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a b s t r a c t

We consider sensor transmission power control for state estimation, using a Bayesian inference approach.
A sensor node sends its local state estimate to a remote estimator over an unreliable wireless communi-
cation channel with random data packet drops. As related to packet dropout rate, transmission power is
chosen by the sensor based on the relative importance of the local state estimate. The proposed power
controller is proved to preserve Gaussianity of local estimate innovation, which enables us to obtain a
closed-form solution of the expected state estimation error covariance. Comparisons with alternative
non-data-driven controllers demonstrate performance improvement using our approach.
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1. Introduction

Wireless networked systems have a wide spectrum of appli-
cations in smart grid, environment monitoring, intelligent trans-
portation, etc. State estimation is a key enabling technology where
the sensor(s) and the estimator communicate over a wireless
network. Energy conservation is a crucial issue as most wireless
sensors use on-board batteries which are difficult to replace and
typically are expected towork for yearswithout replacement. Thus
power control becomes crucial. In this work, we consider sen-
sor transmission power control for remote state estimation over
a packet-dropping network. Transmission power control in state
estimation scenario has been considered from different perspec-
tives. Some works took transmission costs as constant. Shi and
Xie (2012) assumed sensors to have two energy modes, allowing
it to send data to a remote estimator over an unreliable channel
either using a high or low transmission power level. The optimal
power controller is to minimize the expected terminal estimation
error at the remote estimator subject to an energy constraint. Sim-
ilar works can also be found in Imer and Basar (2005) and Xu and

✩ The work of J. Wu, Y. Li and L. Shi is supported by a HK RGC GRF grant 618612.
The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Andrey V. Savkin
under the direction of Editor Ian R. Petersen.

E-mail addresses: jfwu@ust.hk (J. Wu), yliah@ust.hk (Y. Li), dquevedo@ieee.org
(D.E. Quevedo), eeknlau@ust.hk (V. Lau), eesling@ust.hk (L. Shi).

http://dx.doi.org/10.1016/j.automatica.2015.02.019
0005-1098/© 2015 Elsevier Ltd. All rights reserved.
Hespanha (2004). Meanwhile, some literature has taken channel
conditions into account. Quevedo, Ahlén, and Østergaard (2010)
studied state estimation over fading channels. They proposed a
predictive control algorithm, where power and cookbooks are de-
termined in an online fashion based on the undergoing estimation
error covariance and the channel gain predictions. More related
works can been seen in Leong andDey (2012), Nourian, Leong, Dey,
and Quevedo (2014) and Quevedo, Ahlén, Leong, and Dey (2012).

An important issue which has not been taken seriously in most
works is that the transmission power assignment, as a tool to con-
trol the accessibility of information to the receiver, should be de-
termined not only by the underlying channel condition and the
desired estimation performance, but also by the transmitted infor-
mation itself. In Leong and Dey (2012) and Quevedo et al. (2010),
the authors failed to associate transmission power with data to
be sent. The plant states are used to determine the transmission
power in Gatsis, Ribeiro, and Pappas (2013). In this case, lost pack-
ets signal the receiver of the state information. To avoid computa-
tion difficulty, the signaling information is discarded.

In this paper, we focus on how to adapt the transmission power
to themeasurements of plant state and how to exploit information
contained in the lost packets. We propose a data-driven power
controller, which utilizes different transmission power levels to
send the local estimate according to a quadratic function of a
key parameter called ‘‘incremental innovation’’ which is evaluated
by the sensor at each time slot. By doing this, even when data
dropouts occur, the remote estimator can utilize the additional
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signaling information to refine the posterior probability density of
the estimation error by a Bayesian inference technique (see Box &
Tiao, 2011), therefore deriving theMMSE estimate. It compensates
the deteriorated estimation performance caused by packet losses.
To facilitate analysis, we assume that a baseline power controller
has already been established based on different factors with
regard to different settings, such as the requirement of estimation
performance as in Shi and Xie (2012) or the channel conditions
as in Leong and Dey (2012) and Quevedo et al. (2012, 2010). We
are devoted to developing a power controller that embellishes
this baseline controller by adapting the transmission power to the
measurements such that the averaged power with respect to all
possible values taken by the measurements does not exceed that
of the baseline power controller. The proposed power controller,
driven by onlinemeasurements, can run on top of non-data-driven
power controllers, which results in hierarchical power control
mechanisms. Then extension to a time-varying power baseline is
established in Section 4.4. Note that a related controller was first
proposed in Li, Quevedo, Lau, and Shi (2013), but as a special case of
the controller in this work. The main contributions of the present
work are summarized as follows.
(1) We propose a data-driven power control strategy for state es-

timation with packet losses, which adapts the transmission
power to the measured plant states.

(2) We prove that the proposed power controller preserves Gaus-
sianity of the local innovation. It simplifies derivation of the
MMSE estimate and leads to a closed-form expression of the
expected state estimation error covariance.

(3) We present a tuning method for parameter design. Despite its
sub-optimality, the controller is shown to perform not worse
than an alternative non-data-driven one.

The remainder of this paper is organized as follows. In Sections 2
and 3, we give mathematical models of the considered system and
introduce the data-driven transmission power controller. In Sec-
tion 4, we present the MMSE estimate at the remote estimator and
a sub-optimal power controller that minimizes an upper bound
of the remote estimation error. In Section 5, comparisons with
alternative non-data-driven controllers demonstrate performance
improvement using our approach. Section 6 presents concluding
remarks.
Notation: N (and N+) is the set of nonnegative (and positive) inte-
gers. Sn

+
is the cone of n by n positive semi-definite matrices. For

a matrix X , λi(X) is the ith smallest nonzero eigenvalue. We abuse
notations det(X) and X−1, which are used, in case of a singular ma-
trix X , to denote the pseudo-determinant and the Moore–Penrose
pseudoinverse. δij is the Dirac delta function, i.e., δij equals 1 when
i = j and 0 otherwise. The notation pdf(x, x) represents the prob-
ability density function (pdf) of a random variable x taking value
at x.

2. State estimation using a smart sensor

Consider a linear time-invariant (LTI) system:
xk+1 = Axk + wk, (1)
yk = Cxk + vk, (2)
where k ∈ N, xk ∈ Rn is the system state vector at time k, yk ∈ Rm is
the measurement obtained by the sensor, the state noise wk ∈ Rn

and observation noise vk ∈ Rm are zero-mean i.i.d. Gaussian noises
with E[wkw

′

j] = δkjQ (Q ≽ 0), E[vk(vj)
′
] = δkjR (R ≻ 0),

E[wk(vj)
′
] = 0 ∀j, k ∈ N. The initial state x0 is a zero-mean Gaus-

sian random vector with covariance Π0 ≽ 0 and is uncorrelated
with wk and vk. (A, C) is assumed to be detectable and (A,Q 1/2) is
assumed to be stabilizable. Furthermore, we assume A is Hurwitz. 1

1 Since we focus on remote state estimation in this paper, for any practically
working systems (to be monitored alone), A has to be Hurwitz. Otherwise, the
2.1. Sensor local estimate

Hovareshti, Gupta, and Baras (2007) illustrated that utilization
of the computation capabilities of wireless sensors may improve
the system performance significantly. Equipped with such ‘‘smart
sensors’’, the sensor locally runs a Kalman filter to produce the
MMSE estimate x̂sk of the state xk based on all the measurements
collected up to time k, i.e., y1:k , {y1, . . . , yk}, and then transmits
its local estimate to the remote estimator. Denote the sensor’s local
MMSE state estimate, the corresponding estimation error and error
covariance as x̂sk, e

s
k and P s

k , respectively, i.e., x̂
s
k , E[xk|y1:k], esk ,

xk − x̂sk and P s
k , E[(xk − x̂sk)(xk − x̂sk)

′
|y1:k]. Standard Kalman

filtering analysis suggests that these quantities can be calculated
recursively (cf., Anderson & Moore, 1979), where the recursion
starts from x̂s0 = 0 and P s

0 = Π0 ≽ 0. Since P s
k converges

to a steady-state value exponentially fast (cf., Anderson & Moore,
1979), we assume that the sensor’s local Kalman filter has entered
the steady state, that is, P s

k = P ≽ 0∀k ∈ N, This assumption
simplifies our subsequent analysis and results, such as Theorem4.8
and Proposition 4.17.

2.2. Wireless communication model

The data are sent to the remote estimator over an Additive
White Gaussian Noise (AWGN) channel using the Quadrature
Amplitude Modulation (QAM) whereby x̂sk is quantized into K bits
and mapped to one of 2K available QAM symbols.2 For simplicity,
the following assumptions are made:
A.1: The channel noise is independent of wk and vk.
A.2: K is large enough so that quantization effect is negligible

when analyzing the performance of the remote estimator.
A.3: The remote estimator can detect symbol errors.3 Only the

data arriving error-free are regarded as being successfully
received; otherwise they are regarded as dropout.

These assumptions are commonly used in communication and
control theories (cf., Fu&de Souza, 2009, Gatsis et al., 2013, Leong&
Dey, 2012, Quevedo et al., 2010 and Sinopoli et al., 2004). For exam-
ple, Fu andde Souza (2009) demonstrated that the estimation qual-
ity improvement (in terms of reduction of the remote estimation
error) achieved by increasing the numberK of the quantization bits
is marginal when K is sufficiently large (in their example K only
needs to be greater or equal to 4. Based on A.3, the communication
channel can be characterized by a random process {γk}k∈N+

, where

γk =


1, if x̂sk arrives error-free at time k,
0, otherwise,

initialized with γ0 = 1. Denote γ1:k , {γ1, . . . , γk}. Let ωk ∈

[0, +∞) be the transmission power for the QAM symbol at time
k. We adopt the wireless communication channel model used in
Li et al. (2013), and have Pr (γk = 0|ωk) = qωk , where q is given
by q , exp(−α/(N0W )) ∈ (0, 1), N0 is the AWGN noise power
spectral density, W is the channel bandwidth, and α ∈ (0, 1] is a
constant that depends on the specific modulation being used. To
send local estimates to the remote estimator, the sensor chooses
from a continuum of available power levelsωk > 0, see Fig. 1. Note
that different power levels lead to different dropout rates, thereby
affecting estimation performance.

system state will go unbounded and there is no real sensing device which can track
an unbounded state trajectory. Adding a control input to regulate the system state
for an unstable A and studying its associated stability issuewill be beyond the scope
of this paper and will be left as our future work.
2 QAM is a commonmodulation schemewidely used in IEEE 802.11g/n as well as

3G and LTE systems, due to its high bandwidth efficiency.
3 In practice, symbol errors can be detected via a cyclic redundancy check (CRC)

code.
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Fig. 1. The system architecture.

2.3. Remote state estimation

Define Ik as the information available to the remote estimator
up to time k, i.e.,

Ik = {γ1x̂s1, γ2x̂s2, . . . , γkx̂sk} ∪ {γ1:k}. (3)

Denote x̂k and Pk as the remote estimator’s own MMSE state
estimate and the corresponding estimation error covariance, i.e.,
x̂k , E[xk|Ik] and Pk , E[(xk − x̂k)(xk − x̂k)′|Ik], where expectations
are taken with respect to a fixed power controller. We assume
that the remote estimator feedbacks acknowledgments γk before
time k + 1. Such setups are common especially when the remote
estimator (gateway) is an energy-abundant device. This energy
asymmetry allows the estimator to trade energy cost for estimation
accuracy.

3. Data-driven transmission power control

Our strategy uses the measurements to assign transmission
power level efficiently. As focusing on how the power controller
utilizes the sensor’s real-time data, to simplify discussion, we
assume a constant power baseline ω̄ in this section. We define
θ , {θk}k∈N+

as a transmission power controller over the entire
time horizon, where θk is a mapping from y1:k and γ1:k to ωk.
Before proceeding to study θ , let us first briefly explain the idea
of data-driven power control mechanism. Define τ(k) ∈ N+ as
the holding time since the most recent time when the remote
estimator received the data from the sensor, i.e.,

τ(k) , k − max
16t6k−1

{t : γt = 1}. (4)

We interchange τ(k) with τ when the underlying time index is
clear from the context. Define εk as the incremental innovation in
the sensor local state estimate compared to time k−τ , the previous
reception instant, i.e.,

εk = x̂sk − Aτ x̂sk−τ . (5)

Lemma 3.1. E[eskε
′

k|Ik−1, γk = 0] = 0∀k ∈ N+.

Proof. The result follows from noting that

E[eskε
′

k|Ik−1, γk = 0] = E

E[eskε

′

k|y1:k, γ1:k]|Ik−1, γk = 0


= E

E[esk|y1:k]ε

′

k|Ik−1, γk = 0


= 0,

where the second equality holds because esk is independent of γ1:k,
and the last equality holds since E[esk|y1:k] = 0.

Note that, if εk = 0, then the sensor generates a local estimate,
x̂sk identical to the prediction Aτ x̂sk−τ . We would say that, for the
remote estimator, the ‘‘value’’ of information contained in x̂sk is null.
As εk becomes larger, x̂sk has an increasing drift from the prediction
Aτ x̂sk−τ and the importance of the sensor sending x̂sk thereby raises.
Motivated by these observations, we define a stationary power
controller, θef : εk → ωk, as an increasing function of εk. To fit the
above observations, we introduce a quadratic function of εk given
byC(εk, Q) , εk

′Qεk, whereQ ∈ Sn
+
is a weightmatrix. According

to Lemma 3.1, the covariance of εk is a function of τ(k). Therefore
we specify τ(k) for the index of Q and construct the following
controller:

θef :


ωk =

N0W
2α

C(εk, Qτ ) + ω


. (6)

In contrast to (6), most non-data-driven transmission power
controllers (i.e., Leong & Dey, 2012 and Quevedo et al., 2010) use a
given power ω̄ regardless of what value εk takes. Note that in (6) a
constant term ω is added after C(εk, Qτ ). If one sets Qτ = 0, then
the transmission with the baseline power controller ω = ω̄ is a
special case of the proposed transmission power controller. As for
Qτ ≠ 0, the transmission power is a constant ω if C(εkQτ ) = 0;
otherwise it is adapted according to C(εk, Qτ ). Compared with
a related controller proposed earlier in Li et al. (2013), θef in (6)
is more general at least from two aspects: (1) we introduce a
weight matrix Qτ to highlight the roles of different entries of εk;
(2) it allows the sensor to transmit using a standard power ω
even if C(εk, Qτ ) = 0, which includes a non-data-driven power
transmission as a special case. As shown later in Lemma 4.4, given
Ik−1, εk is zero-mean Gaussian with a covariance Στ depending
on τ(k), i.e., (εk|Ik−1) ∼ N (0, Στ ). For convenience of our
subsequent analysis, we define a new parameter Ψτ satisfying
Ψτ ,


Qk + Σ−1

τ

−1, where Στ ≽ Ψτ ≽ 0. We now list the main
problems considered in the remainder of this work,

(1) Under θef defined in (6), what is the MMSE estimate and its
associated estimation error covariance?

(2) What value should Qτ (or Ψτ ) take in order to minimize, E[Pk],
the expected estimation error at the remote estimator?

The solution to the first problem is presented in Section 4.2. A sub-
optimal solution to the second one is given in Section 4.3 in view
of the difficulty of the optimization problem.

Before proceeding, we note that in previous works such as
Gatsis et al. (2013) the difficulty of using the information contained
in lost packets, i.e., γk = 0, when computing the MMSE estimate
of the plant state has been acknowledged. One typically discards
such information as was done in Gatsis et al. (2013) or resorts to
approximations, e.g., treating a truncated Gaussian distribution as
a Gaussian distribution aswas done inWu, shan Jia, Johansson, and
Shi (2013). These approaches either lead to conservative results
(due to the unutilized information) or inaccurate results (due
to approximations). Our method, on other hand, makes use of
the information contained in the event γk = 0 to improve the
estimationperformance. The associatedMMSEestimate, relying on
no approximation techniques, is derived in a closed-form.

4. Main results

4.1. Preliminaries

For anyΣ ≽ 0 that is singular, there existmatricesU,D ∈ Rn×n

such that Σ = UDU ′, where U is unitary, whose columns are
right eigenvectors of Σ , and D ,


∆ 0
0 0


, where ∆ is a diagonal

matrix generated by the corresponding nonzero eigenvalues of Σ .
Let Σ1/2 , U

√
D. Then Σ = Σ1/2


Σ1/2

′.
Generally speaking, an n-dimensioned random vector x ∼

N (µ, Σ), does not have a pdf with respect to the Lebesgue
measure on Rn if some entries in x degenerate to almost surely
constant random variables. To work with such vectors, one can
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instead consider Lebesgue measure in the rank(Σ)-dimension
affine subspace: Ω , {µ + Σ1/2z : z ∈ Rn

}, with respect to
which x has a pdf pdf(x, x) =

1
√

σ
exp


−

1
2 (x − µ)′Σ−1(x − µ)


,

where σ = (2π)rank(Σ)det(Σ). Without loss of generality, in the
remainder of this paper, for a random variable x ∼ N (0, Σ) with
a singularΣ , the pdf of xmeans the probability density onΩ . Note
that the Moore–Penrose pseudoinverse of Σ is unique and given
by

Σ−1
= U


∆−1 0
0 0


U ′, (7)

and that the pseudo-determinant of Σ equals the product of all
nonzero eigenvalues of Σ .

Consider the power control law θef defined in (6). In order to
guarantee that ωk is always nonnegative for any value εk, the dif-
ference ofΨ −1

τ andΣ−1
τ needs to be at least positive semi-definite,

i.e., two conditions must be simultaneously satisfied, which are
Στ ≽ Ψτ and Ψ −1

τ ≽ Σ−1
τ . The following lemma provides a nec-

essary condition that Ψτ needs to satisfy.

Lemma 4.1. Suppose Σ and Ψ satisfy Σ ≽ Ψ and Ψ −1
≽ Σ−1.

Then

rank(Ψ ) = rank(Σ) (8)

and

Im(Σ1/2) = Im(Ψ 1/2), (9)

where Im(X) is the image of X.

Proof. Since Σ ≽ Ψ , it is true that rank(Σ) ≥ rank(Ψ ). To
verify (8), suppose that rank(Σ) > rank(Ψ ). Then from (7),
rank(Σ−1) > rank(Ψ −1), which contradicts with Ψ −1

≽ Σ−1.
To prove (9), let us denote rank(Ψ ) , r and assume there
is a set of vectors W , {w1, . . . ,wr} such that Im(Ψ 1/2) =

span ({w1, . . . ,wr}). Suppose Im(Σ1/2) ≠ Im(Ψ 1/2). Then there
exist a vector in W (without loss of generality, let it be w1), and a
vector w0 ∈ Ker


(Σ1/2)′


where the operator Ker(X) is the ker-

nel of a matrix X , such that w0
′w1 ≠ 0. It leads to the fact that

w0 ∉ Ker

(Ψ 1/2)′


. We in turn have

w0
′Σ1/2 

Σ1/2′ w0 = 0 while w0
′Ψ 1/2 

Ψ 1/2′ w0 > 0,

which contradicts with Σ ≽ Ψ .

For convenience, denote nτ , rank(Στ ) = rank(Ψτ ), Ωτ , Im

(Σ
1/2
τ ) = Im(Ψ

1/2
τ ) and Φτ ,


Σ

1/2
τ

′

Ψ −1
τ Σ

1/2
τ . One has next

lemma, the proof provided in Appendix.

Lemma 4.2. The rank of Φτ equals that of Στ (or Ψτ ), i.e., rank
(Φτ ) = nτ .

Example 4.3. Two matrices are provided below as a simple
example for n = 3,

Στ =

5 0 0
0 5 0
0 0 0


, and Ψτ =

 3 −1 0
−1 3 0
0 0 0


.

We can verify that nτ = 2, Στ ≽ Ψτ , Ψ −1
τ ≽ Σ−1

τ , (8), and
Lemma 4.1 holds.
4.2. MMSE state estimate

In general, the posterior distribution of εk fails to maintain
Gaussianity without analog-amplitude observations. The defect is
especially common for quantized Kalman filtering and Gaussian
filters, where it is tackled by Gaussian approximation (Anderson
& Moore, 1979; Kotecha & Djuric, 2003; Ribeiro, Giannakis, &
Roumeliotis, 2006). By contrast, the following lemma shows that,
using θef in (6), the distribution of εk conditioned on Ik−1, γk = 0 is
Gaussian. The proof, similar to that of Lemma 3.5 in Li et al. (2013),
is omitted.

Lemma 4.4. Under θef defined in (6), given Ik−1, εk follows a
Gaussian distribution: (εk|Ik−1) ∼ N (0, Στ ), where Στ is given by
the following recursion:

Στ = AΨτ−1A′
+


h(P) − P


, (10)

withΨ0 = 0. It is also true that, given γk = 0 and Ik−1, (εk|Ik−1, γk =

0) ∼ N (0, Ψτ ).

Proposition 4.5. Under θef defined in (6), given Ik−1, the packet drop
rate at time k is given by Pr(γk = 0|Ik−1) =

1√
det(Στ )det(Ψ −1

τ )

exp

−

α
N0W

ω

.

We denote the packet arrival rate as pτ , 1 − Pr(γk = 0|Ik−1),
where the subscript τ is to emphasize that it depends on Στ and
Ψτ . To ensure that the averaged transmission power with respect
to different values taken by themeasurement in θ does not exceed
ω̄, i.e., E[ωk|Ik−1] ≤ ω̄, we require the following result.

Lemma 4.6. Under θef (6), given Ik−1, the relation betweenE[ωk|Ik−1]

and Ψτ , and ω is given by

E[ωk|Ik−1] =
N0W
2α


Tr(ΣτΨ

−1
τ ) − nτ


+ ω. (11)

Proof. From Lemma 4.4, we know that (εk|Ik−1) ∼ N (0, Στ ).
Under θef, we have:

E[ωk|Ik−1] = E [E[ωk|εk]|Ik−1]

=
N0W
2α

E

ε′

k


Ψ −1

τ − Σ−1
τ


εk

Ik−1


+ ω

=
N0W
2α

Tr

E


εkε

′

k|Ik−1

(Ψ −1

τ − Σ−1
τ )


+ ω

=
N0W
2α


Tr(ΣτΨ

−1
τ ) − nτ


+ ω.

With θef defined in (6), the remote estimator computes xk and Pk
according to the following two theorems.

Theorem 4.7. Under θef (6), the remote estimator computes x̂k as

x̂k =


x̂sk, if γk = 1,
Aτ x̂sk−τ , if γk = 0,

(12)

where x̂sk is updated as x̂sk = Aτ x̂sk−τ + εk when γk = 1.

Proof. When γk = 1, the result is straightforward since x̂sk is the
MMSE estimate of xk given y1:k. Now consider γk = 0. The tower
rule gives

E [xk|Ik−1, γk = 0] = E [E [xk|y1:k, γ1:k] |Ik−1, γk = 0]
= E


Aτ x̂sk−τ + εk|Ik−1, γk = 0


= Aτ x̂sk−τ + E [εk|Ik−1, γk = 0] .

Lemma 4.4 leads to E [εk|Ik−1, γk = 0] = 0.
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Theorem 4.8. Under θef (6), Pk at the remote estimator is updated
as

Pk =


P, if γk = 1,
P + Ψτ , if γk = 0.

(13)

Proof. When γk = 1 the result is straightforward. We only prove
the case when γk = 0.

E

(xk − x̂k)(xk − x̂k)′|Ik−1, γk = 0


= E


(xk − Aτ x̂sk−τ )(xk − Aτ x̂sk−τ )

′
|Ik−1, γk = 0


= E


E


(esk + εk)(·)

′
|y1:k, γ1:k


|Ik−1, γk = 0


= E[(esk)(e

s
k)

′
|y1:k] + E


(εk)(εk)

′
|Ik−1, γk = 0


= P + Ψτ ,

where the third equality is due to Lemma 3.1 and the last one is
from Lemma 4.4.

Remark 4.9. Under a baseline power controller with a constant
power control ω̄, the remote estimator’s estimate still obeys the re-
cursion (12); however, the estimation error covariance is updated
differently: Pk = P when γk = 1, and Pk = h(Pk−1) = Στ when
γk = 0). Note that although the obtained estimates under the two
power controllers are the same, their different estimation error
covariance matrices suggest different confident levels with which
the remote estimator trusts the obtained estimate: with the data-
driven power controller, it is more convinced that the obtained es-
timate is close to the real state while less convinced with a non-
data-driven power controller.

4.3. Selection of design parameters

The performances of θef for different Ψτ ’s are difficult to
compare in general. However, forΣτ andΨτ , theremust exist a real
number ϵτ ∈ (0, 1] such that Ψτ ≼ ϵτΣτ and Ψτ ⋠ ϵΣτ , ∀ ϵ < ϵτ .
Observe that

Φτ =

Σ1/2

τ

′
Ψ −1

τ Σ1/2
τ ≽

1
ϵτ


Inτ 0
0 0


,

which yields ϵτ =
1

λ1(Φτ )
. In light of (10), we further have Ψτ ≼

ϵτΣτ = ϵτ


AΨτ−1A′

+ Σ1

. According to Proposition 4.5, it can

be seen given τ(k) = τ that E[Pk|τ(k) = τ ] has an upper
bound: E[Pk|τ(k) = τ ] ≼ P + (1 − pτ )ϵτ


AΨτ−1A′

+ Σ1

.

Instead of minimizing E[Pk], we minimize its upper bound which
is equivalent to minimize (1 − pτ )ϵτ . Iterating over time, one
eventually needs to minimize (1 − pτ )ϵτ for any τ(k) ∈ N+ at
any k ∈ N+. To this end, we propose to assign parameters of θef in
(6) as the solution to the following optimization problem:

Problem 4.10.

min
Ψτ ,Στ ,ω

1
det(Στ )det(Ψ −1

τ )
1/2

λ1(Φτ )
exp


−

α

N0W
ω


,

s.t.
N0W
2α


Tr(ΣτΨ

−1
τ ) − nτ


+ ω ≤ ω̄.

The constraint is imposed by (11). To solve Problem 4.10, we
first note that Tr(ΣτΨ

−1
τ ) = Tr(Φτ ). However, for any matrix

X, Y ∈ Rn×n, det(XY ) = det(X)det(Y ) does not hold in general
since det(X)means X ’s pseudo-determinant (in case X is singular).
Fortunately, this property still holds for Στ and Ψ −1

τ . The proof is
given in Appendix.
Lemma 4.11. Suppose Στ and Ψτ satisfy Στ ≽ Ψτ ≽ 0 and Ψ −1
τ ≽

Σ−1
τ . Then det(Στ )det(Ψ −1

τ ) = det(Φτ ).

From linear algebra, det(Φτ ) =
nτ

i=1 λi(Φτ ), and Tr(Φτ ) =nτ
i=1 λi(Φτ ). We simply write λi(Φτ ) as λi(τ ), and denote the

nonzero eigenvalues of Φτ by Λτ , [ λ1(τ ), . . . , λnτ (τ ) ]. Then
Problem 4.10 can be recast as

Problem 4.12.

min
Λτ ,ω

1

λ1(τ )
nτ
i=1

λi(τ )1/2
exp


−

α

N0W
ω


, (14)

s.t.
N0W
2α


nτ
i=1

λi(τ ) − nτ


+ ω = ω̄, ω ≥ 0

1 ≤ λ1(τ ) ≤ λj(τ ), ∀j = 2, . . . , nτ .

Lemma 4.13. Let Λ∗
τ be the optimal solution to Problem 4.12. Then

Λ∗
τ satisfies

λ1(τ )∗ = λ2(τ )∗ = · · · = λnτ (τ )∗. (15)

Proof. Suppose that Λ is the optimal solution to Problem 4.12 but
does not satisfy (15). We will show that there must exist another
vector, which is different from Λ and has a smaller cost function
(14). Let

nτ
i=1 λi = c where c is a positive constant. Due to

the fact that λ1 in Λ is the minimum eigenvalue of Φτ and the
inequality of arithmetic and geometric means, we have λ1 ≤

c
nτ

and
nτ

i=1 λi ≤


c
nτ

nτ

, the equalities simultaneously satisfied

when λi =
c
nτ

, ∀ i = 1, . . . , nτ . Thus, Λ0 = [
c
nτ

, . . . , c
nτ

] results
in a smaller value of (14), which contradicts with the assumption
and completes the proof.

The following lemma is a result of Lemma 4.13. Its proof is
presented in Appendix.

Lemma 4.14. If ω̄ >
N0W

α
, then the optimal solution to Prob-

lem 4.12 is ω = ω̄ −
N0W

α
and

Λ∗

τ =


1 +

2
nτ

, . . . , 1 +
2
nτ


. (16)

Otherwise, if ω̄ ≤
N0W

α
, the optimizer is ω = 0 and

Λ∗

τ =


1 +

2αω̄

nτN0W
, . . . , 1 +

2αω̄

nτN0W


. (17)

Denote by θ∗

ef the transmission power associated with the solution
to Problem 4.12. Then we have the following theorem. It can be
readily verified from Lemma 4.14.

Theorem 4.15. If ω̄ >
N0W

α
, then θ∗

ef is given by

θ∗

ef :


ωk =

N0W
αnτ

ε′

kΣ
−1
τ εk + ω̄ −

N0W
α


,

where Στ+1 =
nτ

nτ +2AΣτA′
+ h(P) − P with Σ0 = 0. Otherwise, if

ω̄ ≤
N0W

α
, θ∗

ef is given by

θ∗

ef :


ωk =

ω̄

nτ

ε′

kΣ
−1
τ εk


,

where Στ+1 =
nτN0W

nτN0W+2αω̄
AΣτA′

+ h(P) − P.
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Remark 4.16. A non-data-driven baseline power controller with
a constant power level ω̄ is feasible to Problem 4.10. Since θ∗

ef is
the optimal solution, it has notworse state estimation performance
compared with the alternative non-data-driven power controller.
Numerical examples in Section 5 demonstrate performance im-
provements using θ∗

ef compared with the non-data-driven power
controller.

The following proposition shows that the rank of Στ can be calcu-
lated offline. The proof is given in Appendix.

Proposition 4.17. Consider the θ∗

ef given in Theorem 4.15, for any
τ ∈ N+, nτ can be calculated as: nτ = rank(hτ (P)−P). In particular,
when τ ≥ n, the dimension of x, nτ becomes a constant which is given
by: nτ = rank(hn(P) − P), ∀ τ ≥ n.

4.4. Extension

Inmany cases, the base-line power controller changes over time
with respect to different settings. For example, in Quevedo et al.
(2010), block fading channelswere taken into account. To dealwith
a time-varying channel power gain hk,4 a predictive power con-
trol algorithmwas established,which determines the transmission
power level, bit rates and codebooks used by the sensors. The al-
gorithm in Quevedo et al. (2010) requires that the receiver (i.e.,
the remote estimator) runs a channel gain predictor, see e.g., Lind-
bom, Ahlén, Sternad, and Falkenström (2002). A key observation
is that the data-driven controller proposed in the present work
can be readily adapted to situations where the baseline controller
provides time-varying power levels w̄k.5 In fact, by solving Prob-
lem 4.12 for a time-varying power baseline ω̄k, we obtain the op-
timal solution θ∗

ef as follows: if ω̄k >
N0W

α
, then θ∗

ef is given by

θ∗

ef :


ωk =

N0W
αnτ

ε′

kΣ
−1
k εk + ω̄k −

N0W
α


and Ψk =

nτ

nτ +2Σk−1. Otherwise, if ω̄k ≤
N0W

α
, θ∗

ef is given by

θ∗

ef :


ωk =

ω̄

nτ

ε′

kΣ
−1
k εk


and Ψk =

nτN0W
nτN0W+2αω̄

Σk. In both cases, Σk = (1 − γk−1)AΨk−1A′
+

h(P) − P . Note that Σk, Ψk and Φk are calculated similar to Στ , Ψτ

and Φτ given in Theorem 4.15. To reduce the sensor’s computa-
tional load, the sensor only needs to calculate the quadratic form
ε′

kΣ
−1
τ εk, while the rest of the parameters are updated and then

sent to the sensor by the estimator. Note that calculating ε′

kΣ
−1
τ εk

has a complexity of O(n2).

5. Simulation and examples

Consider a systemwith parameters as follows: A =


0.99 0.3
0.1 0.7


,

C =


2.3 1
1 1.8


, R = Q = I2×2. We first assume that θ has a con-

stant power baseline ω̄ = 5 and N0W
α

= 3 < ω̄. In Section 5.2, a
time-varying power baseline is considered.

4 The term ‘‘channel power gain’’ means the square of the magnitude of the
complex channel.
5 Following assumptions commonly made in the literature, see, e.g., Quevedo

et al. (2012, 2010), in the sequelwe shall assume that the channel gain hk is available
via the one-step ahead channel gain predictor.
Fig. 2. Empirical estimation covariance provided by controllers θ∗

ef(θ1) and θ2 as a
function of energy constraint ω̄.

Fig. 3. Comparison of θ∗

ef(θ1) and θ3 under Rayleigh fading.

5.1. Comparison with different energy constraints

We compare our proposed schedule θ∗

ef (denoted as θ1) with a
constant baseline power controller within the entire time horizon
(denoted as θ2 : {ωk = ω̄}). Define Jk(θ) =

1
k

k
i=1 Tr (E[Pi]) as the

empirical approximation (via 100000 Monte Carlo simulations) of
the average expected state error covariance (denoted as J(θ)). We
choose J30(θ) as an approximation of J(θ).

Fig. 2 shows that θ∗

ef leads to a better system performance when
compared to θ2 under the same energy constraint.

5.2. Comparison under fading channels

In practice, wireless communication channels typically com-
prise fading often assumed to be Rayleigh (Rappaport et al., 1996),
i.e., the channel power gain hk is exponentially distributed with
pdf(hk) =

1
h
exp(− hk

h
), where hk > 0 and h is the mean of

hk. Truncated channel inversion transmit power controllers have
been studied in several works (Goldsmith & Varaiya, 1997; Leong
& Dey, 2012; Quevedo et al., 2012), where the transmission power
is the inversion of hk, with a truncated boundary. In this subsec-
tion, we use the baseline power determined by truncated channel
gain inversion. Denote the truncated channel inversion transmis-
sion power controller as θ3:

ωk =


v

hk
, hk > h⋆,

v

h⋆
, otherwise.

(18)

where v and h⋆ are design parameters. Consider the case of h = 1
and set h⋆

= 5. Based on the results in Leong and Dey (2012), we
can choose v to meet the energy constraint. Fig. 3 suggests that θ∗

ef
leads to better system performance when compared with θ3. Fig. 4
shows the comparison given a specific realization of channel power
gains.

6. Conclusion

We proposed a data-driven transmission power controller for
remote state estimation, which adjusts the sensor’s transmission
power according to its real-time measurements. Then we proved
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Fig. 4. Comparison of θ∗

ef(θ1) and θ3 given a specific realization of channel power
gains.

that the proposed power controller preserves Gaussianity of the
incremental innovation and provided a closed-form expression of
the expected state estimation error covariance. A tuning method
for parameter design was presented to guarantee that the data-
driven power controller has not worse performance than the
alternative non-data-driven ones. Comparisons were conducted to
illustrate estimation performance improvement.

Appendix

Proof of Lemma 4.2. To verify the claim, it suffices to show that
rank(Φτ ) ≥ nτ . Suppose that rank(Φτ ) = r < nτ . Since
Φτ ≽ 0, there must exist exactly n − r mutually orthogonal
vectors e1, . . . , en−r such that ei′Φτei = 0, for i = 1, . . . , n − r .
Denote the unit vector with only the (nτ + j)th entry being 1 by
ij, that is, ij = [ 0, . . . , 0, 1  nτ +j

, 0, . . . , 0 ]
′. Since ij′Φτ ij = 0, j =

1, . . . , n − nτ , without loss of generality, let ej = ij. As we assume
that en−r is orthogonal to ej, j = 1, . . . , n − nτ , it is true that
D1/2

τ en−r ≠ 0. Since Uτ is nonsingular and Ker(Uτ ) = {0}, we have
e , Σ

1/2
τ en−r ≠ 0.We then observe that e′Ψ −1

τ e = en−r
′Φτen−r =

0, and e′Σ−1
τ e = en−r

′


Inτ 0
0 0


en−r > 0,which contradicts with

Ψ −1
τ ≽ Σ−1

τ . �

Proof of Lemma 4.11. By definition, it is easy to see that det(Στ )
det(Ψ −1

τ ) =
nτ

i=1 λi(Στ )λi(Ψτ )
−1. Therefore we only need

to prove det(Φτ ) =
nτ

i=1 λi(Στ )λi(Ψτ )
−1. Observe that Στ

and Ψτ can be factorized as Στ = Uτ


∆τ 0
0 0


Uτ

′and Ψτ =

Vτ


Θτ 0
0 0


Vτ

′, where ∆τ and Θτ are diagonal matrices generated
respectively by the nonzero eigenvalues of Στ and Ψτ . For i =

1, . . . , nτ , ui and vi are the eigenvectors associated with λi(Στ )
and λi(Ψτ ). In addition, Uτ = [ u1, . . . , unτ , 0, . . . , 0 ] and
Vτ = [ v1, . . . , vnτ , 0, . . . , 0 ]. Then Φτ can be written as Φτ =
Mτ 0
0 0


, where Mτ = ∆τ

1/2Ũ ′
τ ṼτΘτ

−1Ṽ ′
τ Ũτ∆τ

1/2
∈ Snτ

+ , Ũτ =

[ u1, . . . , unτ ] and Ṽτ = [ v1, . . . , vnτ ]. According to Lemma 4.2,
Mτ is nonsingular, so det(Φτ ) = det(Mτ ). Since Im(Στ ) = Im(Ψτ )

from (9), there exists a unitary matrix V such that Ṽτ = ŨτV . Thus,
det(Mτ ) = det


∆τ

1/2VΘτ
−1V ′∆τ

1/2


= det

∆τΘτ

−1

, which

completes the proof. �

Proof of Lemma 4.14. According to Lemma 4.13, we set λ1(τ ) =

· · · = λnτ (τ ) = λτ . Logarithm does not change the monotonicity
of (14). Problem 4.12 is consequently transformed to

min
λτ ,ω

−
α

N0W
ω −

nτ

2
+ 1


ln λτ , (19)
s.t.
nτN0W

2α
(λτ − 1) + ω = ω̄, ω ≥ 0.

Substitutingω = −
α

N0W
ω̄+

nτ

2 (λτ −1)−( nτ

2 +1) ln λτ into (19) and
taking derivative, it yields that the minimum of (19) is attained at
λτ = 1+

2
nτ
. Meanwhileω needs to be nonnegative, so the optimal

solution to Problem 4.10 is (16) if ω̄ >
N0W

α
or (17) otherwise. �

Proof of Proposition 4.17. Consider a matrix Σ =
τ

i=1 ρi
hi(P) − hi−1(P)


with ρi ∈ (0, 1]. We have

Im(Σ) = Im([ ρ1Σ
1/2
1 ρ2AΣ

1/2
1 · · · ρτAτ−1Σ

1/2
1 ][ · ]

′)

= Im([ ρ1Σ
1/2
1 ρ2AΣ

1/2
1 · · · ρτAτ−1Σ

1/2
1 ])

= Im([ Σ
1/2
1 AΣ

1/2
1 · · · Aτ−1Σ

1/2
1 ])

= Im([ Σ
1/2
1 AΣ

1/2
1 · · · Aτ−1Σ

1/2
1 ][ · ]

′)

= Im(hτ (P) − P), (20)

which leads to the first assertion. By the Cayley–Hamilton theorem,
we have Ak

= −a1(k)An−1
− a2(k)An−2

− · · · − an(k)I, ∀ k ≥ n,
where a1(k), . . . , an(k) are coefficients of the characteristic
polynomial of A. When τ ≥ n + 1, we have

Im([ Σ
1/2
1 AΣ

1/2
1 · · · Aτ−1Σ

1/2
1 ][ · ]

′)

= Im([ Σ
1/2
1 AΣ

1/2
1 · · · − a1(τ − 1)An−1Σ

1/2
1

− a2(τ − 1)An−2Σ
1/2
1 − · · · − an(τ − 1)Σ1/2

1 ]).

The last assertion follows from the reasoning used in (20). �
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