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Optimal DoS Attack Scheduling in Wireless
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Abstract— Recently, many literature works have considered the
security issues of wireless networked control system (WNCS).
However, few works studied how the attacker should optimize
its attack schedule in order to maximize the effect on the
system performance due to the insufficiency of energy at the
attacker side. This paper fills this gap from the aspect of
control system performance. We consider the optimal jamming
attack that maximizes the Linear Quadratic Gaussian (LQG)
control cost function under energy constraint. After analyzing
the properties of the cost function under an arbitrary attack
schedule, we derive the optimal jamming attack schedule and the
corresponding cost function. System stability under this optimal
attack schedule is also considered. We further investigate the
optimal attack schedule in a WNCS with multiple subsystems.
Different examples are provided to demonstrate the effectiveness
of the proposed optimal denial-of-service attack schedule.

Index Terms— Attack scheduling, Denial-of-Service (DoS)
attack, energy constraint, Linear Quadratic Gaussian (LQG)
control, system stability.

I. INTRODUCTION

W IRELESS networked control systems (WNCSs),
in which physical elements (plants, sensors,

controllers, and actuators) communicate via wireless networks,
have received increasing research interests [1]–[4]. WNCSs
have a wide spectrum of applications in mobile sensor
networks, remote surgery, intelligent transportation, unmanned
aerial vehicles, mobile robots, and so on. Security issues in
WNCSs have been investigated from different viewpoints in
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recent years due to the increasing amount of cyber attacks
that make WNCSs more and more vulnerable [5]–[9].

Various efforts have been devoted to studying the influence
of specific malicious attacks, e.g., Denial-of-Service (DoS)
attacks [10], replay attacks [11], and data injection attacks [7],
on particular systems. Thereinto, the DoS attack, which aims
to prevent the communication between system components,
has been widely studied since this attack pattern is the
most accomplishable one and can result in serious conseque-
nces [10], [12], [13]. A typical DoS technique in WNCS is
jamming attack, which can interfere with the radio frequencies
on the communication channels [14].

Recently, researchers have studied the LQG problems under
DoS attack [10], [15], [16]. A semidefinite programming-based
solution was presented in [10] to find an optimal feedback
controller that minimizes a cost function subject to safety and
energy constraints in the presence of an attack with identical
independent distributed actions. In [15], the optimal control
law is designed against an intelligent jammer with limited
actions. In [16], an event-trigger control strategy is derived
in the presence of an energy-constrained periodic jamming
attacker. The common characteristic of these related works
is that they aim to find optimal defensive control law. Our
work, however, is from the viewpoint of the attacker,
i.e., we look for the optimal attack strategies to maximize
the LQG cost function. This is equally important as one can
design an effective defensive control law only when he knows
how the attacker behaves.

In almost all types of attacks, energy constraint is
inherent and will affect an attacker’s strategies [17]–[19].
Kashyap et al. [17] studied a zero-sum game on Multiple Input
Multiple Output (MIMO) Gaussian Rayleigh fading channels
between an intelligent DoS jammer and a decoder with bilat-
eral power constraints. Li et al. [18] investigated the optimal
jamming attack strategies by controlling the probability of
jamming and transmission range. Zuba et al. [19] studied
the effect of jamming attack on underwater wireless sensor
networks and investigated the minimal energy consumption
and the probability of detection in order to launch an effective
DoS jamming attack.

In this paper, we aim to design an optimal attack schedule
to maximize the attacking effect on the WNCS. Specifically,
we first consider a system where one sensor measures the
system state and sends the data packets to a remote estimator
through a wireless channel. The attacker has a limited energy
budget in every active period and decides at each sampling
time whether or not to jam the channel. Then, we extend it
to the scenario with multiple subsystems. In this scenario, the
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DoS attacker has to make the attack decision, i.e., when to
attack and which channel to be chosen. The main contributions
of this paper, which distinguish from the related literatures, are
summarized as follows.

1) We formulate a novel DoS attack problem and seek the
optimal attack schedule that maximizes the LQG control
cost function with an energy constraint.

2) We obtain the analytical expression of LQG cost func-
tion under an arbitrary attack schedule.

3) We provide the optimal attack schedule and analyze the
system stability under this schedule.

4) We study the optimal attack schedule in a networked
control system with multiple subsystems.

The remainder of this paper is organized as follows.
In Section II, we present the system model and problem
formulation. In Section III, we introduce some basic properties
of system performance under an arbitrary attack schedule.
In Section IV, we construct optimal DoS jamming attack
schedules that maximize the cost function and analyze the
system stability. In Section V, we study the optimal attack
schedule in a networked control system with multiple sub-
systems. In Section VI, numerical examples are shown to
demonstrate the effectiveness of the proposed optimal attack
schedule. Finally, Section VII concludes this paper.

Notations: R
n stands for the n-dimensional Euclidean space.

N is a positive integer set. (·)′ stands for the transposition of a
matrix. Tr(·) is the trace of a square matrix. Pr{·} stands for the
probability of a random event. E(·) stands for the mathematical
expectation of a random variable, and E(·|·) stands for the
conditional mathematical expectation. Var(·) stands for the
variance of a random variable. �x� stands for the floor function
of x , i.e., the integer part of x .

II. PROBLEM FORMULATION

A. System Model

Consider the following discrete linear system:
xk+1 = Axk + Buk + wk, (1)

where xk ∈ R
nx is the state vector at time k, x0 is the initial

state vector, uk ∈ R
mx is the control input vector at time k,

and wk ∈ R
nx is the zero-mean Gaussian with covariance

Cov(wi , w j ) = δi j �w.1 We assume that the pairs (A, B) and
(A,�

1/2
w ) are stabilizable [20].

The sensor measures the state xk and sends it to the remote
controller via a wireless channel (see Fig. 1). The controller
has a built-in estimator to estimate the state in case the packet
is lost. The controller then generates a control packet uk based
on all the received sensor measurements and historical control
commands and sends uk to the actuator through a reliable
channel [21], [22].

We introduce θk = 1/0 as the indicator function whether the
data packet xk is received or not by the controller at time k.
Let Ik be the data set {θ1x1, θ2x2, . . . , θk xk, u1, u2, . . . , uk−1}.

1δi j is the Kronecker delta function, i.e., δi j = 1, if i = j , and δi j = 0
otherwise.

Fig. 1. System architecture.

We define x̂k as the controller’s minimum mean square
error (MMSE) estimate of xk at time k, i.e.,

x̂k = E[xk |Ik], (2)

where Ik denotes the controller’s data at time k.
The corresponding error covariance is

Pk = E[(xk − x̂k)(xk − x̂k)
′|Ik]. (3)

It is straightforward to obtain [22]

x̂k =
{

xk, if θk = 1,

Ax̂k−1 + Buk−1, otherwise.
(4)

We consider a linear static feedback controller of the form
uk = Lx̂k , which is designed to minimize the following
infinite-horizon LQG cost function [7], [22], [23]:

J = lim
N→∞

1

N

N∑
k=1

E[x ′
k Qxk + u′

k Ruk ],

where Q ≥ 0 and R > 0 are two weighting matrices and the
expectation is taken over {wk}. We will give the explicit form
of L in Section III. We assume that the controller does not
know the existence of the attacker.

B. Attack Model

It has been summarized that there are three types of attacks
in an LQG control system, i.e., integrity attacks, DoS attacks,
and direct physical attacks to the process (see [10, Fig. 1]).
In this paper, we consider the case that the attacker performs
DoS attack with the objective of increasing the cost function J
as much as possible subject to an energy constraint. We assume
that the attacker can attack only the communication
channel n times in a given active period TON. After this period,
he has to stop his attack actions and shift to an inactive period
TOFF to replenish the energy in order for the following attack
period.

Let γ (m) = (γm,1, γm,2, . . . , γm,T ) be the attack schedule
in the m-th period, where γm,t , t = 1, 2, . . . , TON is the attack
decision variable in active time, i.e., γm,t = 1 if he jams the
transmission channel at time t of the m-th active period, and
γm,t = 0 otherwise, and γm,t = 0 for inactive time i = TON + 1,
TON + 2, . . . , T with T = TON + TOFF. The consequence of
attacking action γm,t = 1 is

θ(γm,t ) =
{

1, with probability 1 − α,

0, with probability α.
(5)

If he does not take action at time t , i.e., γm,t = 0, the data from
the sensor can be received by the controller, i.e., θ(γm,t ) = 1.
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From the attacker’s viewpoint, it is of interest to design
the optimal attack schedule that maximizes the expected cost
function.

Problem 2.1:

max
γ∈�

E[J (γ)] (6)

s.t.
T∑

t=1

γm,t ≤ n, ∀m ∈ N, (7)

where γ = [γ (m)]∞m=1 is the attack schedule on the infinite
time horizon [1,∞) and � = {γ |γm,t ∈ {0, 1},∀m ∈ N,
t ∈ {1, 2, . . . , TON}} is the attack schedule space.

III. PRELIMINARIES

Before investigating the optimal attack schedule, we intro-
duce some preliminary results.

Lemma 3.1 [7], [22]: The optimal static feedback controller
is given by

uk = −(B ′SB + R)−1 B ′S Ax̂k,

where S is the unique solution to the following [24]:
S = A′S A + Q − A′SB(B ′SB + R)−1 B ′S A,

and the minimal cost is

J ∗ = Jc + Je,

where

Jc = Tr[S�w], (8)

Je = lim
N→∞

1

N

N∑
k=1

Tr[M Pk] (9)

with M = A′SB(B ′SB + R)−1 B ′S A.2

Now, we present some properties of system performance
under a given DoS attack schedule.

Lemma 3.2: Let f (P) = Tr(M P), where P is an nx × nx

positive definite symmetric matrix. If positive definite sym-
metric matrices P1 and P2 are nx × nx and satisfy P1 ≥ P2,
we have f (P1) ≥ f (P2).

Proof: See the Appendix.
Remark 3.1: Note that Jc is the fixed part of J and Je is

the variable part that is affected by an attack schedule γ.
Thus, we need only to find an optimal attack schedule to
maximize E[Je(γ )]. From Lemma 3.2, maximizing E[Je(γ)]
is equivalent to maximize

lim
N→∞

1

N

N∑
k=1

E[Pk(γ )].

Thus, we have to investigate E[Pk] under an arbitrary attack
schedule γ .

From (3) and (4), one can see that

Pk+1 =

⎧⎪⎨
⎪⎩

�w, if θk+1 = 0, Pk = 0,

APk A′ + �w, if θk+1 = 0, Pk �= 0,

0, otherwise.

2It can be seen that M is a positive semidefinite matrix.

Then, we have

E[Pk+1|Pk = 0] =
{

α�w, if γk+1 = 1,

0, otherwise,

and

E[Pk+1|Pk �= 0] =
{

α(APk A′ + �w), if γk+1 = 1,

0, otherwise.

The following lemma shows how the consecutive attack
actions affect the error covariance.

Lemma 3.3: For a given consecutive attack time interval
[s + 1, s + t], i.e., γs = 0, γs+1 = γs+2 = · · · = γs+t = 1,
γs+t+1 = 0, we have

E[Ps+ j ] =
j−1∑
i=0

(αi − αi+1)Hi + α j H j , (10)

where Hi = ∑i−1
l=0(Al)�w(Al)′ and j = 1, 2, . . . , t .

Proof: See the Appendix.
From Lemma 3.3, for the given consecutive attack time

interval [s+1, s+t], E[Ps+ j ], j = 1, 2, . . . , t , does not depend
on s. Thus, we denote �α(t) by the sum of expected error
covariance with any t times consecutive attack in the given
active attack period [s + 1, s + t]. Using the same method, any
attack strategy with consecutive attack sequence t1, t2, . . . , ts
in a given period will lead to the same sum of expected
error covariance. Then, we denote �α(t1 ⊕ t2 ⊕ · · · ⊕ ts)
by the sum of expected error covariance with consecu-
tive attack sequence t1, t2, . . . , ts in the given attack period
(Fig. 2). Note that t1, t2, . . . , ts satisfy commutative law in
�α(t1 ⊕ t2 ⊕ · · · ⊕ ts).

In fact

�α(t) =
t∑

j=1

E[Ps+ j ]

=
t∑

j=1

[ j−1∑
i=0

(αi − αi+1)Hi + α j H j

]

=
t∑

i=0

[
(t − i + 1)αi − (t − i)αi+1

]
Hi ,

and

�α(t1 ⊕ t2 ⊕ · · · ⊕ ts) =
s∑

i=1

ti∑
ji=1

E[Psi+ ji ] =
s∑

i=1

�α(ti ).

Lemma 3.4: The following statements are true.
1) �α(t1) ≤ �α(t2), where t1 ≤ t2.
2) �α(t1 ⊕ t2) ≤ �α(t), where t = t1 + t2.
3) �α(t1⊕t2 ⊕· · ·⊕ts) ≤ �α(t), where t = t1+t2+· · ·+ts .
4) �α(t1 ⊕ t2) ≤ �α(t3 ⊕ t4), where t1 + t2 = t3 + t4 and

max{t1, t2, t3, t4} is t3 or t4.
Proof: See the Appendix.

Remark 3.2: From Lemma 3.4, one can see that more attack
times (more energy) used in any given period lead to higher
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Fig. 2. Schematic of the attacker’s schedule with consecutive attack
sequences t1, t2, . . . , ts in the same active period.

cost function. Thus, constraint (7) in Problem 2.1 can be
replaced by

T∑
t=1

γm,t = n, ∀m ∈ N. (11)

IV. OPTIMAL ATTACK SCHEDULE ANALYSIS

In this section, we first present the optimal attack schedule
for Problem 2.1, and then analyze the system stability under
the proposed attack schedule.

A. Optimal Attack Schedule

Theorem 4.1: The optimal attack schedule γ ∗ for
Problem 2.1 is any n times consecutive attack at active periods,
and the expected corresponding cost function can be calculated
as follows:

E[J (γ ∗)] = Jc + 1

T
Tr[M�α(n)]. (12)

Proof: From Lemma 3.4, one can obtain that any n times
consecutive attack at active periods is an optimal attack
schedule.

Let N = qT + m with q, m ∈ N, and 0 ≤ m < T . Then

1

(q + 1)T
<

1

N
≤ 1

qT
.

If 0 ≤ m ≤ n, we have

N∑
k=1

E[Pk ] = qT�α(n).

If n < m < T , we have

N∑
k=1

E[Pk] = (qT + 1)�α(n).

Then, it can be seen that

1

(q + 1)T

N∑
k=1

E[Pk] <
1

N

N∑
k=1

E[Pk ] ≤ 1

qT

N∑
k=1

E[Pk].

Taking the limit N → ∞ to this inequality, we can obtain

lim
N→∞

1

N

N∑
k=1

E[Pk] = 1

T
[�α(n)]

which finishes the proof.
Example 4.1: Consider Problem 2.1 with TON = 5, n = 3,

and TOFF = 5. From Theorem 4.1, it can be seen that in any

active period, the attack schedules (1, 1, 1, 0, 0), (0, 1, 1, 1, 0),
and (0, 0, 1, 1, 1) are optimal. The corresponding result
on J can be calculated as

E[J (γ ∗)] = Jc + 1

10
Tr[M�α(3)].

Remark 4.1: From Theorem 4.1, under an optimal attack
schedule, the jamming instances are grouped together and this
schedule does not depend on system parameters.

B. Stability Analysis Under Optimal Attack Schedule

Stability is critical in an LQG system. Before presenting
results on stability of system (1) under an optimal attack
schedule, we give the definition of system stability formally
as follows.

Definition 4.1 [20], [25]: System (1) is stable if the
covariance of the system state is bounded, i.e., Var(xk) ≤ C∗,
where C∗ is a constant matrix.

Theorem 4.2: Consider system (1) under an optimal attack
schedule γ ∗. When TOFF > 0, the system is stable in the sense
of bounded covariance.

Proof: From Definition 4.1, one can see that

Var(xk) = E[E((xk − E(xk))(xk − E(xk))
′|Ik)]

= E[E((xk − x̂k)(xk − x̂k)
′|Ik)] = E[Pk ].

Since TOFF > 0, from (10), we have

Var(xk) ≤
n−1∑
i=0

(αi − αi+1)Hi + αn Hn = C∗,

i.e., the covariance of state is bounded for a given n.
Remark 4.2: Theorem 4.2 shows that the optimal DoS

attack cannot change the system stability if TOFF > 0.
If TOFF = 0, the attacker has unlimited energy, and he can
always attack the wireless channel. Thus, θk, k = 1, 2, . . .
become independent identically distributed Bernoulli random
variable sequence with E(θk) = 1 − α. Similar to [26], the
system is stable if and only if α < 1 − γc, where γc =
infγ {γ |X = A′X A + �w − γ A′X B(B ′X B + R)−1 B ′X A}.

V. MULTIPLE-SUBSYSTEM CASE STUDY

In this section, we aim to optimize the attack schedule
in a networked control system with multiple subsystems
(see Fig. 3) [27], [28]. We assume that the attacker launches
multichannel switch jamming in wireless networks. For exam-
ple, DoS attacker can switch his jamming signals between
target channels on 802.11 networks [29]. In our problem, the
attacker has to make the attack decision, i.e., when to attack
and which channel to be chosen.

A. WNCS Model With Multiple Subsystems

Similar to (1), we assume that the evolution of plants is as
follows:

xi,k+1 = Ai xi,k + Bi ui,k + wi,k , i = 1, 2, . . . , r, (13)

where xi,k ∈ R
nx is the state vector of plant i at time k,

ui,k ∈ R
mx is the control input vector of plant i at time k,

wi,k ∈ R
nx is the zero-mean Gaussian with covariance
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Fig. 3. Networked control system architecture with r subsystems. The
attacker can jam one of the r channels during a time slot.

Cov(wi,k , wi,t ) = δkt�wi , and Cov(w1,k, w2,t ) = 0.
We assume that the pairs (Ai , Bi ) and (Ai ,�

1/2
wi ) are

stabilizable.
Let x̂i,k and Pi,k be the MMSE estimates of xi,k and

corresponding error covariance, respectively. They can be
easily obtained from (2)–(4), respectively. The cost functions
of these subsystems are

Ji = lim
N→∞

1

N

N∑
k=1

E[x ′
i,k Qi xi,k + u′

i,k Ri ui,k ], i = 1, 2, . . . , r.

From Lemma 3.1, we can obtain the optimal controller of
system i as

ui,k = −(B ′
i Si Bi + Ri )

−1 B ′
i Si Ai x̂i,k ,

where Si is the unique solution to the following equation:
Si = A′

i Si Ai + Qi − A′
i Si Bi (B ′

i Si Bi + Ri )
−1 B ′

i Si Ai ,

and the minimal cost is

J ∗
i = Ji,c + Ji,e, i = 1, 2, . . . , r, (14)

where

Ji,c = Tr[Si�wi ],

Ji,e = lim
N→∞

1

N

N∑
k=1

Tr[Mi Pi,k ]

with Mi = A′
i Si Bi (B ′

i Si Bi + Ri )
−1 B ′

i Si Ai .

B. Optimal Attack Schedule

We assume that the attacker’s energy budget is etotal in every
active period and TOFF > 0. Due to this energy constraint, the
DoS attacker needs to make decisions when and which channel
to jam in order to maximize the total cost

Jtotal = J1 + J2 + · · · + Jr . (15)

Let γm,t = (γ 1
m,t , γ

2
m,t , . . . , γ

r
m,t ) be the attacker’s decision

vector at time t of m-th active period

γ i
m,t =

{
1, if the attacker jams channel i ,

0, otherwise.

We also assume that the attack action is successful with
probability αi when he jams the channel i with energy ei

for i = 1, 2, . . . , r . From the viewpoint of DoS attacker, the
optimization problem can be formulated as follows.

Problem 5.1:

max
γ∈�

E[Jtotal(γ )] (16)

s.t.
r∑

i=1

γ i
m,t ≤ 1, ∀m ∈ N, (17)

r∑
i=1

[
ei

( T∑
t=1

γ i
m,t

)]
≤ etotal, ∀m ∈ N, (18)

where γ = [γ (m)]∞m=1 is the attack schedule on the infinite
time horizon [1,∞) and � = {γ |γ i

m,t ∈ {0, 1},∀m ∈ N,
t ∈ {1, 2, . . . , TON}} is the attack schedule space. Con-
straint (17) shows that the attacker can only jam one channel or
does not take action in any time. Equation (18) is the attacker’s
energy constraint in every active period.

From Lemma 3.4 and Theorem 4.1, one can see that if the
attack times on channel i is limited to ni , then consecutive
attack ni times with proper beginning attack time is the
optimal decision. By unfolding (15) with (14), the objective
function in Problem 5.1 can be replaced by

r∑
i=1

Ji,e = Tr

[ r∑
i=1

Mi�αi (ni )

]
,

since Ji,c, i = 1, 2, . . . , r are constants.
Therefore, Problem 5.1 can be converted to the following

problem.
Problem 5.2:

max Tr

[ r∑
i=1

Mi �αi (ni )

]
(19)

s.t.
r∑

i=1

ni ei ≤ etotal, (20)

where ni denotes the consecutive attack times over channel i
in the active periods for i = 1, 2, . . . , r .

Note that this is an integer programming problem. Thus,
the optimal solution (n∗

1, n∗
2, . . . , n∗

r ) can be obtained by

exhaustive search method.3 From the above analysis, one can
obtain the following theorem to solve Problem 5.1.

Theorem 5.1: The optimal attack schedule γ ∗ for
Problem 5.1 is with any n∗

i times consecutive attack on
channel i , respectively, at active periods, where

(n∗
1, n∗

2, . . . , n∗
r ) = arg max∑r

i=1 ni ei ≤etotal

Tr

[ r∑
i=1

Mi �αi (ni )

]
. (21)

The expected corresponding cost function can be calculated
as follows:

E[Jtotal(γ
∗)] =

r∑
i=1

Ji,c + 1

T
Tr

[ r∑
i=1

Mi �αi (n
∗
i )

]
.

3The attacker needs only to run an exhaustive search method once before
taking action. From constraint (20), we can see that the time complexity of

exhaustive search method for Problem 5.2 is no more than O(n̄r−1), where
n̄ = �(etotal/emin)� with emin = min{e1, e2, . . . , er }. Thus, it is not expensive
to run the exhaustive search method.
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Proof: First, if the DoS attacker assigns ni times
attack actions on channel i for i = 1, 2, . . . , r , where∑r

i=1 ni ei ≤ etotal, then from Theorem 4.1, one can see that
the optimal decision is any attack with consecutive attack ni

times on channel i .
Second, in order to find optimal attack assignment

(n∗
1, n∗

2, . . . , n∗
r ), from Problem 5.2, we just need to maximize

Tr

[ r∑
i=1

Mi �αi (ni )

]
.

An example is presented to illustrate Theorem 5.1 as
follows.

Example 5.1: Consider Problem 5.1 with TON = 4, n = 3,
and TOFF = 5. If (n∗

1, n∗
2) = (2, 1) is obtained from (21) for

the given system parameters, it can be seen that in any active
period, the attack schedules⎛
⎜⎜⎜⎝

γ ∗
m,1

γ ∗
m,2

γ ∗
m,3

γ ∗
m,4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 0

1 0

0 1

0 0

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

1 0

1 0

0 0

0 1

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

0 0

1 0

1 0

0 1

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

0 0

0 1

1 0

1 0

⎞
⎟⎟⎟⎠, or

⎛
⎜⎜⎜⎝

0 1

0 0

1 0

1 0

⎞
⎟⎟⎟⎠

are optimal.
If the subsystems are with identical parameters, we can

get the optimal attack schedules for some special cases
as follows.

Corollary 5.1: Consider the WNCS with identical subsys-
tems, i.e., A1 = A2 = · · · = Ar , B1 = B2 = · · · = Br ,
�w1 = �w2 = · · · = �wr , Q1 = Q2 = · · · = Qr , and
R1 = R2 = · · · = Rr .

1) If the attacker uses the same energy to attack the
channels, i.e., e1 = e2 = · · · = er , then any consecutive
attack n̂ = �(etotal/e1)� times over channel i∗ is optimal,
where i∗ = arg maxi αi .

2) If the attack success probabilities over different channels
are the same, i.e., α1 = α2 = · · · = αr , then any con-
secutive attack ñ = �(etotal/e j∗)� times over channel j∗
is optimal, where j∗ = arg min j e j .

Proof: See the Appendix.
Similar to Section IV-B, we can see that the system is stable

when TOFF > 0. If TOFF = 0, the attacker can always jam one of
the wireless channels. Let γc,i = infγ {γ |X = A′

i X Ai +�wi −
γ A′

i X Bi (B ′
i X Bi + Ri )

−1 B ′
i X Ai }, i = 1, 2, . . . , r . From [26],

it can be seen that the system is stable if and only if αi <
1 − γc,i ,∀i .

VI. EXAMPLES

A. Example I: Single System

We consider system (1) with A = 2, B = 1,�w = 1,
Q = 1, and R = 1. Assume that the length of the attacker’s
active period is TON = 80, inactive period is TOFF = 20, and
the attack energy constraint is n = 20. We use Monte Carlo
method to illustrate the effects of different attack schedules
on expected cost function E(J ) and the system stability under
optimal attacks. The simulation system runs 10 000 times for
each illustration.

Fig. 4. Illustrating example on attacking effect of expected cost function E(J )
with different attack schedules.

Fig. 5. System state under optimal attack schedule with and without attack,
respectively. Here, the attacker can take action n = 20 times in any active
period TON = 100 with successful probability α = 0.2. TOFF = 40.

1) Different Attack Schedules: Fig. 4 shows the variation
of the expected cost function under different attack schedules
when the sensor uses a deterministic channel for transmission.
In Fig. 4, we examine the attack effect under different attack
success probabilities from α = 0.01 to α = 0.35. The
top curve of Fig. 4 stands for the performance under the
attack schedule given by Theorem 4.1, i.e., E[J (γ ∗)], which
maximizes the expected cost function. It can also be seen
that the expected cost function rapidly increases with α. The
second line from the top shows the performance under a
common attack schedule with consecutive attack sequence
t1 = t2 = 10. It can be seen that the expected cost function
grows much slower than E[J (γ ∗)]. We also can find that
the performances under uniform attack with energy constraint
in each active period are nearly the same as those without
attack.

2) System Stability: Figs. 5 and 6 plot the evolution of the
system state with different attack parameters TON and TOFF.
In Fig. 5, the attacker is working with n = 20, TON = 80,
TOFF = 40, and α = 0.2. From Theorem 4.1, the attack
schedule in Fig. 5 (attacking at time [81, 100], [221, 240],
[361, 380], and so on) is an optimal attack policy. In Fig. 5,
the dashed line demonstrates that the system is still stable
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Fig. 6. System state under optimal attack schedule with and without attack,
respectively. Here, the attacker can always take action in any active period
TON = 20 with successful probability α = 0.2. TOFF = 1.

Fig. 7. System state under optimal attack schedule with and without attack,
respectively. Here, the attacker can always take action in any active period
TON = 20 with successful probability α = 0.2. TOFF = 0.

under this optimal attack schedule. The solid line shows the
system’s state without attack. In Fig. 6, the attacker is working
with TON = n = 20 and TOFF = 1. We can see that the state
is still stable under this optimal attack.

Figs. 7 and 8 show the effectiveness of optimal attack
schedule on the system state when there is no inactive period,
i.e., TOFF = 0 and TON = n. From Theorem 4.2, the stability
depends on the attack successful probability α. In our example,
the critical value can be calculated by γc = 1 − (1/A2) =
0.75 [26]. From Fig. 7, one can see that the system is
still stable when it suffers from the consecutive attack with
successful probability α = 0.2 < 1 − γc = 0.25. The system
will become unstable, however, if the successful probability is
α = 0.8 > 1 − γc, which has been shown in Fig. 8.

B. Example II: Multiple Subsystems

We also consider WNCS with two subsystems (13) with
A1 = 0.5, B1 = 1,�w1 = 1, Q1 = 1, R1 = 1,
A2 = 1.2, B2 = 1,�w2 = 0.5, Q2 = 1, and R2 = 1.
Assume that the length of attacker’s active period is TON = 80
and TOFF = 20. The attacker uses the same energy to jam

Fig. 8. System state under optimal attack schedule with and without attack,
respectively. Here, the attacker can always take action in any active period
TON = 20 with successful probability α = 0.8. TOFF = 0.

Fig. 9. Maximal value of cost E(Jtotal) under different assignments (n1, n2)
when α1 = 0.1 and α2 = 0.6. Here, n2 = 20−n1 and A2 = 1.2. The optimal
assignment is (n∗

1, n∗
2) = (2, 18).

channels 1 and 2, and the corresponding attack success
probabilities are α1 and α2. Due to the energy constraint,
he can at most attack n = 20 times in any active
period.

Consider Problem 5.2 with given parameters. We can obtain
the optimal attack assignment by exhaustive search method.
Fig. 9 shows the variation of maximal value of E(Jtotal)
under different assignments (n1, n2) when α1 = 0.1 and
α2 = 0.6. It can be seen that the optimal assignment
is (n∗

1, n∗
2) = (2, 18). Fig. 10 shows one optimal attack

schedule in an active period. In this schedule, the attacker
jams channel 1 in times 2 and 3 and jams channel 2 from
time 11 to 28.

Table I shows the optimal attack assignment (n∗
1, n∗

2)
under different attack success probabilities (α1, α2). Inter-
estingly, in some cases, e.g., (α1, α2) = (0.5, 0.2), though
the probabilities satisfy the condition α1 > α2, the optimal
assignment is opposite, i.e., n∗

1 < n∗
2. The reason is that the

optimal assignment also depends on the system parameters.
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TABLE I

OPTIMAL ATTACK ASSIGNMENT (n∗
1 , n∗

2) UNDER DIFFERENT ATTACK SUCCESS PROBABILITIES (α1, α2)

Fig. 10. Optimal attack schedule in an active period. Here, α1 = 0.1 and
α2 = 0.6.

Fig. 11. Maximal value of cost E(Jtotal) under different assignments
(n1, n2) when α1 = 0.1 and α2 = 0.6. Here, n2 = 20 − n1 and A2 = 1.5.
The optimal assignment is (n∗

1, n∗
2) = (0, 20).

From (19), we can see that the objective function is the
polynomial function of α1, α2. The system parameters deter-
mine the coefficients of the polynomial function, and thus
affect the optimal assignment (n∗

1, n∗
2). In order to show the

impact of system parameters on the attack assignment, we
change the parameter A2 in subsystem 2 with A2 = 1.5.
Fig. 11 shows the variation of maximal value of E(Jtotal) under
different assignment (n1, n2) when A2 = 1.5. We can see that
the optimal attack assignment for this new WNCS is different
from that in Fig. 9.

We also compare the effect of different attack schedules
in Fig. 12. The top curve is the variation of E(Jtotal) under

Fig. 12. Illustration of the effect on cost E(Jtotal) under optimal attack
schedule. Two reference curves are the cost E(Jtotal) under consecutive attack
n1 = n = 20 times on channel 1 and consecutive attack n2 = n = 20 times
on channel 2, respectively. Here, α1 = 0.2.

optimal attack schedule with increasing α2. Two reference
curves are the cost E(Jtotal) under consecutive attack on
channel 1 and consecutive attack on channel 2, respectively.
One can also see that when α2 < 0.2, the effect of optimal
attack schedule and that of consecutive attack on channel 1
are very close. Thus, consecutive attack n1 = n = 20 times
on channel 1 is a suboptimal attack schedule when α2 < 0.2.
Similarly, we can also see that consecutive attack
n2 = n = 20 times on channel 2 is a suboptimal attack
schedule when α2 > 0.6.

VII. CONCLUSION

In this paper, we studied the optimal DoS attack policy with
the energy constraint to maximize the LQG cost function.
We first formulated an optimization problem from the per-
spective of a DoS attacker, in which the attacker can jam the
transmission channel with limited actions in any active period.
Then, we analyzed the properties of the LQG cost function
under any given feasible attack schedule. The optimal attack
schedules and corresponding expected cost are obtained, which
demonstrate that grouping the limited attacks together in every
active period is optimal. We further studied the system stability
under optimal attack schedules. We also investigated the
optimal attack schedule in WNCS with multiple subsystems.
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Simulation examples demonstrate the effectiveness of the
proposed optimal jamming attack policy.

APPENDIX

In this section, we prove Lemmas 3.2, 3.3, and 3.4 and
Corollary 5.1.

Proof of Lemma 3.2: If P1 ≥ P2, we have

f (P1) − f (P2) = Tr(M P1) − Tr(M P2)

= Tr[M(P1 − P2)] ≥ 0.

�
Proof of Lemma 3.3: Since γs = 0 and γs+1 = 1, we have

Ps = 0 and Ps+1 = E[wsw
′
s] = �w with probability α, and

Ps+1 = 0 with probability 1 − α. By the recursive method for
time s + k, one has

Pr
{

Ps+k = Hi
} =

⎧⎨
⎩

αi − αi+1, i = 0, 1, . . . , k − 1,

αk, i = k,

where H0 = 0.
Then, we can see that

E[Ps+k] =
k∑

i=0

HiPr{Ps+k = Hi}

=
k−1∑
i=0

(αi − αi+1)Hi + αk Hk

which finishes the proof. �
Proof of Lemma 3.4:

1) According to the analysis in Section III, we have

�α(t2) − �α(t1) =
t1∑

k=0

(t2 − t1)(α
k − αk+1)Hk +

t2∑
k=t1+1

× [(t2−k)(αk − αk+1)+ αk]Hk ≥ 0.

2) It can be seen that

�α(t) − �α(t1 ⊕ t2)

=
t2∑

k=1

[
αk(Ht1+k −Hk)+

k−1∑
i=0

(αi − αi+1)(Ht1+i − Hi)

]
≥ 0.

3) Since the proof of this result is similar to that of 2), it
is omitted here.

4) It suffices to prove

�α(t1 ⊕ t2) ≤ �α((t1 − 1) ⊕ (t2 + 1))

with t1 ≤ t2. In fact

�α((t1 − 1) ⊕ (t2 + 1)) − �α(t1 ⊕ t2)

=
t2∑

k=t1

αk+1(Hk+1 − Hk) ≥ 0.

�

Proof of Corollary 5.1:

1) From the definition of �α(t), we have

�α(t) =
t∑

j=1

⎡
⎣ j−1∑

i=0

(αi − αi+1)Hi + α j H j

⎤
⎦

=
t∑

j=1

⎡
⎣H0 +

j∑
i=1

αi (Hi − Hi−1)

⎤
⎦.

Then, it can be seen that �α(t) is monotonically increas-
ing with α when t is fixed. Thus, we have

r∑
i=1

�αi (ni ) ≤
r∑

i=1

�α∗
i
(ni ) ≤ �α∗

i
(n̂),

where n1 +n2 +· · ·+nr = n̂. It implies that consecutive
attack n̂ times over channel i∗ in the active periods is
optimal.

2) Since e j∗ = min e j , we have
r∑

i=1

ni e j∗ ≤
r∑

i=1

ni ei ≤ etotal,

which implies
r∑

i=1

ni ≤ ñ =
⌊

etotal

e j∗

⌋
.

From Lemma 3.4, we can see that �α(t) is monotoni-
cally increasing with t when α is fixed. Then, it can be
seen that

r∑
i=1

�αi (ni ) =
r∑

i=1

�α j∗ (ni ) = �α j∗ (n1 ⊕ n2 ⊕ · · · ⊕ nr )

≤ �α j∗ (ñ).

Thus, we can infer that the consecutive attack ñ times
over channel j∗ in every active period is optimal. �
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