
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 10, OCTOBER 2015 2661

Stochastic Event-Triggered Sensor Schedule
for Remote State Estimation

Duo Han, Student Member, IEEE, Yilin Mo, Member, IEEE, Junfeng Wu, Student Member, IEEE,
Sean Weerakkody, Student Member, IEEE, Bruno Sinopoli, Member, IEEE, and Ling Shi, Member, IEEE

Abstract—We propose an open-loop and a closed-loop stochastic
event-triggered sensor schedule for remote state estimation. Both
schedules overcome the essential difficulties of existing schedules
in recent literature works where, through introducing a deter-
ministic event-triggering mechanism, the Gaussian property of
the innovation process is destroyed which produces a challenging
nonlinear filtering problem that cannot be solved unless approx-
imation techniques are adopted. The proposed stochastic event-
triggered sensor schedules eliminate such approximations. Under
these two schedules, the minimum mean squared error (MMSE)
estimator and its estimation error covariance matrix at the remote
estimator are given in a closed-form. The stability in terms of
the expected error covariance and the sample path of the error
covariance for both schedules is studied. We also formulate and
solve an optimization problem to obtain the minimum commu-
nication rate under some estimation quality constraint using the
open-loop sensor schedule. A numerical comparison between the
closed-loop MMSE estimator and a typical approximate MMSE
estimator with deterministic event-triggered sensor schedule, in a
problem setting of target tracking, shows the superiority of the
proposed sensor schedule.

Index Terms—Minimum mean squared error (MMSE).

I. INTRODUCTION

THE concept of controlled communication [1] between a
wireless sensor and an estimator is becoming prevailing

for networked control systems. The reasons why we desire the
tradeoff between communication and estimation performance
include but not limited to the following three ones:

1) The importance of each measurement is not equal. For
example, an oscillating signal generally requires more
sampling and scheduling efforts than another period of
flat signal does.
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2) Unlike the estimation center which has sufficient re-
sources, the wireless sensors in most circumstances are
powered by small batteries which are difficult to replace.
Thus a sensor should allocate its energy smartly.

3) The channel bandwidth shared by a large amount of
sensors may be limited in some cases [2]–[5], where
not all sensors are able to communicate with the remote
estimator all the time.

A typical class of problems is to find the optimal or suboptimal
offline sensor schedule in terms of minimum estimation error
covariance given system parameters and different resource
constraints [6]–[8]. For example, Yang et al. [9] studied the
scheduling problem over a finite time horizon under limited
communication resources. They have proved that the optimal
deterministic offline sensor schedule should allocate the limited
number of transmission as uniformly as possible over the time
horizon. Ren et al. [10] further considered the effect of the
packets dropout in the energy-constrained scheduling problem.
They constructed an optimal periodic schedule and provided a
sufficient condition under which the estimator is stable. Gener-
ally speaking, those offline scheduling strategies, which can be
determined before the system runs, utilize the prior information
of the system under investigation. In other words, the sensor
sends the data packet at some fixed time steps obeying a pre-
defined deterministic sequence of transmission decisions.

As the first reason above says, the sensor should prioritize
different data packets in terms of some importance metric and
make transmission decisions itself on a real-time basis to pursue
a better tradeoff. Since the transmission process has two states,
i.e., Send and Don’t Send, a data packet can be classified into
two categories, i.e., Important data which should be sent and
Useless data which should be discarded. The criteria for deter-
mining whether a data packet is important or not is typically de-
signed by human and the sensor executes the checking criteria
at each time step to make a transmission decision. Informally,
an event-triggered or event-based schedule refers to that an
event must be triggered to send the data packet, where the
event here means a sending criteria is satisfied. This work aims
to find such a checking criteria which acquires good tradeoff
between communication and performance and in the meantime
facilitates detailed analysis.

Event-triggered state estimation problem has been inten-
sively studied [11]–[15] after the pioneering work of Åsträm
and Bernhardsson [16]. For example, Marck and Sijs [17] pro-
posed a sampling method in which an event is triggered relying
on the reduction of the estimators uncertainty and estimation er-
ror. Weimer et al. [18] considered a distributed event-triggered
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estimation problem. They proposed a global event-triggered
policy to determine when sensors transmit measurements to the
central estimator using a sensor-to-estimator communication
channel and when sensors received other sensors measure-
ments using an estimator-to-sensor communication channel. An
event-based sensor schedule which depends on the estimation
variance, i.e., sending the measurement only when the variance
exceeds a pre-defined threshold, was proposed in [19], [20].
Tripme and D’Andrea [20] showed the resemblance between
the variance-triggered strategy and the time-based optimal strat-
egy in the limit case, say, both of them are periodic. Before we
introduce our innovative idea, we present some closely related
works from literature.

Smart sensors which can run a local Kalman filter and
preprocess the measurements have been considered in sev-
eral event-based estimation problems. Xu and Hespanha [21]
studied a controlled communication problem where the smart
sensor decides when to send the local estimate to the remote
estimator. The proposed scheduler determines the transmission
probability at each time step based on a function of the estima-
tion error. Loosely speaking, the larger the error is, the more
likely the data packet will be sent. Lipsa et al. [22] studied
the framework where a smart sensor monitoring a first order
linear time-invariant system communicates with a remote esti-
mator. They modeled the optimal transmission policy problem
as an optimization problem that minimizes a cost combining
the expected error covariance and the communication cost.
They found that a symmetric threshold-type policy is optimal.
However, one major problem for smart sensors is that they
require the strong computation capability embedded to run a
local Kalman filter. Sometimes, the restriction has to be relaxed.

A more general assumption is that the sensor is primitive,
which means that its computation capability is limited, and it
can only send the raw measurement to the estimator. Unfortu-
nately, this broader assumption brings more complicated data
fusion problem. Once the smart sensor sends the local estimate
to the estimator, the estimator resets its estimate to the optimal
estimate produced by the local standard Kalman filter. While
the estimator that receives raw measurements from a primitive
sensor has to construct a new MMSE estimate to fuse the
information from a received measurement or the absence of a
measurement. In [23] the authors compared a function of the
local measurement to a threshold to decide the transmission.
A suboptimal filter was sought by considering that the absence
of measurement leads to an artificially enlarged measurement
noise covariance. In [24], the Kalman gain of the proposed
filter is a suboptimal solution involving a variable solved as a
convex optimization problem. Wu et al. [25] proposed a deter-
ministic event-triggered scheduler (DET-KF). They derived the
exact MMSE estimator but a number of numerical integrations
are involved making it practically useless. They assumed the
Gaussian distribution of the a priori state estimate at each time
step which is indeed not, to derive an approximate MMSE
estimator. As far as we know, the existing works such as [23]–
[26] on event-based estimation in a primitive sensor setting
cannot bypass one core problem, that is, the introduction of the
event-triggering mechanism renders the derivation of the exact
MMSE estimator nonlinear and intractable. This motivates us

Fig. 1. Event-triggered sensor scheduling diagram for remote state estimation.

to find an event-triggered schedule for a primitive sensor such
that the derivation of the optimal estimator is feasible and the
tradeoff between communication and performance is desirable.

In this work, we consider the remote estimation problem
in Fig. 1. We focus on the design of decision making policy
and assume an ideal channel, i.e., with no packet delay and
dropout, but with finite bandwidth. Two cases for the estimation
problem are studied. The first one is the open-loop case where
only the raw measurement can be accessed by the sensor to
make a decision. The other one is the closed-loop case where
the sensor receives the estimate data broadcasted by the esti-
mation center besides its own measurements.1 The sensor thus
can send the measurement innovation of which the redundant
information has been removed. As a result, the reduction of data
transmission rate at each node may relieve the traffic conges-
tion significantly. For example, distributed Kalman-like filter
receiving only one or several bits of quantized innovation to
save communication bandwidth is considered in [28]–[30]. The
main contributions of this work are summarized as follows.

1) We propose a class of stochastic decision rules and sug-
gest two practical forms of the event-triggered schedule
in open-loop and closed-loop systems.

2) Under the proposed event-triggered schedule, the deriva-
tion of the exact MMSE estimator for each case is no
longer an intractable nonlinear estimation problem. We
derive the exact MMSE estimator for each case, which is
in a simple recursive form and easy to analyze.

3) For both cases, we derive the closed-form expression
of the average communication rate for the open-loop
case and provide upper and lower bounds of the average
communication rate for the closed-loop case. Moreover,
we characterize the statistical properties of the estima-
tor error covariance matrix. Specifically, we care about
whether the error covariance sample path and the mean
of the error covariance are bounded. In particular, we
show that for the closed-loop case, the estimator is always
stable regardless of the communication rate.

4) We formulate an optimization problem to illustrate how
a parameter in the event mechanism satisfying a desired
tradeoff between the communication rate and the estima-
tion quality can be obtained.

The study of error covariance of sample path and the formula-
tion of the optimization problem are not included in the pre-
liminary study presented in [31]. The remainder of the paper
is organized as follows. Section II formulates the remote es-
timation problem and proposes the stochastic event-triggered
schedules. Section III introduces the corresponding MMSE

1Due to the power asymmetry, the estimator or the base station is able to
render some feedback information to the local sensor with high reliability. A
practical example is remote state estimation based on IEEE 802.15.4/ZigBee
protocol [27], in which the sensor is the network device and the estimator is the
coordinator.
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estimator design for each case. Section IV presents the analysis
results on the communication rate and the estimation perfor-
mance. Section V shows how to design the event parameter in
the event-triggered schedule to minimize the communication
rate under some performance constraint. Section VI presents
some simulation results. Conclusion and Appendix are given in
the end.

Notation: S
n
+ and S

n
++ are the sets of n× n positive semi-

definite and positive definite matrices. When X ∈ S
n
+, we

simply write X ≥ 0 (or X > 0 if X ∈ S
n
++). ρ(·) is the spectral

radius of a square matrix. N (μ,Σ) denotes Gaussian distribu-
tion with mean μ and covariance matrix Σ. Pr(·) denotes the
probability of a random event. E[·] denotes the expectation of
a random variable. E[·|·] denotes the conditional expectation.
Pr(A|I) is defined as the conditional expectation of the indi-
cator function IA of event A on the information set I. f ◦ g(x)
denotes the function composition f(g(x)).

II. PROBLEM SETUP

Consider the following linear system:

xk+1 =Axk + wk (1)
yk =Cxk + vk (2)

where xk ∈ R
n is the state vector, yk ∈ R

m is the sensor mea-
surement, wk ∈ R

n and vk ∈ R
m are mutually uncorrelated

white Gaussian noises with covariances Q > 0 and R > 0,
respectively. The initial state x0 is zero-mean Gaussian with
covariance matrix Σ0 > 0, and is uncorrelated with wk and vk
for all k ≥ 0. (A,C) is detectable.

After collecting the observation yk, the sensor decides to
send it to the remote estimator or not. Let γk be the decision
variable: γk = 1 indicates that yk is sent and γk = 0 otherwise.
We assume the estimator has a precise knowledge of γk. As a
result, the information set of the estimator at time k is given as

Ik Δ
= {γ0, . . . , γk, γ0y0, . . . , γkyk}

with I−1
Δ
= ∅. Let us further define

x̂−
k

Δ
=E[xk|Ik−1], ŷ

−
k

Δ
= E[yk|Ik−1]

e−k
Δ
=xk − x̂−

k , P
−
k

Δ
= E[e−k e

−T
k |Ik−1]

x̂k
Δ
=E[xk|Ik], ek Δ

= xk − x̂k, Pk
Δ
= E[eke

−T
k |Ik].

The estimates x̂−
k and x̂k are called the a priori and a posteriori

MMSE estimate, respectively. Further define the measurement
innovation as

zk
Δ
= yk − ŷ−k .

Recall from the standard Kalman filter [32], i.e., γk = 1 for all
k, x̂k and Pk are computed recursively as

x̂−
k =Ax̂k−1 (3)

P−
k =APk−1A

T +Q (4)
Kk =P−

k CT [CP−
k CT +R]−1 (5)

x̂k = x̂−
k +Kk(yk − Cx̂−

k ) (6)
Pk =(I −KkC)P−

k (7)

where the recursion starts from x̂0 = 0 and P0 = Σ0.

In order to show the novelty and significance of our stochas-
tic event-triggering mechnism, let us have a quick revision on
the deterministic event-triggered schedule in [25]. The authors
proposed the following event-triggering scheme:

γk =

{
0, if ‖εk‖∞ ≤ δ
1, otherwise

where δ is the pre-defined threshold and εk is the normalized
innovation vector. They derived the exact MMSE estimator
involving complicated numerical integration, which will not be
listed here. To make the MMSE estimation problem tractable,
they assume the conditional distribution of xk given Ik−1 is
Gaussian, i.e.,

fxk
(x|Ik−1) ∼ N (x̂−

k , P
−
k ).

Thus they can derive an approximate MMSE estimator as
follows.

Time Update:

x̂−
k = Ax̂k−1, P−

k = APk−1A
T +Q.

Measurement Update:

x̂k = x̂−
k + γk(P

−
k CT

[
CP−

k CT +R
]−1

)zk
Pk =P−

k − [γk + (1− γk)β(δ)]

× P−
k CT

(
CP−

k CT +R
)−1

CP−
k

where

β(δ)=
2√
2π

δe−
δ2

2 [1− 2Q(δ)]−1 , Q(δ)=

+∞∫
δ

1√
2π

e−
x2

2 dx.

Remark 1: In the classical periodic transmission problem
setup, xk conditioned on Ik (or Ik−1) is Gaussian. Therefore,
x̂k and Pk (or x̂−

k , P
−
k ) are sufficient to characterize the condi-

tional distribution of xk, which further enables the derivation
of the optimal filter. The Gaussian property holds for any
offline sensor schedule. For the deterministic event-triggering
scheme above (the threshold is pre-defined and time-invariant),
however, the conditional distribution of xk is not necessarily
Gaussian [25], which renders the optimal estimator design
problem intractable.

In this paper, we assume that the sensor follows a stochastic
decision rule. To be more specific, at every time step k, the
sensor generates an independent and identically distributed
(i.i.d.) random variable ζk, which is uniformly distributed over
[0, 1]. The sensor then compares ζk with a function ϕ(yk, ŷ

−
k ),

where ϕ(yk, ŷ
−
k ) : R

m × R
m → [0, 1]. The sensor transmits if

and only if ζk > ϕ(yk, ŷ
−
k ). In other words

γk =

{
0, ζk ≤ ϕ(yk, ŷ

−
k )

1, ζk > ϕ(yk, ŷ
−
k ).

(8)

Remark 2: Since ζk is uniformly distributed, one can in-
terpret ϕ(yk, ŷ−k ) as the probability of idle and 1− ϕ(yk, ŷ

−
k )

as the probability of transmitting for the sensor. The event-
triggering scheme in (8) represents a large class of triggering
mechanism. Note that the deterministic decision rule proposed
by Wu et al. [25] can be put into this framework by setting
the co-domain of ϕ to the set {0, 1}. However, only by an
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appropriate choice of ϕ(yk, ŷ−k ) can we find a tractable MMSE
estimator.

In this paper, we propose the following two choices of the
function ϕ such that there is a tractable MMSE estimator under
the event-triggered schedule:

1) Open-Loop: We assume that ϕ only depends on the
current measurement yk. We choose ϕ(yk, ŷ

−
k ) = μ(yk),

where the function μ(y) is defined as

μ(y)
Δ
= exp

(
−1

2
yTY y

)
(9)

with Y ∈ S
m
++.

2) Closed-Loop: We assume that the sensor receives a feed-
back ŷ−k from the estimator before making the decision.
Therefore, the sensor can compute the innovation zk =
yk − ŷ−k . As a result, we choose ϕ(yk, ŷ

−
k ) = ν(zk),

where ν(z) is defined as

ν(z)
Δ
= exp

(
−1

2
zTZz

)
(10)

with Z ∈ S
m
++.

Remark 3: We only consider the open-loop schedule func-
tion in a stable system scenario since yk will grow unbounded
in an unstable system, which results that γk = 1 almost surely
after the dynamic system runs for a sufficient long time. On
the contrary, there is no such restriction on the closed-loop
schedule. More discussion will be given in Section IV.

Note that μ (ν) is proportional to the probability density
function (pdf) of a Gaussian random variable (only missing the
coefficient). The choices of these two general forms are not ad
hoc but with intrinsic motivations and reasons.

1) If yk (zk) is small, then with a large probability the sensor
will be in the idle state. On the other hand, if yk (zk)
is large, then the sensor will be more likely to send yk.
As a consequence, even if the estimator does not receive
yk, it can still exploit the information that yk is more
likely to be small to update the state estimate. This is the
main advantage over an offline sensor schedule, where no
information about xk can be inferred when yk is dropped.

2) The similarity of μ (ν) and the pdf of a Gaussian random
variable will play a key role in the derivation of the
optimal MMSE estimator. This design together with the
random variable ζk will avoid the nonlinearity introduced
by the truncated Gaussian prior conditional distribution
of the system state.

3) The parameter Y (Z) introduces one degree of freedom
of system design to balance the tradeoff between the
communication rate and the estimation performance.

We aim to give answers to the following questions in the rest of
this paper.

1) Given the stochastic event-triggered scheduler (8), (9) and
(8), (10), what are the MMSE estimators respectively?

2) Is the remote estimator corresponding to the closed-loop
case stable when working for an unstable system, i.e.,
whether the error covariance sample path and the mean
of the error covariance are bounded?

3) What is the average communication rate and the average
estimation error covariance in both cases?

4) How should Y (or Z) be chosen to satisfy different design
goals?

III. MMSE ESTIMATOR DESIGN

A. Open-Loop Stochastic Event-Triggered Scheduling

We first consider the MMSE estimator for the open-loop
case, which is given by the following theorem.

Theorem 1: Consider the remote state estimation in Fig. 1
with the open-loop event-triggered scheduler (8) and (9). Then
xk conditioned on Ik−1 is Gaussian distributed with mean x̂−

k

and covariance P−
k , and xk conditioned on Ik is Gaussian

distributed with mean x̂k and covariance Pk, where x̂−
k , x̂k and

Pk, P
−
k satisfy the following recursive equations.

Time Update:

x̂−
k =Ax̂k−1 (11)

P−
k =APk−1A

T +Q. (12)

Measurement Update:

x̂k = x̂−
k + γkKkyk −KkE[yk|Ik−1] (13)

=(I −KkC)x̂−
k + γkKkyk (14)

Pk =P−
k −KkCP−

k (15)

where

Kk = P−
k CT

[
CP−

k CT +R+ (1− γk)Y
−1
]−1

(16)

with initial condition

x̂−
0 = 0, P−

0 = Σ0. (17)

Before we present the proof for Theorem 1, we need the
following result, the proof of which is reported in the Appendix.

Lemma 1: Let Φ > 0 partitioned as

Φ =

[
Φxx Φxy

ΦT
xy Φyy

]

where Φxx ∈ R
n×n, Φxy ∈ R

n×m and Φyy ∈ R
m×m. The fol-

lowing equation holds:

Φ−1 +

[
0 0
0 Y

]
= Θ−1

where

Θ =

[
Θxx Θxy

ΘT
xy Θyy

]

and

Θxx =Φxx − Φxy(Φyy + Y −1)−1ΦT
xy

Θxy =Φxy(I + Y Φyy)
−1

Θyy =(Φ−1
yy + Y )−1.

Proof of Theorem 1: We prove the theorem by induction.
Since I−1 = ∅, x0 is Gaussian and (17) holds. We first consider
the measurement update step. Assume that xk conditioned on
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Ik−1 is Gaussian with mean x̂−
k and covariance P−

k . We consid-
er two cases depending on whether the estimator receives yk.

1) γk = 0:
If γk = 0, then the estimator does not receive yk. Con-
sider the joint conditional pdf of xk and yk

f(xk, yk|Ik) = f(xk, yk|γk = 0, Ik−1)

=
Pr(γk = 0|xk, yk, Ik−1)f(xk, yk|Ik−1)

Pr(γk = 0|Ik−1)

=
Pr(γk = 0|yk)f(xk, yk|Ik−1)

Pr(γk = 0|Ik−1)
. (18)

The second equality follows from the Bayes’ theorem and
the last one holds since γk is conditionally independent
with (Ik−1, xk) given yk. Let us define the covariance of
[xT

k , y
T
k ]

Y given Ik−1 as

Φk
Δ
=

[
P−
k P−

k CT

CP−
k CP−

k CT +R

]
. (19)

From (9), we have

Pr(γk = 0|yk) = Pr

(
exp(−1

2
yTk Y yk) ≥ ζk

∣∣∣∣∣yk
)

= exp

(
−1

2
yTk Y yk

)
. (20)

From (18), (19), and (20), we have

f(xk, yk|Ik) = αk exp

(
−1

2
θk

)

where

αk =
1

Pr(γk = 0|Ik−1)
√

det(Φk)(2π)m+n

and

θk =

[
xk − x̂−

k

yk − ŷ−k

]T
Φ−1

k

[
xk − x̂−

k

yk − ŷ−k

]
+ yTk Y yk. (21)

Manipulating (21) and by Lemma 1, one has

θk =

[
xk − x̄k

yk − ȳk

]T
Θ−1

k

[
xk − x̄k

yk − ȳk

]
+ ck

where

x̄k = x̂−
k − P−

k CT (CP−
k CT +R+ Y −1)−1ŷ−k

ȳk =
[
I + Y (CPCT +R)

]−1
ŷ−k

ck =(ŷ−k )
T (CP−

k CT +R+ Y −1)−1ŷ−k

and

Θk =

[
Θxx,k Θxy,k

ΘT
xy,k Θyy,k

]

with

Θxx,k =P−
k − P−

k CT (CP−
k CT +R+ Y −1)−1CP−

k

Θxy,k =P−
k CT

[
I + Y (CP−

k CT +R)
]−1

Θyy,k =
[
(CP−

k CT +R)−1 + Y
]−1

.

Thus

f(xk, yk|Ik) = αk exp
(
−ck

2

)
× exp

(
−1

2

[
xk − x̄k

yk − ȳk

]T
Θ−1

k

[
xk − x̄k

yk − ȳk

])
.

Since f(xk, yk|Ik) is a pdf∫
Rn

∫
Rm

f(xk, yk|Ik) dxk dyk = 1

which implies that

αk exp
(
−ck

2

)
=

1√
det(Θk)(2π)n+m

.

As a result, xk, yk are jointly Gaussian given Ik, which
implies that xk is conditionally Gaussian with mean x̄k

and covariance Θxx,k. Therefore, (13) and (15) hold
when γk = 0.

2) γk = 1:
If γk = 1, then the estimator receives yk. Hence

f(xk|Ik) = f(xk|γk = 1, yk, Ik−1)

=
Pr(γk = 1|xk, yk, Ik−1)f(xk|yk, Ik−1)

Pr(γk = 1|yk, Ik−1)

=
Pr(γk = 1|yk)f(xk|yk, Ik−1)

Pr(γk = 1|yk)
= f(xk|yk, Ik−1).

The second equality is due to Bayes’ theorem and
the third equality uses the conditional independence
between γk and (Ik−1, xk) given yk. Since yk =
Cxk + vk and xk, vk are conditionally independently
Gaussian distributed, xk and yk are conditionally jointly
Gaussian which implies that f(xk|Ik) is Gaussian. As
f(xk|yk, Ik−1) represents the measurement update of the
standard Kalman filter, following the standard Kalman
filtering [32], we have:

f(xk|Ik) ∼ N (x̂−
k +Kk(yk − Cx̂−

k ), P
−
k −KkCP−

k ).

Finally we consider the time update. Assume that xk con-
ditioned on Ik is Gaussian distributed with mean x̂k and
covariance Pk

f(xk+1|Ik) = f(Axk + wk|Ik).

Since xk and wk are conditionally mutually independent
Gaussian, we have

f(xk+1|Ik) ∼ N (Ax̂k, APkA
Y +Q)

which completes the proof. �
For brevity, we refer to the MMSE estimator (11)–(16) under

the open-loop stochastic event-triggered scheduling scenario
as the OLSET-KF in the sequel. The counterpart (22)–(26) in
the closed-loop case is abbreviated as CLSET-KF. Comparing
(11)–(16) with the standard Kalman filtering update equations
(3)–(7), one notes that the difference lies in the measurement
update when γk = 0. The a posteriori error covariance recur-
sion is updated with the same form of Kalman gain as that of
standard Kalman filter but with an enlarged measement noise
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covariance R+ Y −1. To make further comparison with the
MMSE estimator where the observation is randomly dropped,
we have the following result from [33]:

x̂−
k =Ax̂k−1, P−

k = APk−1A
T +Q

x̂k = x̂−
k + γkKk(yk − Cx̂−

k ), Pk = P−
k − γkKkCP−

k

where

Kk = P−
k CT

[
CP−

k CT +R
]−1

.

When γk = 0 the a posteriori estimate (14) no longer equals
to the a priori estimate but a scaled a priori estimate with a
coefficient depending on the modified Kalman gain. The larger
noise covariance is induced by the uncertainty brought by the
stochastic event. Such an uncertainty, however, successfully
eliminates the need of Gaussian approximation as in [25], [28],
[34], and leads to a simple and exact solution of the MMSE
estimator.

B. Closed-Loop Stochastic Event-Triggered Scheduling

In this section we discuss the closed-loop case, where the
estimator feeds ŷ−k back to the sensor. The MMSE estimator
incorporating the event-triggering mechanism (8) and (10) is
given by the following theorem.

Theorem 2 (CLSET-KF): Consider the remote state estima-
tion in Fig. 1 with the closed-loop event-triggered scheduler (8)
and (10). Then xk conditioned on Ik−1 is Gaussian distributed
with mean x̂−

k and covariance P−
k , and xk conditioned on Ik is

Gaussian distributed with mean x̂k and covariance Pk, where
x̂−
k , x̂k and Pk, P

−
k satisfy the following recursive equations.

Time Update:

x̂−
k =Ax̂k−1 (22)

P−
k =APk−1A

Y +Q. (23)

Measurement Update:

x̂k = x̂−
k + γkKkzk (24)

Pk =P−
k −KkCP−

k (25)

where

Kk = P−
k CY

[
CP−

k CY +R+ (1− γk)Z
−1
]−1

(26)

with initial condition

x̂−
0 = 0, P−

0 = Σ0.

Proof: Theorem 2 can be proved in a similar style as
Theorem 1. Briefly speaking, by substituting yk into zk in the
proof of Theorem 1, one can obtain the results above. Substi-
tuting yk by zk in (13), one can notice that

x̂k = x̂−
k + γkKkzk −KkE[zk|Ik−1] = x̂−

k + γkKkzk

since E[zk|Ik−1] = 0, which is consistent with (24). �
Note that the error covariance recursion (25)-(26) also keep

the same form as the standard Kalman filter but with a modified
Kalman gain when γk = 0. Since the event uses the zero-mean
zk instead of yk, the optimal a posteriori estimate is the a priori
estimate itself compared with a scaled a prior estimate in
OLSET-KF.

IV. PERFORMANCE ANALYSIS

The main goal of the proposed scheduler is to reduce the
frequency of communication between the sensor and the esti-
mator in a smart manner, compared with the classical periodic
communication strategy. In this section, we study the aver-
age communication rate and the estimation performance (P−

k )
given an OLSET-KF or a CLSET-KF. The expected sensor-to-
estimator communication rate is defined as

γ
Δ
= lim sup

N→∞

1

N

N−1∑
k=0

E[γk].

With the knowledge of γ, we can make a better understanding
of the sensor power systems and the communication channel.
More specifically, we can analyze

1) the duty cycle of the sensor in a slow-varying environ-
ment, i.e., the sensor switches between transmitting mode
and off-transmitting mode,

2) the extended lifetime of a battery-powered sensor,
3) the bandwidth required by the intermittent data

stream, etc.
Since we adopt a stochastic decision rule to determine γk,

i.e., the sequence {γk}∞0 is random, the MMSE estimator
iteration is stochastic. Thus only statistical properties of P−

k can
be obtained. In this section, we study the mean stability of the
two MMSE estimators and provide an upper and lower bound
on limk→∞ E[P−

k ]. For notational simplicity, we define some
matrix functions.

Definition 1: Define the following matrix functions:

gW (X)
Δ
=AXAY +Q−AXCY (CXCY +W )−1CXAY

ΓW (X)
Δ
=

[
A(X + CY W−1C)−1AY +Q

]−1

where X > 0 and W > 0. We further define

g0W (X) =X, gk+1
W (X) = gW (gkW (X))

Γ0
W (X) =X, Γk+1

W (X) = ΓW (Γk
W (X)).

By Theorem 1, for OLSET-KF

P−
k+1 = gR+(1−γk)Y −1(P−

k ).

Similarly for CLSET-KF

P−
k+1 = gR+(1−γk)Z−1(P−

k ).

Furthermore, applying the matrix inversion lemma[
ΓW (X−1)

]−1
= gW (X).

The proof of the following important properties of g and Γ can
be found in [35].

Proposition 1: Assume that Q,W > 0 and (A,Q) is de-
tectable. For all X,Y ∈ S

n
+, we have the following properties.

1) Monotonicity: If X ≥ Y , then gW (X) ≥ gW (Y ),
ΓW (X) ≥ ΓW (Y );

2) Existence and Uniqueness of a fixed point: There exists
a unique positive-definite X∗ such that:

X∗ = gW (X∗), X−1
∗ = ΓW (X−1

∗ );
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3) Limit property of the iterated function:

lim
k→∞

gkW (X) = X∗, lim
k→∞

Γk
W (X) = X−1

∗ .

A. Open-Loop Schedule

We now present some properties on the communication rate
and the characteristics of the error covariance. In this subsec-
tion, we assume that the system (1) is stable. The analytical
results for an unstable system are trivial since γk = 1 almost
surely occurs after a long time. A clock-synchronization mech-
anism for both the sensor and the estimator may be helpful for
an unstable system like [36], which can be left as future work.
For stable systems, define Σ as the solution of the following
Lyapunov equation:

Σ = AΣAY +Q (27)

and define Π as

Π
Δ
= CΣCY +R.

One can verify that

lim
k→∞

Cov(xk) = Σ, lim
k→∞

Cov(yk) = Π.

The sketch of the proof is as follows. Define an operator
L(X) = AXA′ +Q and thus Cov(xk+1) = L(Cov(xk)). Ac-
cording to [33, Theorem 1] by setting λ = 0, we can conclude
limk→∞ Cov(xk) is equal to the solution of the Lyapunov
equation above.

In the sequel, we assume the system is already in the steady
state, which implies that

Cov(xk) = Σ, Cov(yk) = Π.

We are now ready to give some properties on the communica-
tion rate and the characteristics of the error covariance for the
open-loop schedule.

Theorem 3: Consider system (1) with event-triggered sched-
uler (8) and (9). If the system is stable, i.e., ρ(A) < 1, the
following properties hold.

a) Communication rate: The communication rate γ is
given by

γ = 1− 1√
det(I +ΠY )

. (28)

b) Ergodicity: The following equality almost surely holds:

lim
N→∞

1

N

N−1∑
k=0

γk
a.s.
= γ. (29)

Furthermore, for any integer l ≥ 0, define the event of l
sequential packet drops to be

Ek,l
Δ
= {γk = 0, . . . , γk+l−1 = 0}

and the event of l sequential packet arrivals to be

Ek,l
Δ
= {γk = 1, . . . , γk+l−1 = 1}.

Then almost surely Ek,l and Ek,l happen infinitely often.

c) Upper and lower bound on P−
k : For any ε > 0, there

exists an N , such that for all k ≥ N , the following
inequalities hold:

X0 − εI ≤ P−
k ≤ Xol + εI.

where X0 is the unique solution of

X = gR(X)

and Xol is the unique solution of

X = gR+Y −1(X).

Furthermore, for any ε > 0, almost surely the following
inequalities hold for infinitely many k’s:

P−
k ≥ Xol − εI, P−

k ≤ X0 + εI.

d) Asymptotic upper and lower bound on E[P−
k ]: E[P−

k ] is
asymptotically bounded by

Xol ≤ lim
k→∞

E[P−
k ] ≤ Xol

where Xol is the unique positive-definite solution to

gR1
(X) = X

with

R1 =
(
γR−1 + (1− γ)(R+ Y −1)−1

)−1
.

The proof is reported in the Appendix. The equation (29) im-
plies that for almost every sample path, the average communi-
cation rate over time is indeed the expected communication rate
γ. The two statements in Theorem 3.c imply that P−

k is oscillat-
ing between X0 and Xol. Hence, X0 and Xol can be seen as the
best and worst-case performance of OLSET-KF respectively.

Remark 4: Since the recursive update function of P−
k de-

pends on the realization of γk and the distribution of γk is a
nonlinear function of P−

k , finding the closed-form solution of
limk→∞ E[P−

k ] is a formidable task which can be left as future
work.

B. Closed-Loop Schedule

Now we consider the closed-loop case. Note that unlike the
open-loop case there is no assumption on the system matrix
A. However, the innovation zk depends on the packet arrival
process {γk}, while yk is independent of {γk} for OLSET-
KF. As a result, the distribution of ζk is more complicated and
therefore the analysis for CLSET-KF is more difficult. The fol-
lowing theorem illustrates the properties of communication rate
and characteristics of the error covariance in the CLSET-KF.

Theorem 4: Consider any stable or unstable system (1) with
closed-loop event-based scheduler (8), (10). The following
properties hold.

a) Communication rate: The communication rate γ is upper
bounded by γ, where

γ = 1− 1√
det(I + (CXclCT +R)Z)
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and γ is lower bounded by γ where

γ = 1− 1√
det(I + (CX0CT +R)Z)

.

b) Upper and lower bound on P−
k : For any ε > 0, there

exists an N , such that for all k ≥ N , the following
inequalities hold:

X0 − εI ≤ P−
k ≤ Xcl + εI

where X0 is the unique solution of

X = gR(X)

and Xcl is the unique solution of

X = gR+Z−1(X).

c) Asymptotic upper and lower bound on E[P−
k ]: E[P−

k ] is
asymptotically bounded by

Xcl ≤ lim
k→∞

E[P−
k ] ≤ Xcl

where Xcl is the unique positive-definite solution to

gR3
(X) = X

with

R3 =
(
γR−1 + (1− γ)(R+ Z−1)−1

)−1
.

The proof is given in the Appendix.
Remark 5: Theorem 4.b indicates that P−

k is uniformly
bounded regardless of the packet arrival process {γk} and Z.
The inherent stability of the CLSET-KF with no restrict on Z
is of great significance since Z can be adjusted to achieve arbi-
trarily small communication rate. For the deterministic event-
triggered scheduler proposed in [26], there exists a critical
threshold for the communication rate, only above which the
mean stability can be guaranteed. In other words, a minimum
transmission rate has to be ensured for stabilizing the expected
error covariance, which limits the scope of the design. Further-
more, the boundedness of the mean does not imply the bound-
edness of the sample path. Hence, for a given sample path, it
is possible that an arbitrary large P−

k occurs. The nice stabil-
ity property of our proposed scheduler extends its use when
very limited transmission is requested.

Remark 6: Note that the covariance of zk is smaller than
the covariance of yk. Thus, with the same communication rate,
the matrix Z for the closed-loop schedule is larger than Y
for the open-loop schedule. As a result, the closed-loop sched-
ule achieves better performance compared with the open-loop
schedule. Furthermore, the closed-loop schedule can be used
for both stable and unstable systems while the open-loop sched-
ule only works for stable systems. An open-loop schedule, how-
ever, does not require feedbacks from the estimator and hence is
easier to implement.

V. DESIGN OF EVENT PARAMETER

For different practical purposes, one may want to find a
Y (or Z) to optimize the estimation performance subject to a

certain communication rate, or to minimize the communication
rate subject to some performance requirement.

We first focus on OLSET-KF. For a scalar system, one may
obtain a scalar parameter Y from (28) to satisfy a specific
average error covariance requirement. The communication rate
γ is then uniquely determined, i.e., the average communication
rate is a 1-to-1 mapping to the average error covariance. The
case of vector-state systems, however, is dramatically different.
For instance, a constraint on error covariance corresponds to
a set of Y and thus different γ, which we try to minimize to
save bandwidth and sensor power. Moreover, different choices
of performance metric such as Frobenius norm of average error
covariance or trace of peak error covariance serve a wide range
of design purposes, which yield many different optimization
problems. In particular, the worst-case estimation error covari-
ance, i.e., Xol, may be of primary concern for safety-critical
systems. We study such a problem here.

Problem 5:

min
Y >0

γ (30)

s.t. Xol ≤ Δ0 (31)

where Δ0 ∈ S
n
++ is a matrix-valued bound.

When the measurement yk is a scalar, i.e., C ∈ R
1×n, min-

imizing γ in (28) is equivalent to minimizing ΠY , which is a
convex optimization problem. When yk is a vector, minimizing
γ is not a convex optimization problem because (28) is log-
concave with Y . We resort to relaxing the objective function
and reformulate it into a convex optimization problem. For that
we have to find a convex upper bound of γ. The following
lemma is useful for relaxing the objective function.

Lemma 2: Given γ in (28) and Π ∈ S
m
++, Y ∈ S

m
++, the

following inequality holds:

1− (1 + tr(ΠY ))−
1
2 < γ < 1− exp

(
−1

2
tr(ΠY )

)
.

The proof is given in the Appendix. From Lemma 2, min γ
is relaxed into min{1− exp(−tr(ΠY )/2)}}, or equivalently,
min tr(ΠY ). Problem 5 is then relaxed to be

Problem 6:

min
Y >0

tr(ΠY ) (32)

s.t. Xol ≤ Δ0. (33)

Before we show the main theorem on how to solve the opti-
mization problem above, we first present a lemma as follows.

Lemma 3: The following two statements are equivalent:

1) Xol ≤ Δ0, where Xol satisfies gR+Y −1(Xol) = Xol,
Y > 0,

2) There exists 0 < X ≤ Δ0 such that

gR+Y −1(X) ≤ X,Y > 0. (34)

Proof:
“1) ⇒ 2)”
Let X be equal to Xol. It is easy to see Xol is a feasible

matrix satisfying (34).
“2) ⇒ 1)”
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From Proposition 1, we have

Δ0 ≥ X ≥ gR+Y −1(X) ≥ g2R+Y −1(X)

≥ · · · ≥ lim
k→∞

gkR+Y −1(X) = Xol

which completes the proof. �
The following result is used to find an optimal solution to the

relaxed optimization problem.
Theorem 7: The optimal Y ∗ that satisfies the optimization

Problem 6 can be found by solving the following convex
optimization problem:

min
Y >0

tr(ΠY )

s.t.[
S +ATQ−1A+ CTR−1C ATQ−1 CTR−1

Q−1A Q−1 − S 0
R−1C 0 Y +R−1

]
≥ 0[

S I
I Δ0

]
≥ 0, Y > 0.

Proof: To prove the theorem, we need to show that Xol ≤
Δ0 holds if and only if the above LMIs hold. From Lemma 3 we
know that Xol ≤ Δ0 is equivalent to: there exists 0 < X ≤ Δ0

such that

gR+Y −1(X) ≤ X, Y > 0. (35)

Taking inverse of both sides of (35) and letting S = X−1, we
have the following equivalent statement:

S ≥ Δ−1
0 (36)

Y > 0 (37)[
A
(
S + CT (R+ Y −1)−1C

)−1
AT +Q

]−1

− S ≥ 0 (38)

where the last inequality holds by applying the matrix inversion
lemma. It is straightforward to see that by the Schur comple-
ment condition

S ≥ Δ−1
0 ⇔

[
S I
I Δ0

]
≥ 0. (39)

Apply the matrix inversion lemma to the inequality (38),
we have

Q−1 − S −Q−1A
[
S +ATQ−1A

+CT (R+ Y −1)−1C
]−1

ATQ−1 ≥ 0. (40)

Since R > 0, Y > 0, S > 0, Q > 0, we have

S +ATQ−1A+ CT (R+ Y −1)−1C > 0. (41)

Then by the Schur complement condition for its positive semi-
definiteness, (40) and (41) are equivalent to[

S+ATQ−1A+CT (R+Y −1)−1C ATQ−1

Q−1A Q−1−S

]
≥ 0. (42)

Expanding (R+ Y −1)−1 in the left corner term by the matrix
inversion lemma, we have[
S +ATQ−1A+ CTR−1C ATQ−1

Q−1A Q−1 − S

]

−
[
CTR−1

0

]
(Y +R−1)−1 [R−1C 0 ] ≥ 0. (43)

The equations (43) and Y +R−1 > 0 are equivalent to⎡
⎣S +ATQ−1A+ CTR−1C ATQ−1 CTR−1

Q−1A Q−1 − S 0
R−1C 0 Y +R−1

⎤
⎦ ≥ 0.

(44)

Combining (37), (39), and (44), we can conclude the proof. �
Let the true optimal solution to Problem 5 be Y opt and the

minimum objective be γopt, andY ∗ be the solution to Problem 6.
Then we can show the following inequalities holds:

1− 1√
1 + tr(ΠY ∗)

≤ 1− 1√
1 + tr(ΠY opt)

(45)

1− 1√
1 + tr(ΠY opt)

≤ γopt (46)

1− 1√
det(I +ΠY opt)

≤ 1− 1√
det(I +ΠY ∗)

. (47)

The first inequality is due to the optimality of tr(ΠY ∗) in
Problem 6, i.e., tr(ΠY ∗) ≤ tr(ΠY opt), and the monotonicity of
the function 1− 1/

√
1 + x, x ∈ R, x > 0. The second inequal-

ity is from Lemma 2. The last inequality due to the optimality
of tr(ΠY ∗) in Problem 5, i.e., γopt ≤ γY ∗

, where γY ∗
is the

corresponding communication rate using Y ∗.
Define the optimality gap κ as

κ
Δ
=

(
1− 1√

det(I +ΠY ∗)

)
− γopt.

By (47)

κ ≤ 1√
1 + tr(ΠY ∗)

− 1√
det(I +ΠY ∗)

.

Hence, we know how good the approximation is when we solve
Problem 6 for tr(ΠY ).

Remark 7: Suppose we replace the constraint Xol ≤ Δ0 by
a general constraint f(Xol) ≤ 0. If the function f(X) is mono-
tonically increasing and convex, such as tr(X), then it could
be solved in a similar fashion. To be specific, the constraints
f(Xol) ≤ 0 is equivalent to

Xol ≤ Δ0, f(Δ0) ≤ 0.

and the problem hence is solved using the same LMI method
proposed in Theorem 7.

The design procedure for the CLSET-KF is similar except for
using the upper bound of γ instead of γ.

VI. SIMULATION EXAMPLES

To demonstrate the aforementioned analytical results and
show the merit of the proposed schedulers, we present some
examples in three subsections. In Section VI-A, we compare the
estimation performance limk→∞ E[P−

k ] of the open-loop sched-
uler and the closed-loop scheduler under the same communica-
tion rate and show the advantage of both proposed schedulers
over the periodic and random offline schedulers. Periodic of-
fline schedulers send data packets in a deterministic and peri-
odic pattern, i.e., 11101110 . . . or 100100 . . ., where “1” means
transmission and “0” means not. Random offline schedulers



2670 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 10, OCTOBER 2015

Fig. 2. Asymptotic expected error covariancelimk→∞ E[P−
k
] under four

scheduling strategies versus communication rate γ.

send the data packet with a fixed probability which is equal to
γ at each time step. In addition, we illustrate the asymptotic
bounds of E[P−

k ] of both proposed schedulers. In Section VI-B,
we give an example to compute the suboptimal γ with estima-
tion performance constraint and show that the gap between the
suboptimal solution and the true optimal solution is very small.
In Section VI-C, we consider a concrete target tracking problem
setting and compare CLSET-KF and the deterministic event-
triggered scheduler (DET-KF) in [25] under the same commu-
nication rate. By varying the communication rate constraint, we
can see that our design has a distinct advantage over the exist-
ing work.

A. Performance of OLSET-KF and CLSET-KF

To compare the performance of the open-loop scheduler
and closed-loop scheduler, we consider a scalar stable system
with parameters A = 0.8, C = 1, Q = 1, R = 1. For reference
we also list another two offline schedulers, i.e., random and
periodic schedulers. The expectation is taken over 50 000 sim-
ulation runs. The results are shown in Fig. 2, from which one
can see that both open-loop event-based scheduler and closed-
loop event-based scheduler outperform the offline schedulers.
Moreover, the closed-loop event-based scheduler performs bet-
ter than the open-loop one since more information is accessible
at the sensor, which is discussed in Remark 6.

To illustrate the asymptotic bounds of E[P−
k ] for an OLSET-

KF, consider a stable system

A=

[
0.8 0
0 0.95

]
, C=[ 1 1 ] , Q=

[
1 0
0 1

]
, R=1

with the OLSET-KF. The number of simulation runs is 50 000.
Fig. 3 shows the trace of upper and lower bounds of E[P−

k ].
Similarly, Fig. 4 shows the simulation for an unstable system

A=

[
1.001 0
0 0.95

]
, C=[ 1 1 ] , Q=

[
1 0
0 1

]
, R=1

with the CLSET-KF. Note that only CLSET-KF can work with
unstable systems. We can notice that the trace of bounds for
both cases is tighter when γ is larger.

Fig. 3. Trace of asymptotic upper bound Xol and the trace of asymptotic
lower bound Xol of E[P−

k
] of the open-loop event-based schedule.

Fig. 4. Trace of asymptotic upper bound Xcl and the trace of asymptotic
lower bound Xcl of E[P−

k
] of the closed-loop event-based schedule.

B. Design of Event Parameter

Optimization problems like Problem 5 are often encountered
when one designs an OLSET-KF to obtain a desirable tradeoff
between the communication rate and the estimation quality (see
Fig. 5). Consider a stable system

A =

[
0.8 1
0 0.95

]
, C =

[
0.5 0.3
0 1.4

]

Q =

[
1 0
0 1

]
, R =

[
1 0
0 1

]
.

Note that

P =

[
2.2170 0.3217
0.3217 1.3184

]

is the unique positive-definite solution to X = gR(X). Con-
sider Problem 5 with the constraint

Xol < P +�I

where � is a positive real number. By varying �, we can obtain
the suboptimal solution following Theorem 7, from which we
can see that the suboptimal solution equals to the true optimal
solution when � is large, i.e., when the communication rate is
small.
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Fig. 5. Suboptimal solution to Problem 5 under different constraints. The
matrix-valued bound is in the form of �I .

C. Comparison Between CLSET-KF and DET-KF

To show the dominant advantage of our CLSET-KF over the
existing DET-KF, we consider a target tracking problem [37]
where a sensor is deployed to track the state xk which consists
of the position, speed and acceleration of the target. The system
dynamics is given by [37]

xk+1 =

⎡
⎣ 1 T T 2

0 1 T
0 0 1

⎤
⎦xk + uk

where T is the sampling period and uk is the additive Gaussian
noise with the covariance

2ασ2
m

⎡
⎣T 5/20 T 4/8 T 3/6

T 4/8 T 3/3 T 2/2
T 3/6 T 2/2 T

⎤
⎦

where σ2
m is the variance of the target acceleration and α

is the reciprocal of the maneuver time constant. Assume the
sensor periodically measures the target position, speed and
acceleration. The observation model is

yk =

⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦xk + vk.

The variance of the additive Gaussian observation noise is
R = I3×3. The system parameters are set to T = 1s, α =
0.01, σ2

m = 5.
In the first experiment, we assume the the transmission band-

width is moderately large and the communication rate cannot
exceed 0.65. The CLSET-KF is used for the tracking task with
Z = 0.52× I3×3 and for comparison DET-KF in [25] is also
used with the threshold being 1.60, where the parameters are
carefully designed to satisfy the communication rate limitation.
A Monte Carlo simulation with 10 000 runs for k = 1, . . . , 100
shows the estimation performance represented by the variance
of the target position error, P11 of the CLSET-KF and DET-
KF. Fig. 6 reveals that the empirical P11 of the CLSET-KF,
precisely described by the theoretical results, is smaller than
that of the DET-KF. Specifically, the empirical asymptotic P11

Fig. 6. Variance of the target position error of CLSET-KF and DET KF with
average communication rate being 0.65.

Fig. 7. Variance of the target position error of CLSET-KF and DET KF with
average communication rate being 0.25.

of CLSET-KF is 0.7991 and the theoretical value is 0.7994,
while the empirical asymptotic P11 of DET-KF is 1.1169 and
the theoretical value is 1.1374. The deviations of CLSET-KF
and DET-KF are 0.0375% and 1.835%, respectively.

In the second experiment, we assume that the communication
rate is limited to 0.25 due to the severely scarce resources. The
CLSET-KF with Z = 0.047× I3×3 and the DET-KF with the
threshold 4.30 are used. Fig. 7 clearly shows that the CLSET-
KF recursions in Theorem 2 still exactly characterize the em-
pirical estimation error covariance evolution and thus provide
a reliable estimate of the state. The empirical asymptotic P11

of CLSET-KF is 4.6367 and the theoretical value is 4.6301.
The deviation is 0.1423%. On the contrary, the theoretical error
covariance given by the DET-KF cannot match the empirical
error covariance no longer. The empirical asymptotic P11 of
DET-KF is 7.3843 and the theoretical value is 18.3223. The
deviation is 148.1%. That means that the approximate MMSE
estimator is invalid and the approximate measurement update
need to be re-examined.

Remark 8: As shown in the previous sections, the merit
of our stochastic event-triggered scheduler is the preserva-
tion of Gaussian properties of measurement update when no
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measurements arrive. For the deterministic event-based sched-
ule in [25] and [26], a Gaussian distribution of the predicted
density is assumed to solve the intractable nonlinear filtering
problem heuristically. This approximation only works well
in the circumstance that the transmission rate is high. When
measurements are missing consecutively for a long time, the
Gaussian assumption is no longer valid and therefore the ap-
proximate MMSE estimator cannot be used.

VII. CONCLUSION

This paper presents two stochastic event-triggered schedul-
ing schemes for remote estimation and derives the exact MMSE
estimator under each schedule, i.e., OLSET-KF and CLSET-
KF. The stochastic nature of the proposed schedules preserves
the Gaussian property of the innovation process and thus pro-
duces a simple linear filtering problem compared to the pre-
vious works involving complicated nonlinear and approximate
estimation. The average sensor-to-estimator communication
rate and the expected prediction error covariance are investi-
gated for the two filters. Based on the analytical performance
results and the proposed algorithm, one can design a suboptimal
stochastic event to minimize the communication rate under the
constraint on the estimation quality. Optimal design of event
parameter Y (or Z) satisfying different design goals is an inter-
esting topic and is left as future work. The simulation results
indicate the two schedules effectively reduce the estimation
error covariance compared with the offline ones under the same
communication rate. By testing CLSET-KF and DET-KF in the
target tracking model, we show the advantage of the stochastic
event-triggering mechanism over the deterministic one. Future
work also includes multiple sensors event-based scheduling and
searching for tighter asymptotic bounds of E[P−

k ].

APPENDIX

Proof of Lemma 1: Define matrix Δ as

Δ
Δ
= Φ−1 =

[
Δxx Δxy

ΔY
xy Δyy

]

Hence

Θ =

[
Δxx Δxy

ΔY
xy Δyy + Y

]−1

.

Applying the matrix inversion lemma, the following equality
holds:

Φ−1
yy =Δyy −ΔY

xyΔ
−1
xxΔxy

Θ−1
yy =Δyy + Y −ΔY

xyΔ
−1
xxΔxy.

Therefore

Θyy = (Δyy + Y −ΔY
xyΔ

−1
xxΔxy)

−1 = (Φ−1
yy + Y )−1.

Moreover, we have

ΔxxΦxy +ΔxyΦyy = ΔxxΘxy +ΔxyΘyy = 0

which implies that

Θxy = −Δ−1
xxΔxyΘyy = ΦxyΦ

−1
yyΘyy = Φxy(I + Y Φyy)

−1.

Finally

Θxx =
[
Δxx −Δxy(Δyy + Y )−1ΔY

xy

]−1

=Δ−1
xx +Δ−1

xxΔxy(Δyy + Y −ΔY
xyΔ

−1
xxΔxy)

−1

· ΔY
xyΔ

−1
xx

=Φxx−ΦxyΦ
−1
yyΦ

Y
xy +ΦxyΦ

−1
yy (Φ

−1
yy + Y )−1Φ−1

yyΦ
Y
xy.

Since

(Φ−1
yy + Y )−1 = Φyy − Φyy(Φyy + Y −1)−1Φyy

we have

Θxx =Φxx − ΦxyΦ
−1
yyΦ

Y
xy +ΦxyΦ

−1
yyΦ

Y
xy

− Φxy(Φyy + Y −1)−1ΦY
xy

=Φxx − Φxy(Φyy + Y −1)−1ΦY
xy

which finishes the proof. �
Proof of Theorem 3: (a). By the linearity of the system, yk

is Gaussian distributed with zero mean. From (9), we know that

Pr(γk = 0) = Pr

(
ζk ≤ exp

(
−1

2
yTk Y yk

))

=E

[
exp

(
−1

2
yTk Y yk

)]

=

∫
Rm

exp
(
− 1

2y
T
k (Π

−1 + Y )yk
)

√
det(Π)(2π)m

dyk

=
1√

det(I +ΠY )

×
∫
Rm

exp
(
− 1

2y
T
k (Π

−1 + Y )yk
)

√
det((Π−1 + Y )−1)(2π)m

dyk

=
1√

det(I +ΠY )

where the last equality is due to the fact that the integration of
a pdf function over the entire space is equal to 1. Hence

γ = 1− 1√
det(I +ΠY )

.

(b). Define ξk
Δ
= [xT

k , y
T
k , ζk]

T and ξ
Δ
= (ξ0, ξ1, . . .) as the

infinite sequence of ξk. It is easy to see that ξk is Markov. Let

P (ξ, F )
Δ
=P (ξ1∈F |ξ0=ξ) be the transition probability of the

Markov process. Define T k to be the (left) shift operator, i.e.,

T k : (ξ0, ξ1 . . .) → (ξk, ξk+1, . . .).

Let π be the probability measure of ξk. Since we assume that
the system is in steady state, π is stationary. Moreover, since
A is stable, it is easy to verify that the Lyapunov equation (27)
admits a unique solution, which implies that π is unique.

Define Pπ be the probability measure of ξ generated by π
and the transition probability P (ξ, F ). By [38, Theorem 3.8],
Pπ is ergodic with respect to the shift operator T k. Meanwhile,
by definition

γk = Iζk>exp(−yT
k
Y yk/2)



HAN et al.: STOCHASTIC EVENT-TRIGGERED SENSOR SCHEDULE FOR REMOTE STATE ESTIMATION 2673

where I is the indicator function. Hence, by Birkhoff’s Ergodic
Theorem [39], the following equality holds almost surely:

lim
N→∞

1

N

N−1∑
k=0

γk
a.s.
= EIζ0>exp(−yT

0 Y y0/2) = γ

Now consider the probability of event E0,l occurring, we have

P (γ0 = · · · = γl−1 = 0) =E

l−1∏
i=0

P (γi = 0|y0, . . . , yl−1)

=E exp

(
−1

2

l∑
i=1

yTi Y yi

)

=
1√

det(I +ΠlYl)

where Πl is the covariance of [yT0 , . . . , y
T
l−1]

T and Yl =
diag(Y, . . . , Y ) ∈ R

ml×ml. Thus, the probability that l sequen-
tial packet drops is non-zero. By Ergodic Theorem, almost
surely the following equality holds:

lim
N→∞

1

N

N−1∑
k=0

IEk,l

a.s.
= (det(I +ΠlYl))

−1/2 > 0

which implies that Ek,l happens infinitely often. Similarly one
can prove that Ek,l happens infinitely often.

(c). Let us define

Uk = gkR+Y −1(Σ0).

Clearly, P−
0 = U0 = Σ0. Assume that P−

k ≤ Uk, then

P−
k+1 = gR+(1−γk)Y −1(P−

k ) ≤ gR+Y −1(P−
k )

≤ gR+Y −1(Uk) = Uk+1

where we use the fact that gW is monotonically increasing for
all W and gR+(1−γk)Y −1(X) ≤ gR+Y −1(X) for all X . Hence,
by induction, P−

k ≤ Uk for all k. Now, by Proposition 1, Uk

converges to Xol and hence there exists M , such that for all k

P−
k ≤ Uk ≤ M.

Since Uk converges to Xol, for any ε, there exists an N , such
that for all k ≥ N

P−
k ≤ Uk ≤ Xol + εI.

The other inequality can be proved similarly.}
For any ε, let l > 0 satisfies the following inequality:

glR+Y −1(0) ≥ Xol − εI.

Since the left-hand side converges to Xol when l → ∞, we
could always find such an l. As a result, suppose the event Ek,l

happens, then

P−
k+l = glR+Y −1(P−

k ) ≥ glR+Y −1(0) ≥ Xol − εI.

By Theorem 3.b, P−
k ≥ Xol − εI happens infinitely often. The

other inequality can be proved similarly.

(d). The proof of the upper bound is trivial by Theorem 3.c.
To derive the lower bound, let us define

Sk
Δ
= P−1

k , S−
k

Δ
=

(
P−
k

)−1
.

By inverting both sides of (15) and applying the matrix inver-
sion lemma on the righthand side

Sk=S−
k +(1−γk)C

T(R+Y −1)−1C+γkC
TR−1C. (48)

Therefore, when k → +∞, we have

lim
k→+∞

E[Sk] = lim
k→+∞

E[S−
k ] + CTR−1

1 C.

On the other hand

S−
k+1 =(AS−1

k AT +Q)−1

=Q−1 −Q−1A(Sk +ATQ−1A)−1ATQ−1.

Since the function h(X) = X−1 is a convex function for X >
0 (see proof in [40]), S−

k+1 is concave with respect to Sk. By
Jensen’s inequality, the following inequality holds:

lim
k→+∞

E[S−
k+1] ≤ lim

k→+∞
(A(E[Sk])

−1AT +Q)−1.

Hence

lim
k→+∞

E[S−
k+1] ≤ lim

k→+∞
ΓR1

(E[S−
k ]). (49)

Based on the monotonicity of ΓR1
(X)

lim
k→+∞

E[S−
k ] ≤ lim

k→+∞
ΓR1

(E[S−
k−1])

≤ · · · ≤ lim
k→+∞

Γk
R1

(Σ−1
0 ).

Therefore

lim
k→+∞

E[P−
k ] = lim

k→+∞
E[(S−

k )
−1]

≥ lim
k→+∞

(E[S−
k ])

−1 ≥ lim
k→+∞

(Γk
R1

(Σ−1
0 ))−1

where the first inequality is true because Jensen’s inequal-
ity holds for the convex function h(X) = X−1, X > 0. By
Proposition 1, as k → ∞, Γk

R1
(X) converges to X−1

ol , which
implies that

lim
k→∞

E[P−
k ] ≥ Xol.

�
Proof of Theorem 4: (a). Similar to the proof of

Theorem 3.a, we have

Pr(γk = 1|Ik−1) = 1− 1√
det(I + (CP−

k CT +R)Z)
. (50)

Substitute Xcl and X0 into (50) to obtain γ and γ.
The proofs of (b) and (c) are similar to the open-loop case

and are omitted. �



2674 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 10, OCTOBER 2015

Proof of Lemma 2: Note that in (28)

det(Im +ΠY ) = det(Im + UTUY ) = det(Im + UY UT )

where U is upper triangular with positive diagonal entries
obtained by Cholesky decomposition. The second equality is
by Sylvester’s determinant theorem. To prove the inequalities,
it is equivalent to show that

1 + tr(UY UT ) < det(Im + UY UT ) < exp((tr(UY UT ))).
(51)

For the first inequality

det(Im + UY UT ) =

m∏
i=1

(1 + λi)

= 1 + tr(UY UT ) +
∑
i�=j

λiλj · · ·+
m∏
i=1

λi

> 1 + tr(UY UT )

where λi’s are the positive eigenvalues of UY UY and the first
equality is due to the fact that the eigenvalues of Im + UY UT

are 1 + λi, i = 1 . . .m. Since UY UY > 0, the inequality is
strict. Now we prove the second inequality in (51)

det(Im + UY UY ) =

m∏
i=1

expln(1+λi)

= exp

(
m∑
i=1

ln(1 + λi)

)

< exp(tr(UY UY ))

where the inequality is due to ln(1 + λi) < λi. �
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