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On Set-Valued Kalman Filtering and Its Application
to Event-Based State Estimation

Dawei Shi, Tongwen Chen, Fellow, IEEE, and Ling Shi

Abstract—Motivated by challenges in state estimation with
event-based measurement updates, the properties of the exact
and approximate set-valued Kalman filters with multiple sensor
measurements for linear time-invariant systems are investigated
in this work. First, we show that the exact and the proposed ap-
proximate set-valued filters are independent of the fusion sequence
at each time instant. Second, the boundedness of the size of the
set of estimation means is proved for the exact set-valued filter.
For the approximate set-valued filter, if the closed-loop matrix
is contractive, then the set of estimation means has a bounded
size asymptotically; otherwise a nonsingular linear transform is
constructed such that the size of the set of estimation means for the
transformed states is asymptotically bounded. Third, the effect of
set-valued measurements on the size of the set of estimation means
is analyzed and conditions for performance improvement in terms
of smaller size of the set of estimation means are proposed. Finally,
the results are applied to event-based estimation, which allow the
event-triggering conditions to be designed by considering require-
ments on performance and communication rates. The efficiency
of the proposed results are illustrated by simulation examples and
comparison with the approximate event-based MMSE estimator
and the Kalman filter with intermittent observations.

Index Terms—Event-based estimation, Kalman filter,
Minkowski sum, set-valued estimation.

I. INTRODUCTION

DUE to the energy-consumption requirements in wireless
communication [1], [2], applications of wireless control

and monitoring systems require more energy-efficient data
sampling/transmission strategies to reduce the communication
burden [3]. The advent of event-based sampling and data-
scheduling [4], [5] provides a promising solution to this issue.
In return, it has brought on new challenges to the design of
control and state estimation techniques for dynamical systems.

The motivation of this work stems from event-based state
estimation for discrete-time Gaussian systems in the Bayesian
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framework. In this scenario, the sensors determine whether to
send their current measurements to the estimator by testing
whether the so-called “event-triggering conditions” are violated
or not [6], [7] (e.g., the “send-on-delta” conditions [7]—a
sensor does not transmit its measurement unless the current
measurement deviates from the previously transmitted mea-
surement by a specified level). Therefore, when the triggering
conditions are satisfied, the estimator knows the measurement
information (assuming the reliability of the communication
channel); when the sensor decides not to send measurement
information, the estimator still knows that the measurement
lies within a set characterized by the triggering condition. In
many cases, this set is known to the estimator without additional
communication, e.g., the set described by the “send-on-delta”
conditions. In this context, the challenge mainly arises from
the additional information provided by the event-triggering
conditions during non-event time instants, which results in a
state estimation problem with combined set- and point-valued
measurement updates. For the case of periodic point-valued
measurements, the Gaussianity of the conditional (a posteriori)
distributions leads to a simple closed-form Minimum Mean
Squared Error (MMSE) estimator, or equivalently, the estimate
with the smallest estimation error covariance [8]. Due to the
combined set- and point-valued measurements, however, the
conditional distributions are no longer Gaussian, and the exact
MMSE estimator becomes computationally expensive to calcu-
late, as is similar for the nonlinear Gaussian filters [9]–[11].

To overcome this difficulty, some efforts have been at-
tempted. Utilizing a Gaussian assumption on the distribution of
the state conditioned on all past set- and point-valued measure-
ment information, the MMSE estimator was derived in [12],
and the tradeoff between communication rate and performance
was explicitly analyzed; the extension of the results to more
general event-triggering conditions and multiple sensor mea-
surements was considered in [13]. A general description of
event-based sampling was proposed in [14], and an event-based
estimator with a hybrid update was proposed by approximating
the uniform distribution with a sum of a finite number of
Gaussian distributions to reduce the computational complexity.
The Gaussian assumption was shown to be maintained in [15],
where a special event-triggering condition was proposed by
introducing randomization in the triggering sets. In [16], a state
estimate was obtained by minimizing the maximum possible
mean squared error in the presence of both the stochastic uncer-
tainty caused by the noises and the non-stochastic uncertainty
introduced by the event-triggering conditions. Alternatively,
the maximum likelihood estimation problem for an event-
triggering scheme quantifying the magnitude of the innovation
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of the estimator at each time instant was studied in [17], and the
computation of upper and lower bounds for the communication
rate was discussed. For further results on event-based estima-
tion, see [18]–[23] and references therein.

The event-based estimation problem can also be consid-
ered as a set-valued Kalman filtering problem in the convex
Bayesian decision framework [24], which takes the difference
and separation between “stochastic uncertainty” and “non-
stochastic uncertainty” into account. In [25], it was pointed out
that “Ignorance, in its root meaning, means lack of knowledge;
uncertainty, on the other hand, typically means lack of pre-
cision. By specifying a probability distribution for a random
variable, we attempt to characterize uncertainty. If the correct
distribution function is unknown, that is a manifestation of
ignorance.” From this perspective, the statistical information
of the noise and the initial states are regarded as “uncertainty”
(or “stochastic uncertainty”), while the ambiguous information
contained in the event-triggering sets can be considered as
“ignorance” (or “non-stochastic uncertainty”), since the estima-
tor’s inability of knowing the point-valued measurement infor-
mation during non-event time instants can be regarded as “lack
of knowledge,” which is caused by the subjective choice of the
event-triggering conditions.

Compared with the existing results in event-based state esti-
mation, the set-valued filtering approach provides an alternative
way of exploiting and understanding the additional information
contained in the event-triggering conditions. The set-valued
Kalman filter was originally introduced by [25], where the stan-
dard Kalman filter was extended to the case that a convex set
of initial estimate distributions was considered. Although the
filters bear good asymptotic properties, they are not applicable
to the event-based estimation scenario, since only point-valued
measurements are considered. Recently, further relaxation of
the assumptions on uniqueness for the a posteriori probability
distributions was considered in [26] by allowing set-valued
measurements and the multiple sensor fusion problem was con-
sidered in [27] utilizing the information filter approach. When
the set-valued measurements are treated as non-stochastic un-
certainty, the choice of different points in the measurement set
at each time instant only leads to different values of the estima-
tion mean (which we refer to as “the set of estimation means”
hereafter), while the estimation error covariance remains un-
affected. These results allow set-valued event-based estimators
to be designed; however, several problems remain unexplored
with respect to these new set-valued filters, which are of funda-
mental importance for the study of event-based estimation:

1) For multiple point-valued measurements, the perfor-
mance is quantified only in terms of the estimation error
covariance, and it is known that the fusion sequence
used to update the sensor measurement information at the
same time instant does not affect the resultant centralized
Kalman filter. For set-valued Kalman filters, the overall
performance is measured according to two terms, the
estimation error covariance and the size of the set of
estimation means (e.g., the size of an ellipsoidal set can
be quantified by the trace of a positive semidefinite matrix
defining the shape of the set in this work). Apparently, the

fusion sequence still does not affect the error covariance,
but its effect on the size of estimation means is not known.

2) In [25], it was shown that the set of estimation means
converges towards a singleton as time goes to infinity
for point-valued measurements. However, the asymptotic
behavior of the size of the set of estimation means is
not clear when set-valued measurements are considered.
In addition, since the summation of ellipsoids may not
be ellipsoids at all [28], the analytical expression of
the exact set-valued estimator cannot be maintained, and
consequently the set of estimation means can only be cal-
culated approximately [26]; in this regard, the asymptotic
property of the size of the approximate set of estimation
means is of importance as well.

3) For standard Kalman filters, it is known that increasing
the number of sensors can reduce the estimation error
covariance; this result is still valid for the set-valued case.
The effect of adding more sensors on the size of the set of
estimation means is, however, still unknown.

In this work, we seek to explore the above problems for
linear time-invariant systems with an emphasis on event-based
estimation. The estimation problem is considered in the mul-
tiple sensor scenario, where each sensor is allowed to provide
its own set-valued measurement parameterized by ellipsoids.
The difference between the results presented in this work and
those in [12], [13] is that the additional information introduced
by the event-triggering conditions is treated as non-stochastic
uncertainty in the current work, which leads to a set-valued
estimator, while this information was exploited as stochastic
uncertainty in [12], [13], based on which approximate MMSE
estimates were developed. The main contributions are summa-
rized as follows.

1) The exact set of estimation means is shown to be invariant
with respect to the fusion sequences. Since the exact
set-valued filter is normally not implementable, a two-
step approximate set-valued estimator is proposed and
is shown to be unaffected by the fusion sequences. The
approximate estimator proposed here is different from
that in [27], which was given in the information filter-
ing form.

2) The boundedness of the size of the set of estimation
means for the exact set-valued filter is proved. For the
approximate estimator, we show that if the closed-loop
matrix is contractive at steady state, then the boundedness
of the size of the set of estimation means is guaranteed;
otherwise, there exists an invertible linear transformation
such that the size of the set of estimation means of the ap-
proximate estimator after the transformation is bounded.

3) An upper bound on the steady-state performance in terms
of the size of the set of estimation means is proposed,
based on which the conditions can be characterized to
test whether a smaller upper bound on the size of the set
of estimation means at steady state can be achieved by
including an additional sensor. For scalar systems, a suf-
ficient condition is provided for guaranteed performance
improvement. Based on the developed results, an optimal
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event-triggering condition design problem is further for-
mulated and solved.

The application of set-valued filtering to event-based state
estimation provides an encouraging approach to exploiting
the information contained in the event-triggering conditions.
Compared with the approximate event-based MMSE estimates,
the centre of the set-valued estimator always serves as a point-
valued estimate with the best robustness performance, in the
sense that it has the smallest worst-case distance to the Kalman
filter with periodic observations; due to the results presented in
this work, this worst-case distance is numerically computable.
By comparison, the precision of the Gaussian assumptions of
the non-Gaussian distributions utilized to develop the approx-
imate event-based MMSE estimates are normally not possible
to be verified [13]. In addition, due to the lack of closed-form
expressions, the approximate event-based MMSE estimators
are computationally expensive to implement for sensors with
more than one channel (namely, m > 1) [13], although for the
case of m = 1, the empirical estimation performance of the
approximate event-based MMSE estimator is observed to be
similar to that of the centre of the set-valued estimator. Com-
pared with the Kalman filter with intermittent observations, the
set-valued estimator has a smaller estimation covariance (at the
cost of getting a set of estimation means) due to the utilization
of the same filtering gain for all estimates in the set. The centre
of the set-valued estimator also has improved empirical estima-
tion performance in terms of the average state estimation error
compared with the Kalman filter with intermittent observations,
as will be shown by the simulation examples.

The remainder of the paper is organized as follows: Section II
presents the system description and problem setup. Section III
discusses the effect of the fusion sequence and the proposed
approximate set-valued estimator. The asymptotic properties of
the set-valued estimators are provided in Section IV. Section V
presents analysis on performance improvement. The applica-
tion of the results to set-valued event-based estimation is given
in Section VI, followed by the concluding remarks and future
work in Section VII.

The following notation and symbols will be used. R denotes
the set of real numbers. N denotes the set of nonnegative in-
tegers. N+ denotes the set of positive integers. Let m,n ∈ N

+;
R

m×n denotes the set of m by n real-valued matrices. For
brevity, denote R

m := R
m×1. For v ∈ R

m, let ‖v‖ denote its
Euclidean norm. For Z ∈ R

m×n, Z� denotes the transpose of
Z, and ‖Z‖2 denotes the spectral norm of Z. The symbol I
denotes the identity matrix with a context-dependent size. For
X,Y ∈ R

n×n, X > (≥)Y means X − Y is positive definite
(positive semidefinite). For two convex sets X ,Y ⊆ R

n, let
X ⊕ Y denote their Minkowski sum, namely, X ⊕ Y := {x+
y|x ∈ X , y ∈ Y}. Also,

⊕n
i=1 Xi := X1 ⊕X2 ⊕ · · · ⊕ Xn. For

T ∈ R
m×n and X ⊆ R

n, define TX as

TX := {Tx ∈ R
m|x ∈ X}.

Given Y > 0, an ellipsoidal set (or an ellipsoid) Y = E(c, Y )
in R

m is defined as

Y :=E(c, Y )=
{
y ∈ R

m|(y − c)�(Y )−1(y − c)≤1, Y > 0
}

if Y is singular and Y ≥ 0, Y is parameterized as1

Y =
{
y ∈ R

m|〈l, y〉 ≤ 〈l, c〉+ 〈l, Y l〉 1
2 , ∀ l ∈ R

m
}
.

In this work, we define the size of an ellipsoidal set Y as TrY ,
and we say set Y has a bounded size if TrY is bounded.2

Let m,n, p, q ∈ N satisfying m ≤ n and p ≤ q; Nm:n de-
notes the set of integers {m, . . . , n}; letting {si ∈ N|i ∈
N1:r, r ∈ N

+} be an indexed set of integers, ysm:n de-
notes the set {ysm , . . . , ysn}, and ysm:n

p:q denotes the set
{ysm:n

p , . . . , ysm:n
q }; similarly, ysm:n ∈ Ysm:n denotes the re-

lationship ysm ∈ Ysm , . . . , ysn ∈ Ysn , and ysm:n
p:q ∈ Ysm:n

p:q de-
notes the relationship ysm:n

p ∈ Ysm:n
p , . . . , ysm:n

q ∈ Ysm:n
q . For

a vector-valued random variable x, we use E(x) and Cov(x) to
denote its mean and covariance, respectively.

II. PROBLEM SETUP

The process is linear time-invariant and evolves in discrete
time driven by white noise

xk+1 = Axk + wk (1)

where x ∈ R
n is the state, and w ∈ R

n is the noise input, which
is zero-mean Gaussian with covariance Q ≥ 0. We assume
(A,Q) is stabilizable.3 The initial value x0 of the state is also
zero-mean Gaussian, with covariance P0. The state information
is measured using M different sensors, the measurement equa-
tions of which are

yik = Cixk + vik (2)

where yi∈R
m denotes the output of the ith sensor, vi∈R

m is
zero-mean Gaussian with covariance Ri for i∈N1:M, and vi and
vj are uncorrelated if i �=j. In addition, x0, w, and vi are uncor-
related with each other. We assume (A,C) is detectable, where
C :=[C�

1 , . . . , C
�
M]�; define R :=diag{R1, R2, . . . , RM}.

We consider the scenario where the values of the measure-
ment outputs yik are not exactly known, but are only partially
known in the sense that only the exact description of sets
Yi
k is known such that yik ∈ Yi

k for all i ∈ N1:M . To some
extent, this reflects the estimator’s inability of telling a point
measurement from an uncountable set of measurements, due to
the lack of knowledge, e.g., the situation the remote estimator
is facing during the non-event instances in an event-based
estimation scenario [12]. As a result, the uniqueness of the
posteriori probability distributions cannot be maintained, which
gives rise to the set-valued Kalman filters [25]. Due to the
set-valued measurements from the M sensors at each time
instant, one feasible way to update the state estimate is to

1Note that the way of parameterizing an ellipsoidal set does not affect the
results developed in this work.

2Notice that based on this definition, the boundedness of the size of Y
is independent of its centre c ∈ R

m, since c only describes the relative
position of Y . Normally the size of an ellipsoid is given by the maximal
eigenvalue of Y . In terms of boundedness, however, these two definitions are
equivalent.

3Note that this is equivalent to the stabilizability of the pair (A,
√
Q), which

can be proved based on the PBH criteria.
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fuse the measurement information from the sensors sequen-
tially piece by piece according to some sequence, which (can
be chosen either arbitrarily or by design) is mathematically
given as

s = [s1, s2, . . . , sM ]

where si ∈ N1:M and si �= sj unless i = j, for i, j ∈ N1:M .
We refer to this sequence as “fusion sequence” in this work.
Note that in a fusion sequence, each sensor appears once and
only once, and the sequence is used to update the informa-
tion from different sensors measured at the same time instant
and does not affect the sensor measurement information in
this work.

In standard Kalman filtering, the optimal state prediction x̃s0
k

that minimizes the estimation error covariance at time instant k
is known to satisfy

x̃s0
k = E

(
xk|ys1:M0 , ys1:M1 , . . . , ys1:Mk−1

)
(3)

where the superscript s0 is used to indicate that no sensor
information measured at time k has been updated; similarly,
for i ∈ N1:M , the optimal state estimate x̃si

k after updating the
measurement information from sensors s1, s2, . . . , si at time k
satisfies

x̃si
k = E

(
xk|ys1:M0 , . . . , ys1:Mk−1 , ys1:ik

)
. (4)

The corresponding estimation error covariance satisfies

P s0
k :=Cov

(
xk|ys1:M0 , ys1:M1 , . . . , ys1:Mk−1

)
=AP sM

k−1A
� +Q (5)

P si
k :=Cov

(
xk|ys1:M0 , ys1:M1 , . . . , ys1:Mk−1 , ys1:ik

)
=P

si−1

k − P
si−1

k C�
si

(
CsiP

si−1

k C�
si
+Rsi

)−1
CsiP

si−1

k

(6)

for i ∈ N1:M . In set-valued filtering [26], [27], the set-valued
measurements are treated as non-stochastic uncertainty; as a
result, the choice of different points in the measurement set
only leads to different values of the estimation mean, while the
estimation error covariance remains unaffected. Specifically,
the set of estimation means is defined as

X s0
k :=

{
E
(
xk|ys1:M0:k−1

)
|ys1:M0:k−1 ∈ Ys1:M

0:k−1

}
(7)

X si
k :=

{
E
(
xk|ys1:M0:k−1, y

s1:i
k

)
|ys1:M0:k−1 ∈ Ys1:M

0:k−1, y
s1:i
k ∈ Ys1:i

k

}
(8)

for i ∈ N1:M , where X s0
k denotes the set of estimation means

when no sensor information is fused at time k (namely, the
prediction of the state), and for i ∈ N1:k, X si

k denotes the
set of estimation means after fusing the information of sen-
sor s1, s2, . . . , si at time instant k. We assume X s0

0 = {0},
following the zero-mean Gaussian assumption of x0. The
definition of estimation error covariance still follows that of
the standard Kalman filters, which has been given in (5) and
(6). In light of the results in [25]–[27], the exact set-valued

Kalman filter with multiple sensor measurements is recursively
given as

X s0
k =AX sM

k−1 (9)

P s0
k =AP sM

k−1A
� +Q (10)

and for i ∈ N0:M−1

X si+1

k =
(
I −K

si+1

k Csi+1

)
X si

k ⊕K
si+1

k Ysi+1

k (11)

where

K
si+1

k =P si
k C�

si+1

(
Csi+1

P si
k C�

si+1
+Rsi+1

)−1

P
si+1

k =P si
k −P si

k C�
si+1

(
Csi+1

P si
k C�

si+1
+Rsi+1

)−1

Csi+1
P si
k .

(12)

From (12), the filter gain and covariance matrix of the set-
valued Kalman filter do not depend on the measurement sets
but evolve similarly as those of the standard Kalman filter,
for which a point-valued measurement is updated at each
time instant. For the scenario of event-based estimation, this
implies that the corresponding set-valued event-based estimator
responds to the events only by updating the set of estimation
means, but the filter gain and covariance matrix evolve as if
the point-valued measurements have been received at each time
instant.

In Kalman filtering, the confidence on the estimate is fully
characterized by the estimation error covariance; while in set-
valued Kalman filtering, a set of probability density functions
with the same covariance is considered, and the unknown in-
formation caused by stochastic uncertainty and non-stochastic
uncertainty is treated separately: the confidence on stochastic
uncertainty is still quantified as covariance [(10) and (12)]; the
confidence on non-stochastic uncertainty is quantified as the
size of the set of estimation means [(9) and (11)]. As will
be shown in this work, this separation can help provide new
insights for event-based estimation problems.

In this work, we assume Yi
k are ellipsoidal sets parame-

terized as

Yi
k := E

(
cik, Y

i
k

)
. (13)

Notice that the parameters of Yi
k can be known by the esti-

mator without communication from the sensor. For instance,
in an event-based estimation scenario with the aforementioned
“send-on-delta” triggering conditions in Section I, cik is the
previously transmitted measurement, while Y i

k may be designed
off-line as a constant matrix, like in Examples 2 and 3 in this
paper and thus can be known to the estimator beforehand.4

In the literature, there are alternative ways of describing set-
valued measurements, e.g., in terms of parallelotopes and zono-
topes [29], [30]. The properties of the resultant estimates are,
however, difficult to characterize, due to the lack of intuitive
mathematical description of the notion “sizes of the sets.”

4Note that the estimator may also know Y i
k when it is time-varying. For

instance, if the threshold in the “send-on-delta” condition would vary at each
event instant, it could be communicated to the estimator together with the
corresponding measurement. In this case, Y i

k is time-varying and known by
the estimator.
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Although the Minkowski sum of ellipsoids (which may not be
an ellipsoid) is difficult to calculate exactly [28], the ellipsoidal
sets are very helpful in analyzing the dynamic behavior of
the estimates, since the size and shape of an ellipsoid are
uniquely determined by a positive semidefinite matrix. At the
same time, outer ellipsoidal approximations are conveniently
employed to calculate the set that contains the set of means of
the estimates at each time instant, which is calculated according
to the following result.

Lemma 1 ([28, Lemma 2.2.1]): Let p > 0. We have

E(c1, X1)⊕E(c2, X2)

⊆E
(
c1 + c2, (1 + p−1)X1 + (1 + p)X2

)
. (14)

Normally, p is calculated in some optimal sense. In this work,
we take p = (TrX1)

1/2/(TrX2)
1/2, which minimizes the trace

of (1 + p−1)X1 + (1 + p)X2. In this way, we are able to eval-
uate the outer ellipsoidal approximate estimates

X̂ s0
k := E (x̂s0

k , Xk) ⊇ X s0
k (15)

of X s0
k according to Lemma 1 and (9)–(11), which will be

formally introduced in the next section to take account of the
effect from sensor fusion sequence.

Based on the introduced notations, we are now in the position
to present the problems to be considered in this work:

1) Analyze the effect of the sensor fusion sequence s on the
exact and approximate sets of estimation means X s0

k and
X̂ s0

k , respectively;
2) Analyze the asymptotic behavior of the sizes of X s0

k and
X̂ s0

k subject to multiple sensor set-valued measurements.
3) Analyze the effect of including additional sensors on X̂ s0

k .
In addition, after obtaining the solutions to these problems,

we will apply them to the analysis and design in event-based
state estimation.

III. SENSOR FUSION

In this section, we analyze the effect of the fusion sequence
on the size of the set of estimation means, based on which
a “sequence-independent” separate fusion principle of fusing
multiple sensor measurements is proposed. This property is of
fundamental importance for the analysis of asymptotic behavior
and performance improvement in the multiple-sensor scenario,
without which the whole set of fusion sequences (the cardinal-
ity of which equals M !) would have to be considered to analyze
the worst-case behavior.

To aid the analysis, we first present the following lemma on
the properties of Minkowski sum.

Lemma 2: Let X ,Y ⊆ R
n, and let T : Rn → R

n be a linear
transformation. Then T (X ⊕ Y) = (TX )⊕ (TY).

Proof:

(TX )⊕ (TY) = {Tx|x ∈ X} ⊕ {Ty|y ∈ Y}
= {a+ b|a ∈ {Tx|x ∈ X}, b ∈ {Ty|y ∈ Y}}
= {T (x+ y)|x ∈ X , y ∈ Y}
=T (X ⊕ Y).

�

Now we show that the fusion sequence does not affect the exact
set of means of the estimates. Before that, we first present some
insights into the structure of the filter gains and the closed-loop
system matrix. For a given fusion sequence s, the closed-loop
matrix Ās0

k satisfies

Ās0
k := A

M∏
i=1

(I −Ksi
k Csi) (16)

and the filter gain K̄
sj
k for the jth sensor satisfies

K̄
sj
k := A

⎡
⎣ M∏
i=j+1

(I −Ksi
k Csi)

⎤
⎦Ksj

k . (17)

For these two matrices, we have the following equivalent
representations.

Proposition 1: Ās0
k P s0

k = AP sM
k , K̄sj

k = AP sM
k C�

sj
R−1

sj
.

Proof: First, applying the matrix inversion lemma to (12),
we have

P
si+1

k =
(
I + P si

k C�
si+1

R−1
si+1

Csi+1

)−1

P si
k . (18)

Similarly, for Ksi+1

k , we have

K
si+1

k =
(
I + P si

k C�
si+1

R−1
si+1

Csi+1

)−1

P si
k C�

si+1
R−1

si+1

=P
si+1

k C�
si+1

R−1
si+1

. (19)

Also, from (12) and the fact that Ksi+1

k = P si
k C�

si+1
(Csi+1

×
P si
k C�

si+1
+Rsi+1

)−1, we have

P
si+1

k =
(
I −K

si+1

k Csi+1

)
P si
k . (20)

From (17), we have

K̄
sj
k =A

⎡
⎣ M∏
i=j+1

(I −Ksi
k Csi)

⎤
⎦Ksj

k

=A

⎡
⎣ M∏
i=j+1

(I −Ksi
k Csi)

⎤
⎦P sj

k C�
sj
R−1

sj

=AP sM
k C�

sj
R−1

sj
(21)

where the last equality is obtained by recursively applying
(20). The relation for Ās0

k can be obtained following a similar
argument. �

Remark 1: Notice that if P s0
k is nonsingular, we have Ās0

k =

AP sM
k (P s0

k )−1. The above result implies that the filter gains
can be updated either by calculating the Riccati equation in (12)
corresponding to (Csi , Rsi) sequentially or by lifting all sensor
information matrices {(Csi , Rsi)} as (C,R) and computing the
Riccati equation by replacing Csi and Rsi with C and R in (12).
The calculation of Ās0

k is straightforward as it is well know that
it satisfies

Ās0
k = A−AP s0

k C� (CP s0
k C� +R

)−1
. (22)
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The update of the set of estimation means, on the other
hand, can only be updated by sequentially fusing the sensor
information, although the fusion result is sequence indepen-
dent, as is shown in Theorem 1 below. For brevity, write

g̃i(X) := X −X(Ci)
� [

CiX(Ci)
�
+Ri

]−1

CiX. (23)

Before stating the theorem, we first present the following result.
Lemma 3: For P ≥ 0, g̃1(g̃2(P )) = g̃2(g̃1(P )).

Proof: For g̃2(g̃1(P )), following some matrix manipula-
tions, we have

g̃2 (g̃1(P )) = P − P
[
C�

1 C
�
2

] [X11 X12

X21 X22

] [
C1

C2

]
P (24)

where

X11 =
(
C1PC�

1 +R1

)−1

+
(
C1PC�

1 +R1

)−1
C1PC�

2

×
{
C2

[
P − PC�

1

(
C1PC�

1 +R1

)−1
C1P

]

C�
2 +R2

}−1

C2PC�
1

[
C1PC�

1 +R1

]−1

X12 =X�
21

= −
(
C1PC�

1 +R1

)−1
C1PC�

2

×
{
C2

[
P−PC�

1

(
C1PC�

1 +R1

)−1
C1P

]
C�

2 +R2

}−1

X22 =
{
C2

[
P−PC�

1

(
C1PC�

1 +R1

)−1
C1P

]
C�

2 +R2

}−1

.

From the matrix inversion lemma, we further have

g̃1 (g̃2(P )) =P − P
[
C�

1 C�
2

]
×
[
C1PC�

1 +R1 C1PC�
2

C2PC�
1 C2PC�

2 +R2

]−1 [
C1

C2

]
P

=P − P
[
C�

1 C�
2

]
×
([

C1

C2

]
P
[
C�

1 C�
2

]
+

[
R1 0
0 R2

])−1 [
C1

C2

]
P

=

(
I+P [C�

1 C�
2 ]

[
R1

R2

]−1 [
C1

C2

])−1

P

=
[
I + P

(
C�

1 R−1
1 C1 + C�

2 R−1
2 C2

)]−1
P.

By symmetry, we have

g̃2 (g̃1(P )) =
[
I + P

(
C�

2 R
−1
2 C2 + C�

1 R
−1
1 C1

)]−1
P

which completes the proof. �
Based on this result, we are ready to present the theorem.
Theorem 1: Let s1, s2 denote two different sensor fusion

sequences. We have

1) If P
s10
k−1 = P

s20
k−1, then P

s10
k = P

s20
k .

2) If X s10
k−1 = X s20

k−1, then X s10
k = X s20

k .

Proof: From Lemma 3, the estimation error covariance is
not affected if we switch the position of any two neighbouring
elements sji and sji+1 in a fusion sequence sj . The first part of
the theorem follows from the fact that starting from s2, s1 can
be obtained by performing a finite number of position switches
of the neighbouring elements.

To prove the second part, first notice that according to
Lemma 2, we have

X sr0
k = Ā

sr0
k−1X

sr0
k−1 ⊕

M⊕
j=1

K̄
srj
k−1Y

srj
k−1 (25)

for r ∈ N1:2. From Proposition 1, K̄i
k−1 only depends on Ci

and Ri, which are not affected by the relative position of sensor
i in the fusion sequence. Since for i ∈ N1:M , each sensor i
appears once and only once in a fusion sequence, different
fusion sequences will lead to different permutation of the same
set of summands {K̄i

k−1Yi
k−1|i ∈ N1:M} in the second term on

the right-hand side of (25). Finally, from (22), Ā
sr0
k−1X

sr0
k−1 is

unaffected by the fusion sequence either, the conclusion now
follows from the commutativity and associativity of Minkowski
sums over convex bodies [31], [32]. �

Furthermore, note that since (A,C) is detectable

Ā = lim
k→∞

A

[
M∏
i=1

(
I −Ksi

k−1Csi

)]

exists and Ā is stable [33], which will be used in the stability
analysis in the next section. The above result shows that the
estimation performance in terms of either the estimation error
covariance or the size of the set of estimation means does not
depend on the fusion sequence s for the exact set of means
of the estimates. Unfortunately, the exact sets of means of the
estimates either in the form (25) or the recursive form (9)–(11)
are difficult to obtain analytically when the measurements are
given in terms of ellipsoidal sets, since the summation of
ellipsoids may not be ellipsoids at all [28], and consequently the
analytical expression of the exact set-valued estimator cannot
be maintained. Motivated from the above result, however, we
propose the following procedure in Algorithm 1 to calculate
the outer approximation of the set of estimation means.

Algorithm 1 indicates that for multiple-sensor set-valued
filtering, the fusion of covariance and estimation means should
be performed separately: the estimation error covariance is
updated first (see lines 5–10), where the covariance updates are
first calculated by solving the Riccati equation for C and R,
and Ās0

k and K̄si
k are respectively calculated according to (22)

and (21); then the update of estimation means is performed
(see lines 11–19), where the set of estimation means X̂ s0

k are
calculated by iteratively fusing the summands in (25) in a two-
by-two fashion based on Lemma 1 according to an arbitrary
fusion sequence s. One may think that it is not necessarily
to do so, as is the case for classical Kalman filtering with
multiple point-valued measurements. We show that, however,
the proposed procedure bears the basic properties of the clas-
sical Kalman filter while enjoying the benefits of distributed
implementation.
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Algorithm 1 Calculation of X̂ s0
k

1: X̂ s0
0 = E(0, 0);

2: P s0
0 = P0;

3: k = 0;
4: while k ≥ 0 do
5: P sM

k = P s0
k − P s0

k C�(CP s0
k C� +R)

−1
CP s0

k ;
6: P s0

k+1 = AP sM
k A� +Q;

7: Ās0
k = A−AP s0

k C�(CP s0
k C� +R)

−1
;

8: for i = 1 : M do
9: K̄si

k = AP sM
k CsiR

−1
si

;
10: end for
11: X̄ s0

k := E(x̄s0
k , X̄s0

k ) = Ās0
k X̂ s0

k

12: = E(Ās0
k x̂s0

k , Ās0
k Xk(Ā

s0
k )

�
);

13: for i = 1 : M do

14: psik =

√
TrX̄

si−1

k /TrK̄si
k Y si

k (K̄si
k )

�;

15: x̄si
k = x̄

si−1

k + K̄si
k csik ;

16: X̄si
k =(1+1/psik )X̄

si−1

k +(1+psik )K̄
si
k Y

si
k (K̄si

k )
�;

17: X̄ si
k := E(x̄si

k , X̄si
k );

18: end for
19: X̂ s0

k+1 := X̄ sM
k ;

20: k = k + 1;
21: end while
22: end

To see this, we look into the structure of the outer approxi-
mation of the set of the means of the estimates with the help of
the following lemmas [28].

Lemma 4: Let E(a,Q) ⊆ R
n. Then x ∈ E(a,Q) is equiva-

lent to Ax+ b ∈ E(Aa+ b, AQA�).
Lemma 5:

l⊕
i=1

E(ci, Xi) ⊆ E(c0, X0) (26)

with c0 =
∑l

i=1 ci

X0 =

(
l∑

i=1

qi

)
l∑

i=1

q−1
i Xi (27)

for all qi > 0, i ∈ N1:l.
Following these lemmas and (25), we have the following

updating equations of X̂ s0
k from X̂ s0

k−1 = E(x̂s0
k−1, Xk−1) and

Ysi
k = E(csik , Y si

k ):

X̂ s0
k = E (x̂s0

k , Xk) (28)

x̂s0
k = Ās0

k−1x̂
s0
k−1 +

M∑
j=1

K̄
sj
k−1c

sj
k−1 (29)

Xk =

⎛
⎝√TrĀs0

k−1Xk−1

(
Ās0

k−1

)�
+

M∑
j=1

√
TrK̄

sj
k−1Yk−1

(
K̄

sj
k−1

)�⎞⎠

×
[(√

TrĀs0
k−1Xk−1

(
Ās0

k−1

)�)−1

Ās0
k−1Xk−1

(
Ās0

k−1

)�

+

M∑
j=1

(√
TrK̄

sj
k−1Yk−1

(
K̄

sj
k−1

)�)−1

× K̄
sj
k−1Yk−1

(
K̄

sj
k−1

)� ]
. (30)

Using a similar argument as that in Section IV-A of [27],
(30) can be evaluated in an iterative way as in lines 11–19
of Algorithm 1 according to an arbitrary sequence. This not
only helps to reduce the computational complexity at the fusion
centre through distributed computation (the acknowledgement
or computation of Ās0

k and K̄si
k at sensor i would be necessary),

but also guarantees the invariance of outer ellipsoidal approx-
imation of the set of estimation means with respect to the
fusion sequence. In [27], to possess this property, a different
filter form, namely, the information filter [34], was considered.
On the other hand, the filter form utilized here inherits the
original form of Kalman filter with multiple point-valued mea-
surements, due to the separate covariance and estimate updating
procedure in Algorithm 1. Notice that in fact, at steady state,
only the update of the estimation means (lines 11–19) is neces-
sary, since the solution to the Riccati equation converges to its
unique stabilizing solution, and therefore the algorithm can be
implemented in a completely distributive way without consid-
ering covariance update at the steady state.

IV. ASYMPTOTIC PROPERTIES OF THE SET OF

MEANS OF THE ESTIMATES

In this section, the objective is to discuss the asymptot-
ical boundedness properties of both the exact and outer-
approximate sets of estimation means for the multiple sensor
case. We first focus on the single sensor case and analyze the
asymptotic properties of the set-valued mean evolutions, and
then extend the results to multiple sensor case. When there is
only one sensor, the equations are given by

X 0
k =AX 1

k−1 (31)

X 1
k =(I −KkC)X 0

k ⊕KkYk. (32)

In the prediction form, we have

X 0
k+1 = ĀkX 0

k ⊕ K̄kYk (33)

where Āk = A(I −KkC), K̄k = AKk. Correspondingly, let
X̂ 0

k = E(x̂0
k, Xk) and Yk = E(ck, Yk), and the approximate

estimate is given by

X̂ 0
k+1 = E

(
Ākx̂

0
k + K̄kck, Xk+1

)
(34)

Xk+1 =

⎛
⎝1 +

√
TrK̄kYkK̄�

k√
TrĀkXkĀ�

k

⎞
⎠ ĀkXkĀ

�
k

+

⎛
⎝1 +

√
TrĀkXkĀ�

k√
TrK̄kYkK̄�

k

⎞
⎠ K̄kYkK̄

�
k . (35)
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The objective of this section is to show the boundedness
of the sizes of the sequence of sets {X 0

k } and the possible
boundedness of the sizes of the sequences of sets {X̂ 0

k }. Before
continuing, we give the following lemma.

Lemma 6: Let Q ≥ 0, and 0 ≤ P < I . Then TrQP ≤ TrQ.
Proof: Since 0 ≤ P < I , from [35, Theorem 4.1.5], there

exists a real orthogonal matrix U such that U� = U−1 and

U�PU = U−1PU = diag{p1, p2, . . . , pn}

satisfying 0 ≤ pi < 1, pi being the eigenvalues of P . Let p∗ =
maxi∈N1:n

pi < 1. We have

TrQP = TrU−1QUU−1PU = TrU−1QUdiag{pi}.

Since U−1QU = U�QU ≥ 0, the diagonal elements of
U−1QU are nonnegative. Thus, we have

TrU−1QUdiag{pi} ≤ TrU−1QUp∗I = p∗TrQ ≤ TrQ.

Notice that since p∗ < 1, the equality holds if and only if
Q = 0. �

Now we are ready to present the first result on the asymptotic
properties of the sizes of the sets of the means.

Theorem 2: Assume the pair (A,C) is detectable and (A,Q)
is stabilizable. Let Ā := limk→∞ Āk and K̄ := limk→∞ K̄k.

1) The sizes of the sequence of sets {X 0
k } are asymptotically

bounded for all measurement set sequences {Yk} with
bounded sizes.

2) If ‖Ā‖2 < 1, the sizes of the sequence of ellipsoids
{X̂ 0

k } are asymptotically bounded for all measurement set
sequences {Yk} with bounded sizes.

3) If ‖Ā‖2 ≥ 1, there exists an invertible linear transforma-
tion T : Rn → R

n such that the sizes of the sequence of

the set of estimation means { ˆ̃X
0

k} for the transformed
state x̃k := Txk are asymptotically bounded for all mea-
surement set sequences {Yk} with bounded sizes.

Proof: Since (A,C) is detectable and (A,Q) is stabi-
lizable, the solution to the Riccati equation converges to the
unique stabilizing solution. Thus, Ā = limk→∞ Āk and K̄ =
limk→∞ K̄k are well defined, and satisfy Ā = A− K̄C and
K̄ = AP̄C�(CP̄C� +R)

−1
, P̄ being the stabilizing solution

to the Riccati equation

P = APA� −APC�(CPC� +R)
−1
CPA� +Q.

We will prove parts (2) and (3) before proving the result in
part (1).

First we show that if ‖Ā‖2 < 1, the evolution of the size of
the outer approximation of the Minkowski sum in (34), (35) is
asymptotically bounded. Since the evolution of (35) does not
affect the evolution of the covariance and (A,C) is detectable,
it suffices to consider the steady-state Kalman filter gain, which
is equivalent to the consideration of Ā. At steady state, taking
traces on both sides of (35), we have

TrXk+1 =

(
1 +

√
Tr K̄YkK̄�√
Tr ĀXkĀ�

)
Tr ĀXkĀ

�

+

(
1 +

√
TrĀXkĀ�√
Tr K̄YkK̄�

)
Tr K̄YkK̄

�

=
(√

Tr ĀXkĀ� +
√

Tr K̄YkK̄�
)2

. (36)

Since Xk+1 ≥ 0, we have TrXk+1 ≥ 0. Thus√
TrXk+1 =

√
Tr ĀXkĀ� +

√
Tr K̄YkK̄�

=
√

TrXkĀ�Ā+
√

Tr K̄YkK̄�

≤
√
a∗
√

TrXk +
√

Tr K̄YkK̄� (37)

for some a∗ ∈ (0, 1), which follows from ‖Ā‖2 < 1 and
Lemma 6. This implies the boundedness of {

√
TrXk}, given

the boundedness of {Yk}.
Now we consider the case ‖Ā‖2 ≥ 1. Since Ā is stable, there

exists Ps > 0 such that Ps is the solution to the Lyapunov equa-
tion Ā�PĀ− P + I = 0, which implies Ps ≥ I > 0. Now we
introduce a linear transformation T = P

1/2
s : Rn → R

n and let
x̃k = Txk. Apparently x̂k evolves according to

x̃k+1 = Ãx̃k + B̃wk, yk = C̃x̃k + vk

where Ã = TAT−1, B̃ = T , C̃ = CT−1. Furthermore, it is
easy to verify that ¯̃K := ÃP̃ C̃�(C̃P̃ C̃� +R)

−1
= TK̄ and

P̃ = T P̄T�, P̃ being the stabilizing solution to the Riccati
equation

P = ÃP Ã� − ÃP C̃�(C̃P C̃� +R)
−1
C̃P Ã� + TQT�.

Define ¯̃A := Ã− ¯̃KC̃, we have ¯̃A = T (A− K̄C)T−1 =

P
1/2
s ĀP

−1/2
s . Thus

¯̃A
� ¯̃A =P−1/2

s Ā�PsĀP−1/2
s

=P−1/2
s (Ps − I)P−1/2

s = I − P−1
s < I

which implies ‖ ¯̃A‖2 < 1. Therefore the conclusion of part (3)
follows from the same argument used for proof of part (2).

Finally we prove the result in part (1). The case of ‖Ā‖2 <
1 follows from the result in part (2), since {X̂ 0

k } provides an
outer approximation of {X 0

k }. To prove the case of ‖Ā‖2 ≥ 1,
we analyze the relationship between the exact Minkowski sum
for the original state estimate and that of the transformed state
estimate. Similar to (33), we have

X̃ 0
k+1 = ¯̃AkX̃ 0

k ⊕ ¯̃KkYk (38)

where ¯̃Ak = Ã− ¯̃KkC, ¯̃Kk = ÃP̃k−1C̃
�(C̃P̃k−1C̃

� +R)
−1

and P̃k being the solution to the Riccati equation P̃k+1 =

ÃP̃kÃ
� − ÃP̃kC̃

�(C̃P̃kC̃
� +R)

−1
C̃P̃kÃ

� + TQT� subject
to P̃0 = TP0T

�. At time t = 0, X̃ 0
0 = {Tx0} = TX 0

0 . Note
that following a similar argument as that in the proof of part (3),
¯̃Ak = TĀkT

−1 and ¯̃Kk = TK̄k. Now assume at time t = k,
the relationship X̃ 0

k = TX 0
k holds. We have

X̃ 0
k+1 = TĀkT

−1X̃ 0
k ⊕ TK̄kYk. (39)
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Following the definition Minkowski sum

X̃ 0
k+1 :=

{
TĀkT

−1x̃+ TK̄ky|x̃ ∈ X̃ 0
k , y ∈ Yk

}
=
{
TĀkx+ TK̄ky|x ∈ X 0

k , y ∈ Yk

}
=
{
T (a+b)|a∈

{
Ākx|x ∈ X 0

k

}
, b ∈ {K̄ky|y ∈ Yk}

}
=T

(
ĀkX 0

k ⊕ K̄kYk

)
= TX 0

k+1.

Thus, X̃ 0
k = TX 0

k for all k. Since T is nonsingular, the bound-
edness of {X 0

k } is equivalent to that of {X̃ 0
k }. The conclusion

follows from part (3) of the theorem and the fact that { ˆ̃X
0

k}
provides an outer approximation of {X̃ 0

k }. �
Remark 2: From the above proof, a quantitative relationship

of the size of the set of estimation means with the sets of
measurements, the statistical properties of the noises and the
system matrices can be obtained. To see this, assume there
exists an upper bound Ȳ ≥ Yk for all k ∈ N. For the case
‖Ā‖2 < 1, from (37), we have√

TrXk+1 ≤ ‖Ā‖2
√

TrXk +
√

Tr K̄Ȳ K̄�. (40)

Thus, we have

lim
k→∞

√
TrXk ≤

√
Tr K̄Ȳ K̄�(
1− ‖Ā‖2

) (41)

where the system and noise parameters are reflected in K̄ and Ā

(Recall that K̄ = AP̄C�(CP̄C� +R)
−1

and Ā = A− K̄C,
respectively, P̄ being the stabilizing solution to the Riccati
equation P = APA� −APC�(CPC� +R)

−1
CPA� +Q).

This implies that an upper bound on the size of the set of
estimation means at steady state can be provided based on the
upper bound of the shape matrix Yk, the system matrices and the
covariance matrices of the noises. The same analysis applies to
the case of ‖Ā‖2 ≥ 1 by introducing the linear transformation
T = P

1/2
s . In addition, it is technically difficult to prove the

boundedness of {X̂ 0
k } based on the boundedness of { ˆ̃X

0

k},
since considering the trace operations in (35), the relationship

between X̂ 0
k and ˆ̃X

0

k is very complicated.
Remark 3: As we take p = (TrX1)

1/2/(TrX2)
1/2 in

Lemma 1, the obtained outer ellipsoidal approximation of the
set of the estimation means is the tightest approximation in the
sense of minimizing Tr[(1 + p−1)X1 + (1 + p)X2]. Even for
this tightest approximation, however, it is not clear whether its
size is bounded or not as the time goes to infinity. We show
in Theorem 2 that when Ā is contractive, the boundedness can
be proved. Although it is difficult to obtain the boundedness
result when Ā is non-contractive, we show that in this case, we
are able to find a constant nonsingular linear transformation T
such that the boundedness can be guaranteed if we transform
the states by the transformation T . In this way, if Ā is non-
contractive, we can apply the set-valued filtering technique to
the transformed system to ensure boundedness; as a point-
valued estimator is normally needed for control and monitoring
purposes, it suffices to apply the inverse transformation to the
centre of the set of estimation means to get the estimates of the
original states.

Another consequence of the above result is that for first-order
systems with constant size of measurement set, we are able to
exactly characterize the size of the set of means of the estimate
at steady state.

Corollary 1: For n = m = 1, and Yk = Y . The size of {Xk}
converges to |K̄

√
Y |/(1− |Ā|).

Proof: The proof of this result follows from inequality
(37) and the fact that |Ā| < 1 always holds for n = 1. �

The next result generalizes Theorem 2 to the multiple sensor
case, utilizing the properties of the outer-approximate esti-
mate set.

Corollary 2: Consider the exact and approximate multiple
sensor set-valued estimators in (9)–(12) and (28)–(30), respec-
tively. Assume (A,C) is detectable and (A,Q) is stabilizable.
Let Ā := limk→∞ Ās0

k .

1) The sizes of the sequence of sets {X s0
k } are asymptoti-

cally bounded for all measurement set sequences {Ysi
k }

with bounded sizes.
2) If ‖Ā‖2 < 1, the sizes of the sequence of ellipsoids

{X̂ s0
k } are asymptotically bounded for all measurement

set sequences {Ysi
k } with bounded sizes.

3) If ‖Ā‖2 ≥ 1, there exists an invertible linear transforma-
tion T : Rn → R

n such that the sizes of the set of mean
of the estimates { ˆ̃X

s0

k } for the transformed state x̃k :=
Txk are asymptotically bounded for all measurement set
sequences {Ysi

k } with bounded sizes.

Proof: To show this result, we establish the relationship
between the single sensor case and the multiple sensor case. By
calculating the traces of both sides for (30), it is not difficult to
verify that

TrXk =

(√
Tr Ās0

k−1Xk−1

(
Ās0

k−1

)�

+

M∑
i=1

√
Tr K̄si

k−1Y
si
k−1

(
K̄si

k−1

)�)2

(42)

and thus

√
TrXk =

√
Tr Ās0

k−1Xk−1

(
Ās0

k−1

)�
+

M∑
i=1

√
Tr K̄si

k−1Y
si
k−1

(
K̄si

k−1

)�
. (43)

Noticing the relationship with (37) and the boundedness of
{Y si

k }, the results are proved with a similar argument as that
in the proof of Theorem 2. �

Remark 4: Note that similar to the single sensor case, a
quantitative relationship of the size of the set of estimation
means with the sets of measurements, the statistical properties
of the noises and the system matrices can also be obtained.
Assume for i ∈ N1:M , there exist upper bounds Ȳ i ≥ Y i

k for all
k ∈ N. Write K̄i := limk→∞ K̄i

k, which satisfies K̄i =
AP̄CiR

−1
i according to Proposition 1, where P̄ is the

stabilizing solution to the Riccati equation P = APA� −
APC�(CPC�+R)

−1
CPA�+Q (Recall that C= [C�

1 , . . . ,
C�

M ]� and R = diag{R1, R2, . . . , RM} for the multiple sensor
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Fig. 1. Comparison of the sizes of the sets of estimation means for dif-
ferent choices of Y 2

k . (a) Performance comparison for Y 1
k = 1, Y 2

k = 1.2.
(b) Performance comparison for Y 1

k = 1, Y 2
k = 0.2.

case). Following the analysis in Remark 2 and from (43), we
have for the case of ‖Ā‖2 < 1

√
TrXk+1 ≤ ‖Ā‖2

√
TrXk +

M∑
i=1

√
Tr K̄iȲ i(K̄i)

�
. (44)

Thus, we have

lim
k→∞

√
TrXk ≤

∑M
i=1

√
Tr K̄iȲ i(K̄i)

�(
1− ‖Ā‖2

) . (45)

The same analysis applies to the case of ‖Ā‖2 ≥ 1 by introduc-
ing the linear transformation T .

V. PERFORMANCE IMPROVEMENT

Now we analyze the effect of including more sensors on
the estimation performance in the set-valued estimation frame-
work. Adding sensors always reduces the estimation error co-
variance, following the monotonicity properties of the solutions
to the Riccati equations. Adding sensors, however, does not
necessarily reduce the size of the set of the means of the
estimates, as is shown in the following example.

Example 1: Consider the system in (1) with n = 1, m = 1,
A = 1.3, Q = 1.2, C1 = 1, C2 = 0.6, R1 = 1.9, R2 = 0.7.
Assume Y 1

k = 1, we consider two choices of Y 2
k : 1) Y 2

k = 1.2
and 2) Y 2

k = 0.2. The performance in terms of the size of
the set of estimation means obtained by using sensor 1 alone
and using sensor 1 and sensor 2 are shown in Fig. 1(a) and
(b), respectively. It is shown that when Y 2

k = 0.2, the addition
of sensor 2 helps to improve the estimation performance; the
choice of Y 2

k = 1.2, however, deteriorates the performance in
terms of a larger size of the set of estimation means.

Motivated by the above example, given an existing sensor 1,
it is interesting to characterize conditions on properties of

sensor 2 such that improved performance can be guaranteed.
Now we make the problem more explicit. Suppose we have a
linear system originally measured only by sensor 1, namely, (1)
and (2) with M = 1. Now we introduce sensor 2 and measure
the system state using two sensors. We want to compare the
size of the set of estimation means obtained only using sensor 1
with that using sensors 1 and 2 together. First, we need to
quantify the performance. To do this, we focus on the steady-
state behavior of the size of the set of estimation means by
assuming that the closed-loop matrix Ā under consideration
satisfies ‖Ā‖2 < 1 (Note that if this condition is not satisfied by
the original system, we can introduce the linear transformation
T in the proof of Theorem 2 such that the transformed closed-
loop matrix satisfies this condition). For simplicity, we assume
that the shape matrix Y si

k of Ysi
k satisfies limk→∞ Y si

k = Y si ,
and further assume (A,Q) is reachable, which guarantees the
positive definiteness of P s0 (see the corollary [36, p. 710]).
From (43), we have√
TrXk ≤

∥∥Ās0
k−1

∥∥
2

√
TrXk−1

+

M∑
i=1

√
Tr K̄si

k−1Y
si
k−1

(
K̄si

k−1

)�
. (46)

Since Xk ≥ 0 and Y si ≥ 0, the solution to the following equa-
tion serves as an upper bound for the size of the set of means of
estimates at steady state

x̄ = ‖Ās0‖2x̄+
M∑
i=1

√
Tr K̄siY si(K̄si)

�
. (47)

From Proposition 1, this is equivalent to

x̄ =
∥∥∥AP sM (P s0)−1

∥∥∥
2
x̄

+

M∑
i=1

√
TrAP sMC�

si
R−1

si
Y siR−1

si
CsiP

sMA� (48)

where P s0 is the stabilizing solution to the algebraic Riccati
equation

P = APA� −APC�(CPC� +R)
−1
CPA� +Q (49)

and

P sM = P s0 − P s0C�(CP s0C� +R)
−1
CP s0 . (50)

Notice that P s0 = AP sMA� +Q. Thus from Proposition 1,
we have

Ās0 =AP sM (P s0)−1

=AP sM (AP sMA� +Q)
−1
. (51)

For the case of one sensor (M = 1), we denote P 1 := P s1 for
brevity, and the steady-state performance is

x̄1 =

√
TrAP 1C�

1 R
−1
1 Y 1R−1

1 C1P 1A�

1−
∥∥∥AP 1(AP 1A� +Q)

−1
∥∥∥
2

. (52)
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When sensor 2 is included (namely, M = 2), we denote P 2 :=
P s2 for brevity, and the steady-state performance becomes

x̄1,2 =

[√
TrAP 2C�

1 R
−1
1 Y 1R−1

1 C1P 2A�

+
√

TrAP 2C�
2 R

−1
2 Y 2R−1

2 C2P 2A�
]/

(53)

[
1−
∥∥∥AP 2(AP 2A� +Q)

−1
∥∥∥
2

]
. (54)

Notice that for sensor i, the Ci and Ri matrices are fixed
and cannot be adjusted; the only adjustable parameter5 is Y i,
which controls the size and shape of the set of measurement.
Therefore, at steady state, the parameters A, Ci, Ri, P i are
constant. In this way, it is easier to check whether a choice of Y 2

will lead to improved performance in terms of the size of the set
of estimation means. In particular, the condition becomes easier
to verify when Y i’s has special structures, e.g., Y i=ηiI , which
can be used for design purposes. Finally, we consider scalar
systems, namely, n=m=1, and have the following result.

Proposition 2: For n = m = 1, if Y 2/Y 1 < [(P 1 −
P 2)C1R

−1
1 /P 2C2R

−1
2 ]2, then adding sensor 2 improves the

steady-state performance in terms of both the estimation error
covariance and the size of the set of the means of the estimates.

Proof: When n = m = 1, (52) and (54) reduce to

x̄1=
|A|P 1C�

1 R
−1
1

√
Y 1

1− |A|P 1(P 0)−1 =
|A|P 1C�

1 R
−1
1

√
Y 1

1−|A|P 1(AP 1A+Q)−1 (55)

and

x̄1,2 =
|A|P 2

(
C�

1 R
−1
1

√
Y 1 + C�

2 R
−1
2

√
Y 2
)

1− |A|P 2(AP 2A+Q)−1 (56)

respectively. Since C1R
−1
1 C1 < C�R−1C, from the mono-

tonicity properties of the solutions to the Riccati (49) and (50)
(Lemma 3 of [37]), we have P 1 > P 2. Therefore

Q

AP 1A+Q
<

Q

AP 2A+Q

⇒ |A|P 1

AP 1A+Q
>

|A|P 2

AP 2A+Q

⇒ 1− |A|P 1

AP 1A+Q
< 1− |A|P 2

AP 2A+Q

⇒ 1

1− |A|P 1

AP 1A+Q

>
1

1− |A|P 2

AP 2A+Q

(57)

where the fact that 0 < |A|P 1/(AP 1A+Q) < 1 and 0 <
|A|P 2/(AP 2A+Q) < 1 are utilized in the last line, due to
(51) and the stability of the Kalman filter. Since Y 2/Y 1 <

((P 1 − P 2)C1R
−1
1 /P 2C2R

−1
2 )

2
, we have

|A|P 1C1R
−1
1

√
Y 1 > |A|P 2

(
C1R

−1
1

√
Y 1 + C2R

−1
2

√
Y 2
)
.

5This can be achieved by changing the event-triggering conditions in the
microprocessors on the sensor side.

Fig. 2. Multiple-sensor event-based remote estimation architecture.

Combining with (57), we have x̄1 > x̄1,2, which completes the
proof. �

Remark 5: The intuition provided in the above result is that
to achieve improved performance, the accuracy of sensor 2
should exceed certain level determined by that of sensor 1,
although this does not require the accuracy of sensor 2 should
be better compared with that of sensor 1.

Remark 6: As the confidence on stochastic and non-
stochastic uncertainties is parameterized separately as covari-
ance and the size of the set of estimation means, evaluation of
the overall performance of a set-valued estimator is more com-
plicated compared with its point-valued counterpart. Adding
a sensor can always reduce the estimation error covariance,
but can decrease, slightly or even severely increase the size of
the set of estimation means. One possible approach of eval-
uating the overall or combined performance is to explore the
equivalence relationship between stochastic and non-stochastic
uncertainties in some sense, which can be potentially pursued
based on ideas of the probabilistic approach or randomized
algorithms utilized in control and estimation of uncertain
systems [38], [39].

It is straightforward to observe that similar phenomenon ex-
ists for the multiple sensor case, and conditions for performance
improvement can be obtained in a similar way. On the other
hand, when taking all Y i’s as tuning parameters, the above
analysis can be utilized to formulate design problems such that
pre-specified performance can be achieved, as will be shown in
the next section.

VI. APPLICATION TO EVENT-BASED STATE ESTIMATION

In this section, we show how the results obtained in this work
can be applied in remote event-based state estimation. Further-
more, an optimization problem is formulated and solved to
design the event-triggering conditions by considering require-
ments on estimation performance and communication rates.

A. Analysis and Parameter Design

We consider the system in (1) measured by M sensors
described in (2), which communicate with the remote state
estimator through a wireless channel (see Fig. 2). We focus on
the scenario that the communication channel is reliable with no
packet dropouts, which is the case for shared networks using
TDMA protocols or point-to-point communication links [40].
Due to the event trigger, the sets Yi

k have more detailed param-
eterizations. At each time instant, the sensors measure the cur-
rent state and decide whether to send the current measurement
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or not according to the values of binary decision variables
γi
k’s that are determined by pre-specified triggering conditions.

We consider a relatively general description of the triggering
conditions:

γi
k =

{
0, if yik ∈ Ȳi

k

1, if yik �∈ Ȳi
k

(58)

where

Ȳi
k =

{
y ∈ R

m|
(
y − c̄ik

)� (
Ȳ i
k

)−1 (
y − c̄ik

)
≤ 1
}
. (59)

Note that the necessity of transmitting Ȳ i
k and c̄ik to the es-

timator during the non-event instants depends on the specific
triggering conditions under consideration, as will be shown in
Section VI-B. In this case, when γi

k = 1, the remote estimator
receives the point-valued measurement information from sensor
i, and thus the set of measurement information is given by a
singleton Yi

k = {yik}; when γi
k = 0, the set of measurement

information is implicitly given by Yi
k = Ȳi

k.
From the results obtained in Sections III and IV, it is

known that:
1) The performance of the exact and approximate set-valued

event-based estimators are invariant with respect to the
fusion sequence. Notice that the counter part for either
the exact or approximate MMSE event-based estimator is
very difficult to be systematically verified [13].

2) For the event-based set-valued estimator, the set of esti-
mation means is asymptotically bounded, and the outer
approximations of the sets are bounded as well, which
can be calculated according to arbitrary fusion sequences
at each time instant.

On the other hand, it is still not clear how to design the event-
triggering conditions so that the requirements on communica-
tion rate and estimation performance can be simultaneously
considered, which is one of the main concerns in event-based
control and estimation [12], [41]. In the following, we show
how the analysis in Section V can be utilized in parameter
design problems for guaranteed worst-case estimation perfor-
mance and optimized communication rate.

For convenience of design and implementation, we consider
the parameters Ȳ i

k ’s to be time invariant, namely, Ȳ i
k = Ȳ i.

From Remark 4, it can be observed that increasing Ȳ i will lead
to the decrease of the estimation performance in terms of the
upper bound on the size of the set of estimation means at the
steady state. On the other hand, from the literature of event-
based estimation [12], it is known that the increase of Ȳ i leads
to the reduction of the communication rate.6 Therefore Ȳ i’s can
serve as tuning parameters for the tradeoff between estimation
performance and communication rate. Note that the estimation
performance here considers the size of the set of estimation
means only, since the covariance is independent of Ȳ i in the
set-valued filtering framework.

6Considering the scope of this work, we omit the analysis of the exact
relationship between the communication rates and Ȳ i, although, in fact, this
analysis can be done following the approach in [12] with the difference that no
Gaussian assumptions are required under the framework of set-valued filtering
in this work.

First we introduce the constraints on the estimation perfor-
mance. Observing that the measurement set Yi

k is time varying
(which can be Ȳi

k or {yik} depending on the value of γi
k), we

consider the worst-case transient performance, namely, γi
k = 0

for a large number of consecutive k’s such that the measurement
set is always given by Ȳi

k during this period. From Corollary 2,
the upper bound on the size of the set of estimation means
will evolve towards an equilibrium, which thus quantifies the
worst-case performance. We still assume ‖Ā‖2 < 1; in case
that ‖Ā‖2 ≥ 1, the results developed in this section can be
applied by introducing the linear transformation T defined in
the proof of Theorem 2 to the system. From (48), the worst-
case performance bound is given by

x̄ =

∑M
i=1

√
TrAPMC�

i R
−1
i Ȳ iR−1

i CiPMA�

1−
∥∥∥APM (APMA� +Q)

−1
∥∥∥
2

(60)

where PM , Ci, and Ri are used instead of P sM , Csi , and Rsi

for notational brevity, since P sM is independent of the fusion
sequence. To guarantee the worst-case performance, we specify
an upper bound x̄∗ and enforce the constraint x̄ ≤ x̄∗. From
(60), direct verification of this constraint is not computationally
efficient for design purposes. Alternatively, using the Cauchy-
Schwarz inequality

x̄ =

∑M
i=1

√
Tr Ȳ iR−1

i CiPMA�APMC�
i R

−1
i

1−
∥∥∥APM (APMA� +Q)

−1
∥∥∥
2

≤
∑M

i=1

√
Tr Ȳ i

√
TrR−1

i CiPMA�APMC�
i R

−1
i

1−
∥∥∥APM (APMA� +Q)

−1
∥∥∥
2

(61)

thus the performance inequality can be indirectly enforced by
requiring

∑M
i=1

√
Tr Ȳ i

√
TrR−1

i CiPMA�APMC�
i R

−1
i

1−
∥∥∥APM (APMA� +Q)

−1
∥∥∥
2

≤ x̄∗ (62)

which is a linear constraint of
√
Tr Ȳ i. On the other hand,

we also include requirements on the upper bounds of the
communication rates of each sensor by considering Tr Ȳi ≥
ηi ≥ 0, which is equivalent to

√
Tr Ȳi ≥

√
ηi. The objective

of the parameter design is to minimize the communication
rate, which is done by maximizing

∑M
i=1 Tr Ȳi. To summarize,

the parameter design problem is formulated as the following
optimization problem:

max
a1,a2,...,aM

M∑
i=1

a2i

s.t.
M∑
i=1

biai≤ x̄∗, ai≥
√

η
i
, i=1, 2, . . . ,M (63)

where ai =
√
Tr Ȳ i and bi =

√
TrR−1

i CiPMA�APMC�
i R

−1
i /

(1− ‖APM (APMA� +Q)
−1‖2) > 0 are used for notational
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brevity. Note that we safely ignored the case bi = 0, since from
Proposition 1 and the definition of matrix spectral norm, bi = 0
if and only if the steady-state Kalman filter gain K̄i correspond-
ing to sensor i is zero, which implies that the consideration of
sensor i will affect neither the estimation error covariance nor
the size of the set of estimation means. To solve this problem,
we further consider the following equivalent representation:

max
p1,p2,...,pM

M∑
i=1

(pi +
√

ηi)
2

s.t.
M∑
i=1

bipi≤q, pi≥0, i=1, 2, . . . ,M (64)

where q = x̄∗ −
∑M

i=1 bi
√
η
i
. Notice that this problem is feasi-

ble if and only if q ≥ 0, which should be taken as the guideline
in choosing the specifications of ηi and x̄∗ in problem (63).
Since this problem is a maximization problem of a positive
semidefinite quadratic function over a polytope, the optimal so-
lution is at one of the vertices, which are composed by the origin
pi = 0 and points of the form pi = q/bi, pj = 0 for j �= i and i,

j ∈ N1:M for this case. Let i∗ = argmaxi∈N1:M
q/bi +

√
ηi.

Since bi > 0 and ηi > 0, the optimal value function of this

problem equals (q/bi∗ +
√

ηi∗)
2

+
∑M

j=1,j �=i∗ η
j with opti-

mizer pi∗ = q/bi∗ , pi = 0 for i �= i∗. This implies that the set
of optimal parameters should be chosen as

Tr Ȳ i =

⎧⎨
⎩
ηi, if i �= i∗;(√

ηi +
(
x̄∗−

∑M
j=1,j �=i∗bj

√
η
j

)
/bi

)2
, if i= i∗.

(65)

Based on the value of Tr Ȳ i, Ȳ i can be chosen to satisfy further
requirements, e.g., relative importance of different sensor chan-
nels. For the case of m = 1, Ȳ i reduces to a positive scalar,
then the analysis here provides a complete parameter design
procedure.

B. Examples

Example 2: In this example, we apply the set-valued estima-
tion approach to the scenario of event-based state estimation
with one sensor and interpret the difference of the obtained
results from the existing results applicable to the same scenario
[13], [42]. Consider a second-order system with parameter
matrices

A =

[
0.5 0.3
−0.1 0.8

]
, Q =

[
0.202 0.053
0.053 0.136

]
, C1 = [0 1]

and R1 = 0.2. We consider the “send-on-delta” triggering con-
dition [7] of the following form:

γ1
k =

{
0, if

(
y1k − y1

τ1
k

)2
≤ δ

1, otherwise
(66)

where τ1k denotes the last time instant when the measurement
of the sensor is transmitted. For this system, ‖Ā‖2 = 0.51,
and thus the boundedness of the size of the set of estimation

Fig. 3. Performance comparison of the different estimation strategy for
δ = 0.1 (the sets of estimation means are calculated by projecting the two-
dimensional ellipsoids on one dimension).

Fig. 4. Performance comparison of the different estimation strategy for
δ = 1.2 (the sets of estimation means are calculated by projecting the two-
dimensional ellipsoids on one dimension).

means can be guaranteed by Theorem 2 without introducing the
linear transformations. Two other approaches are also applied
for performance comparison, including the approximate event-
based MMSE estimator [13] applicable to this event-triggering
condition and the Kalman filter with intermittent observations
[42], which corresponds to the MMSE estimator with an
event-dependent filter gain obtained by only considering the
measurement information received at the event instants and ig-
noring the information contained in event-triggering conditions
during the non-event instants. To consider the performance of
the estimators under different average communication rates, the
estimators are implemented for δ equal to 0.1 and 1.2, the
resultant average communication rates of which equal 0.621
and 0.171, respectively. The estimation error plots are shown
in Figs. 3 and 4.

It is observed when the average communication rate is rela-
tively high (δ = 0.1), the size of the set of estimation means
of the set-valued estimator is small, and the performance in
terms of estimation error of the set-valued estimator can be
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characterized by the centre of the set of the estimation means.
The average estimation errors7 of the event-based MMSE es-
timator, the Kalman filter with intermittent observations and
the centre of the set of the estimation means are numerically
evaluated as 0.5589, 0.5781, and 0.5581, respectively. Un-
der a lower average communication rate, however, the effect
of separate parameterization of stochastic and non-stochastic
uncertainty becomes more apparent. The exploration of set-
valued information as non-stochastic uncertainty leads to a
set of estimates with the same filtering gain that contains the
estimates corresponding to all point-valued measurements lying
in the event-triggering sets during non-event instants, including
the MMSE estimate obtained by using the exact point-valued
sensor measurements for all time instants (namely, the Kalman
filter with periodic observations, see Fig. 4). In this case, it is
not possible to tell which one in the set is associated with the
smallest estimation error (without knowing the real state). The
alternative answer, however, is that the centre of the set-valued
estimator always serves as a point-valued estimate with the best
robustness performance, in the sense that it has the smallest
worst-case distance to the Kalman filter with periodic observa-
tions. This worst-case distance is known to be bounded (Theo-
rem 2) and based on Remark 2, the asymptotic upper bounds are
calculated as 0.2918 and 1.0110 for δ being 0.1 and 1.2, respec-
tively. On the other hand, the precisions of the Gaussian approx-
imations of the non-Gaussian distributions that were utilized
to derive the event-based MMSE estimators are normally not
possible to be verified, which is the basic motivation and the-
oretical benefit of utilizing the set-valued estimation approach.
Finally, for δ = 1.2, the average estimation errors of the event-
based MMSE estimator, the Kalman filter with intermittent
observations and the centre of the set of the estimation means
are calculated as 0.6007, 0.6357, and 0.6018, respectively. This
implies that for the event-triggering conditions considered, the
centre of the set-valued estimator, which can be viewed as a
point-valued estimator, empirically achieves similar improved
performance in terms of average estimation error as that of
the event-based MMSE estimator, compared with the Kalman
filter with intermittent observations.

Example 3: In this example, we apply the developed event-
trigger parameter design procedure in Section VI-A to a third-
order system,8 which is obtained by discretizing the benchmark
model for a three-blade horizontal-axis turbine with a full
converter coupling [43] with sampling time Ts = 2.5 s and
including a system noise term

xk+1 =

⎡
⎣ 0.9 0 −1.5
66.1 0.3 2103.6
0 0 0.2

⎤
⎦xk

+

⎡
⎣ 0 −4.1
4 −464.7
0 0

⎤
⎦uk + wk.

7For both δ = 0.1 and δ = 1.2, the average estimation error of an estimator
is calculated by performing the simulation for 10 000 steps and calculating the
sum of the 2-norm of the estimation error divided by 10 000.

8Note that the results in [13] and [42] are not considered for comparison here,
as the example is devoted to illustrating the proposed event-triggering condition
design procedure.

The input signal is generated according to the data provided in
[43]. Four sensors are used to measure the state information

y1k = [ 1 0 0 ]xk + v1k

y2k = [ 1 0 0 ]xk + v2k

y3k = [ 0 0.1 0 ]xk + v3k

y4k = [ 0 0.1 0 ]xk + v4k

with measurement noise covariances R1 = 0.03, R2 = 0.05,
R3 = 0.17, and R4 = 0.18, respectively, and the system noise
covariance is

Q =

⎡
⎣ 0.2023 0.0530 0
0.0530 0.1360 0

0 0 0.1000

⎤
⎦ .

We still consider the “send-on-delta” triggering conditions,
namely

γi
k =

{
0, if yik ∈ Ȳi

k

1, if yik �∈ Ȳi
k

(67)

where Ȳi
k = {y ∈ R

m|(y − yi
τ i
k

)
�
(Ȳ i)

−1
(y − yi

τ i
k

) ≤ 1}, τ ik
denoting the last time instant when the measurement of sensor i
is transmitted. In this case, no communication is needed during
the non-event instants, since Ȳ i’s are constant and yi

τ i
k

’s are al-

ways known to the estimator. For this system, ‖Ā‖2 = 2103.6.
To guarantee the boundedness of the set of estimation means,
we calculate the linear transformation

T =

⎡
⎣ 80 −0.1 974

0 1 −380
0 0 1823.3

⎤
⎦

according to the proof of Theorem 2 and apply the estimation
procedure to the transformed system. Furthermore, for problem
(63), the bi coefficients are calculated as b1 = 3.6049× 108,
b2 = 3.1543×108, b3 = 4.0788×107, and b4 = 3.852×107,
respectively. The values for ηi’s are specified as η1 = 0.5, η2 =
0.4, η3 = 30, η4 = 28, and x̄∗ = 9× 108. The event-triggering
conditions are calculated according to (65) as Ȳ1 = 0.5, Ȳ2 =
0.4, Ȳ3 = 35.1317, and Ȳ4 = 28. The set-valued event-based
estimator is then implemented and the estimation performance
is shown in Fig. 5, which is obtained by applying inverse
transformation T−1 to the estimates. The plot of sensor trans-
missions are shown in Fig. 6, where the average communication
rates for the four sensors equal 0.577, 0.632, 0.950, and 0.955,
respectively. From Fig. 5, it is observed that bounded envelopes
for the estimates are always obtained, and the centers of the
ellipsoids also serve as efficient point-valued estimates for
the state variables. Notice that although the constraint in (62)
guarantees worst-case performance, it also implicitly helps to
control the transient performance. Another way to quantify the
transient performance is to consider probabilistic performance
constraints (combined with the average communication rates),
which is the topic of our future work.
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Fig. 5. Performance of the set-valued state estimation strategy (the en-
velopes are calculated by projecting the three-dimensional ellipsoids on one
dimension).

Fig. 6. Plot of sensor transmissions.

VII. CONCLUSION

In this work, the properties of set-valued Kalman filters with
multiple sensor measurements are explored, which help provide
further insights on event-based state estimation. Despite the
distinct nature of the filter, it is shown that the important fea-
tures of the classic Kalman filter, namely, the invariance of the
estimation performance with respect to fusion sequences, the
asymptotic boundedness of the performance measures (under
certain assumptions, e.g., detectability and stabilizability), are
maintained by both the exact set-valued filter and the proposed
approximate set-valued filter. On the other hand, we show that
the inclusion of more sensors does not necessarily reduce the
size of the set of estimation means, and certain conditions
need to be satisfied to guarantee performance improvement,
which is utilized to formulate design problems in event-based
estimation.

The developed results of the properties of set-valued Kalman
filters are also applicable to the scenario of state estimation with
quantized measurements. In this case, the measurement space
is divided into a number of small quantization regions by the
quantizer; we do not know the exact value of the measurement
but know the region where it lies. For the case of m = 1, the
results developed can be applied directly, as the regions corre-
sponding to the same quantized values on R can be directly
parameterized by one-dimensional ellipsoids; for the case of
m > 1, outer-ellipsoidal approximations are needed to bound

the m-dimensional quantization regions,9 which are normally
not in the form of ellipsoidal sets. As soon as these outer-
ellipsoidal approximations are obtained, the results developed
can be directly applied.

In the present event-based estimation framework, the com-
munication channel is assumed to be reliable; a further step is to
investigate the effect of packet dropouts, which is a non-trivial
extension of the current work. Future research work also in-
cludes the consideration of transient behavior the size of the set
of estimation means in performance analysis, sensor scheduling
within finite horizon, and the consequent applications in event-
based estimation.
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