definite matrices).
When (and ), it is written as (and ).

if . or is the expectation of
a random variable and denotes the conditional expec-
tation. is the trace of a matrix. denotes the largest
integer which is smaller or equal to . For functions
with appropriate domains, stands for the function com-
position , and with .

II. PROBLEM SETUP

A. System Model
We consider a discrete linear time-invariant system:

(1)
(2)

which is a single dynamic process measured by sensors. In
(1) and (2), is the system state at time and
is the measurement taken by sensor . Both and
are noise processes which are white, zero-mean, Gaussian and

and
. They are also independent processes, i.e.,

. The initial state is a zero-mean Gaussian random
vector that is uncorrelated with and for any and and
has covariance . Assume that has full row rank.
By defining

the overall measurement equation can be written as

(3)

We assume that the pair is detectable.

B. Sensor Scheduling

The sensors, after taking measurements, transmit their data
to a remote estimator via wireless communication channels.
In practical applications, the transmission is likely to be con-
strained by limited resources such as finite communication
bandwidth or limit communication energy. As such, one sensor
may not be assigned to transmit its measurement at some time
instances. To specify the measurement transmission, for sensor
at time , define the sensor scheduling variable as:

Moreover, we denote the set of all the sensor scheduling vari-
ables at time by :

and let a sensor schedule be the set of over the entire time
horizon:

Two types of communication constraints are often consid-
ered:
1) Limited number of available channels: Only

channels are available, or equivalently only sensors can
transmit their data, at each time instant. This model applies
when the communication bandwidth is limited, e.g., in a
large sensor network using FDMA or TDMA protocol, the
available channels are less than the sensors.

2) Limited power budget with fixed individual power cost: For
sensor , each transmission incurs a fixed power cost . A
power budget is imposed at each time instant, i.e.,

(4)

This model can be viewed as an extension of the previous
one, with 's being identical. The model also has practical
applications. The sensors may be distributed in a large ter-
rain and the cost for each one to communicate with the
remote estimator is likely to vary. It is also reasonable to
specify a power budget for the sensor network at each time
to extend its operating time.

C. Channel Model

In practical applications, channels may be reliable or have
packet delays or droppings. In this paper, the cases of reliable
channels and packet-dropping channels are considered, and we
leave the one of delays in our future work.
For packet-dropping channels, when sensor is selected, we

use the packet-arrival variable to indicate the arrival of the
measurement at time :
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We assume that is a Bernoulli process with mean
. For reliable channels, data packet will not be dropped which

is mathematically equivalent to .

D. Estimation Process
At each time , the remote estimator runs a Kalman filter to

calculate the minimum mean-squared error (MMSE) estimate
of the state based on the measurements received from the
sensors. We consider packet-dropping channel first. Define

(5)

and let be the set of measurements the
estimator has received by time .
Define as the a priori estimate of , which is the

predicted state estimate when the estimator only receives ,
and as the a posteriori estimate of after updating the
measurement further:

Let and be the estimation error covariance ma-
trices associated with and , respectively:

In the following content, the procedure the estimator calcu-
lates these quantities is provided. The estimator first calculates

and according to the following equations:

(6)
(7)

where the recursion starts from and .
After receiving the measurements from the sensors, the es-

timator first fuses the measurements and obtains and mean-
while calculates the following quantities:

(8)
(9)

Then it computes and as follows:

(10)

(11)
(12)

where represents the Moore-Penrose pseudo-inverse.
For reliable channels, the estimation process are identical to

(6)–(12) except that for all and .

E. Problem Description
We consider the following cost function:

(13)

where the expectation is included for covering the packet-drop-
ping scenario with respect to . The main problem studied in
this paper is cast as follows.
Problem 1:

Generally, in an optimal schedule, should be time varying.
However, it is difficult to analyze or obtain a deterministic time
varying optimal schedule ([12], [13], etc). In this paper, we seek
for time-invariant schedules, i.e., once a sensor is chosen, it
keeps working within the whole time horizon, Consequently,
is identical for all for each and hence it can be denoted as .
Accordingly, the presentation of a sensor schedule is reduced to
a sensor selection .

III. SENSOR SELECTION OVER RELIABLE CHANNELS
This section considers the sensor selection problem over reli-

able communications, i.e., for all and . In this section
we assume that the pair is detectable and is
controllable. As a result, converges to a steady-state value
exponentially fast according to standard Kalman filtering anal-
ysis [2]. Define

(14)

The recursion (6)–(12) shows that depends on the underlying
sensor selection . Therefore, can be also written as .
Since the estimation error covariance enters steady state expo-
nentially fast, the objective function (13) is transformed to:

(15)

We propose the first problem as follows. We seek for optimal
selections minimizing the trace of the steady-state estimation
error covariance under the constraint of limited available chan-
nels:
Problem 2:

where the given is the number of available
channels.
Remark 1: Our previous paper [16] investigated a sensor

selection problem with multiple estimators: each sensor is at-
tached with an estimator and the global estimation performance
is considered. Comparatively, in this paper, we consider how to
select sensors to optimize the performance of a single estimator,
which is a different problem. Moreover, the previous paper fo-
cused on the models with some restrictions, such as identical
sensors or sensors with comparable sensing capability, and pro-
posed closed-form optimal selections based on the analysis of
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the estimation quantities. In this paper, the setting of the sensors
removes those restrictions and hence is more general. Accord-
ingly, the optimal selections are given by the solutions of convex
optimization problems instead of explicit specification.
Let the solution of Problem 2 be and

denote the optimal value by .

A. Explicit Solution for a Class of Systems
We begin to study Problem 2 by analyzing the properties of

the steady error covariance . For sensor , define the sensing
precision matrix [16] as

and the assimilated sensing precision matrix as

Remark 2: From (10), one can see the meaning of the sensing
precision matrix : it indicates the contribution from sensor
to the estimation performance of the remote estimator.
Further define two operators and

as follows:

and define

where . Then recursive update
(10) for can be written as

Accordingly,

from which one can see that is determined by . One impor-
tant result about is given by [16] presented in the fol-
lowing lemma.
Lemma 1: is matrix monotonically decreasing with

respect to in .
This property implies that, for sensor and , if partial orders

exists between their sensing precision matrices, the contribution
of the two to the quality of remote estimation can be compared.
We have the following result.
Lemma 2: Assume that . For two selections

and , let
for all except , where ,

and . Let and be the steady-state
estimation error covariances associated with and , re-
spectively. Then

(16)

Proof: The argument directly follows from Lemma 1.
Remark 3: Notice that (16) holds for matrices, which directly

leads to the trace inequality.

Intuitively, sensor provides more precise measurements
than sensor and one should exclude sensor . As a direct ex-
tension, if all the sensors have partial orders, we have following
result.
Theorem 1: If the sensing precision matrices of all sensors

have partial orders, without loss of generality, let
, then the solution to Problem 2 is given as follows:

(17)

i.e., sensor 1 to sensor are chosen.
Remark 4: For a first-order system, the sensing precision ma-

trices (in this case are all scalars) can be totally ordered, hence
Theorem 1 applies.

B. Numerical Solution for General Systems
In this subsection, we study the more general scenario where

a partial order among the sensing precision matrices does not
necessarily exist. We first present some relevant analysis. An-
other important result on is given in [16].
Theorem 2: is matrix convex with respect to in .
Theorem 2 implies the following result.

Corollary 1: Define

. It is matrix monotonically decreasing and convex in each
.
Notice that . Then Corollary

1 shows that the objective of Problem 2 is convex in the opti-
mization variables. Hence, we are likely to apply convex opti-
mization to solve it. However, the implicit form of with re-
spect to the optimization variables prevents the application of
numerically tractable algorithms. Therefore, we turn to alterna-
tive methods to obtain . Using Cholesky factorization, can
be factorized as

Let

Define

where is the identity matrix with order , i.e., the order of
. We define the operator as

(18)

Notice that satisfies . Hence sat-
isfies .
Problem 2 is equivalent to the following problem:
Problem 3:

Problem 3 is still not solvable using any efficient numerical
algorithm since the feasible domains given by
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and are not convex. For the former inequality, one
has the following result.
Lemma 3: If is detectable and is control-

lable, the following statements are equivalent:
1) such that .
2) and , such that

Moreover, for satisfying the inequality in (2), is a
solution to the inequality in (1). It is also true conversely.

Proof: See the Appendix.
Based on Lemma 3, Problem 2 is equivalent to the following

one:
Problem 4:

where the entries filled with stars can be recovered according to
the symmetry of the matrix.
Since the feasible domains of 's are discrete, Problem 4 is

a Boolean-convex problem which is a common issue for the
selection problem when applying numerical methods. A relax-
ation on the feasible domains is often used to obtain a convex
problem [11]. By relaxation we have the following problem:
Problem 5: The problem statement is the same as Problem 4

except that the constraint is replaced by .
Denote the solution by and the

optimal value by . Problem 5 can be efficiently solved by
proper numerical algorithms. Although it is not equivalent to
the original problem, the optimal objective value of this relaxed
problem is clearly seen to be a lower bound of Problem 2:

. The elements of may be fractional. We use to
obtain a feasible solution to Problem 2, denoted as , which
chooses the first largest element of . Although Problem 5 is
a relaxed one, the discretized solution should be close to or
may even coincide with the optimal selection .
Remark 5: The algorithm can be improved by using Lemma

2. If , sensor is always prior to sensor to be chosen.
Remark 6: We extend the communication constraints to the

limited power budget with fixed individual power budget and
have the following problem:

The problem can be solved by the similar method in the
previous subsections. If the cost of each sensor is identical,
this problem is equivalent to Problem 2. Moreover, similarly
to Lemma 2, for sensor and , if and , then
sensor is better than sensor .

IV. SENSOR SELECTION OVER PACKET-DROPPING CHANNELS

In the previous section, the sensor selection problem is con-
sidered when the channels are reliable. In many practical ap-
plications, channels are likely to be unreliable, such as fading,
packet delays, and droppings. In this section, we take the un-
reliable channels into consideration and investigate the sensor
selection problem over packet-dropping channels.
In this part, we study the a priori error covariance

instead of the a posteriori one to simplify the analysis. Define

where are identity matrix with order , the order of .
The corresponding recursive update equation of can be
written as:

(19)

The unreliable property of the channels brings in the fol-
lowing new complexities compared to the case of reliable chan-
nels. First, depends on and is hence time-varying.
Consequently, the steady-state error covariance does not
exist, which enhances the complexity in the indication of
estimation quality. Second, the stability of the filter needs to
be considered, as there is a probability that the estimation error
diverges if the packet-dropping rate is too high.

A. Stability Analysis

For the case of one single channel, [19] studied the filter sta-
bility regarding the intermittent measurements. Similarly, for
the case of multiple unreliable channels considered here, we an-
alyze the filter stability for some given sensor selection in this
subsection.
For notation simplicity, denote as . Since is sto-

chastic, only statistical properties can be deduced. We analyze
the property of the mean error covariance . In the following
part, we provide an upper bound of . Furthermore, we give
a necessary and sufficient condition on the convergence of the
upper bound and hence that of .

We first assume that for all , i.e., . The case
with general will be analyzed later. Then (19) can be reduced
to

(20)

Before we state the main result, we present some prelimi-
naries. Denote the set of by
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where is the mean of the Bernoulli process . For the
channel of sensor , denote the variance of the random process

as , which is given by . Further define

Moreover, let

is the column vector of dimension with all components
equal to 1.
Define the modified algebraic Riccati equation (MARE) for

the Kalman filter with intermittent measurements through mul-
tiple channels as follows:

(21)

where , and is the Hadamard product rep-
resenting the elementwise matrix multiplication. The subscript
of means that it is also determined by the mean set .

We provide an upper bound of in the next theorem.
Theorem 3: For a sequence satisfying and

, we have

Proof: See the Appendix.
Define

The following theorem provides a necessary and sufficient con-
dition for the convergence of .
Theorem 4: A necessary and sufficient condition for to

converge, namely has one unique positive definite
solution, is given as follows.
1) and , such that

(22)

2) The system

(23)

has no unobservable eigenvalue on the unit circle, where
.

Proof: According to [20], the MARE (21) has one unique
positive definite solution if and only if
1) for the stochastic system

(24)

there exists a static , such that ,
2) the system (23) has no unobservable eigenvalue on the unit

circle.

For the system (24), let . We have

According to [21], that holds is equivalent to
and , such that (22) is satisfied.

Theorem 5: converges if the conditions in The-

orem 4 are satisfied. Let satisfies . When exists,

(25)

Proof: Since is an upper bound of , the con-
vergence of implies the boundedness of . When the
limit of exists, it is also an upper bound of .
For a general where only a subset of the sensors is selected,

the discussion will be the same. Without loss of generality, we
assume that only sensor are chosen. Let

Then (19) is reduced to

which has the same form as (20), and hence the remaining dis-
cussion is the same. can be also analyzed in an alternative
way. We define

and construct a sequence with and
. For given by (19), we have

If converges, let

and we have

B. Optimization Problem
Generally, it is difficult to analyze due to the

complex iterations. Fortunately, we obtain an asymptotic upper
bound which bounds the performance of . In

this subsection, we use the asymptotic upper bound of
as the objective function:

(26)

We propose the sensor selection problem over packet-drop-
ping channels as follows:
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Problem 6:

This optimization problem is not solvable, since the explicit
form of is unknown. We present the following result to make
it numerically solvable.
Lemma 4: The following statements are equivalent:
1) , such that .
2) such that

(27)

where

and

. . .

in which , obtained by removing all
the other blocks in except and

which are diagonal matrices.
Moreover, for satisfying the inequality in (2), is

a solution to the inequality in (1). It is also true conversely.
Proof: See the Appendix.

According to Lemma 4, Problem 6 is equivalent to the fol-
lowing problem:
Problem 7:

. . .

Problem 7 is not convex since the feasible domains for 's
are discrete. Similar to Problem 4, we relax this constraint and
obtain a convex problem.
Problem 8: The problem statement is the same as Problem 7

except that the constraint is replaced by .
Denote the solution by . Problem 8

can be solved by proper numerical algorithms and the discretiza-
tion of its solution to achieve a suboptimal selection is sim-
ilar to that in the previous section. Moreover, the stability of the
filter needs to be checked when applying according to The-
orem 4.

V. EXAMPLES

In this section, the effectiveness of the numerical algorithms
we proposed is illustrated by two examples. To this end, in
each example, the optimal sensor selection scheme obtained by
brute-force search and a random policy are compared with ours.
Note that under a certain constraint, there are many admissible
static sensor selection strategies. The random policy refers to a
policy that randomly picks the admissible strategies with equal
probabilities. In our simulations, the performance of the random
policy is computed as the average performance of all the admis-
sible strategies. Through the two examples, we assume there are
10 sensors and the number of available channels varies from
1 to 10. The power cost of each transmission for each sensor is
identically one unit, i.e., . The order of the system is
2, while the dimension of each sensor is either 1 or 2, which is
generated randomly.
In the first example, the numerical algorithm proposed in

Section III for the scenario where the communication channels
are reliable is simulated. The parameters used are generated ran-
domly, the details of which are summarized as follows:

The simulation result is shown in Fig. 2, from which we can
see that when the number of available channels is 2 or more,
the estimation error covariances of ours and the optimal one are
the same. When the number of available sensors is small, our
algorithm outperforms significantly the random policy.
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Fig. 2. Steady-state estimation error covariance of different sensor selection
schemes as a function of the number of available channels.

In the second example, the numerical algorithm for the
packet-dropping channel proposed in Section IV is simulated.
The detailed parameters are listed as follows:

As depicted in Fig. 3, the estimation performance of our
algorithm is very close to that of the optimal one, both of
which are smaller than that of the random policy. Due to packet
dropouts of the communication channels, the mean of for
the random policy is unbounded when . Take
for example. If a sensor is chosen whose channel has too low
a packet-arrival rate to guarantee the stability of the filter, the
corresponding will be unbounded. Consequently, the
average value of for the random policy is also unbounded.

VI. CONCLUSION

This paper considered the sensor selection problem for cen-
tralized state estimation. A group of sensors take measurement
of a state process and send the data to a remote estimator and
only limited sensors are allowed to do the transmission. This
paper intended to find which sensors should be chosen such that

Fig. 3. The asymptotic upper bound of expectation of estimation error covari-
ance, , for different sensor selection schemes as a function of the number
of available channels, .

the estimation performance of the estimator is optimized. Both
reliable and packet-dropping channels were considered. For
both cases, the selection problems were transformed to convex
optimization ones which can be efficiently solved and satisfac-
tory suboptimal selections were obtained after discretization of
the solution to the convex optimization problems.
In our current work, we focused on the deterministic sensor

selection, i.e., the selection is determined offline. As a future
work, we will study stochastic selection, i.e., the sensors are
chosen online according to some probability, which is to be as-
signed. Other general communication channel models including
packet-delay and fading ones will also be considered.

APPENDIX

Before we give the complete proofs of lemmas and theo-
rems omitted in the main content, we present some preliminary
lemmas.
Lemma 5 (Matrix Inversion Lemma): Let . If

, where , then

Lemma 6: Define the operator

(28)

where , and is a scalar. Let

(29)

Then

(30)

Moreover, exists,

(31)
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Proof: We have

Let

We just need to verify . We have

It can be easily verified that and is hence
invertible. Since is diagonal,

and is invertible. Moreover,

By Matrix Inversion Lemma, we have

where the fourth equality follows from Matrix Inversion
Lemma. Notice that

Hence,

We give the proofs in the following subsections.

A. Proof of Lemma 3
Define

where , and is a scalar. We make
the following statement: and , such that

exists and
holds.
We show that (1), (2), and are equivalent.

: When such that , let

(32)

Notice that

(33)

This can be shown by either direct calculation (one can refer to
the proof of Lemma 6) or by an alternative formulation of
as follows. The measurement received by the estimator from
sensor can be written as

where the probability distribution of follows

for some . The scenario that sensor is not chosen corresponds
to the case of . Then we have an alternative formulation
for :

which is indeed

Notice that

Hence,

As a result, and satisfy .
: Assume that and , such that

holds. Notice that

(34)

where is given by (32). Then
. Since exists, we have

Hence, also satisfies .
: Assume that and , such that we

have . According to the property of
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limits, , when holds.
By the similar approach in Theorem 5 of [19], the inequality

can be shown to be equivalent to

where , and the entries replaced
by can be recovered by the symmetry of the matrix. We denote
it as for short.
Since when , then holds,

according to the property of limits. Notice that

Consequently, for and
,

holds. Thus (2) is verified.
: The proof is similar to that of .

Consequently, (1) is equivalent to (2), and for satisfying
the inequality in (2), is a solution to the inequality in
(1).

B. Proof of Theorem 3
Define an operator

Equation (20) can be further written as

Then

where

Moreover,

Define

We use mathematical induction to prove the argument. When
, the argument holds. Assume when

holds. For time , we have

Take expectation of both sides with respect to 's,

From mathematical induction, holds for all .

C. Proof of Lemma 4
We make the following statement:

and , such that exists
and holds, where
is given by (28).
We prove that (1), (2), and are equivalent.

: When such that , con-
sider given by (29). Lemma 6 shows

and exists. Hence, and satisfy
.

: Assume and
holds. Notice that

(35)

Then we have

Hence, we have

: Assume and
holds. Then , when , we

have according to the property of limits.
can be extended as follows:



YANG et al.: DETERMINISTIC SENSOR SELECTION FOR CENTRALIZED STATE ESTIMATION UNDER LIMITED COMMUNICATION RESOURCE 2347

where is simplified as , assuming no misunderstanding
is caused. From the inequality , we have

Then by Schur complement decomposition it is equivalent to

where the first entry marked by is the left hand side term of
the last inequality. Using several more times the Schur comple-
ment decomposition on the first element of the matrix we have

(36)

where

and

. . .

Let

Ξ

then (36) is equivalent to

Ξ

Let

Ξ Ξ Ξ
Ξ Ξ

Then

Ξ

where the entries marked by can be deduced from the sym-
metry of the matrix. Moreover, we have

Ξ

and
Ξ

Let , and . Define

where

and

. . .

Then Ξ is equivalent to . Hence, we have
shown that is equivalent to . Con-
sequently, when also holds, which leads to
that according to the property of limits. Let

and . Then

and

where . Hence, there exist
and , such that . (2) is verified.
: The proof is similar to that of .

From the discussion above, the argument is verified.
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