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A Stochastic Online Sensor Scheduler for Remote
State Estimation With Time-Out Condition

Junfeng Wu, Karl Henrik Johansson, and Ling Shi

Abstract—This technical note considers remote state estimation
subject to limited sensor-estimator communication rate. We pro-
pose a stochastic online sensor scheduler for remote state estima-
tion with time-out condition. The decision rule under which the
sensor sends data is based on its measurements and a finite-state
holding time between the present and the most recent sensor-to-es-
timator communication instance. This decision process is formu-
lated as an optimization problem, relaxed and solved using gen-
eralized geometric programming optimization techniques with a
low computational complexity. Moreover, the proposed scheduler
is easy to execute, and provides a guaranteed performance which
is shown to outperform the optimal offline scheduler. Numerical
examples are provided to illustrate the proposed scheduler.

Index Terms— Generalized geometric programming (GGP),
networked control systems (NCSs).

I. INTRODUCTION

In the last decade, the research on networked control systems
(NCSs) has received a boom of interest. State estimation is inherent
in many applications of NCSs such as civil structure maintenance,
emergency rescue and environmental monitoring, where sensor mea-
surements are sent to a remote state estimator (e.g., a base station or
a central computation unit) for real-time processing. As sensors are
mostly battery-powered and consume most energy in data commu-
nication, it is critical to reduce the sensor-estimator communication
rate to conserve energy. On the other hand, reduced communication
rate may lead to a poor estimation quality. Therefore it is important
to understand the limitation on the remote estimation quality when the
communication rate is constrained, so as to help reduce the (expensive)
communication resources while still guarantee a desired estimation
quality. For example, Trimpe and D’Andrea [1] demonstrated via the
Balancing Cube experimental platform that by properly designing a
sensor transmission scheduler, significant communication reduction is
achieved without affecting system stability.

Related research on state estimation under communication con-
straints and sensor scheduling are introduced herein. Sandberg et al.
[2] considered estimation using two types of sensors: the first type
has low-quality measurement but small processing delay, while the
second type has high-quality measurement but large delay. Using a
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time-periodic Kalman filter, they found an optimal schedule of the
sensor communication. Savage and La Scala [3] provided the optimal
schedule to minimize the terminal estimation error covariance under
the constraint that within a time horizon N , only n < N measurements
could be taken. The above works focus on offline schedulers, i.e.,
the communication schedule is made independent of the sensor’s
measurements, before the system runs. In [4], an event-triggering
rule was designed to determine the data transmission from a sensor
to a remote observer, subject to a constraint on transmission fre-
quency. Computing the optimal event-triggering rule was shown to
be computationally intractable when the state dimension is greater
than two or when the considered time-horizon is large. Wu et al. [5]
presented an event-based remote state estimator and illustrated how to
achieve a tradeoff between the sensor-estimator communication rate
and the estimation quality. Sijs et al. [6] proposed an event-based state
estimator according to a hybrid update rule, which attains a bounded
error covariance. In both [5] and [6] Gaussian approximations for
some truncated Gaussian random variables are adopted to facilitate the
analysis. More related works can be found in recent works [7], [8] and
references therein.

In this paper, we consider a remote state estimation problem where
a sensor obtains the output of a linear system, pre-processes the mea-
surement and calculates a local state estimate, then decides whether or
not to send its local estimate to a remote estimator. Unlike [4], where
this decision-making process is formulated as a Markov decision
problem, we present a simple and easily computable strategy. The main
contributions are summarized as follows.

1) We propose a new online sensor scheduler and provide a closed-
form expression for the estimation error covariance matrix,
computed by the remote minimum mean-squared error (MMSE)
estimator.

2) We relax a scheduler optimization problem and show that the
scheduler outperforms the optimal offline one. This sub-optimal
scheduler can be solved using generalized geometric program-
ming (GGP) optimization techniques with a low computational
complexity.

The decision for the sensor transmission is based on an innova-
tion process and a finite-state holding time between two consecutive
events. Compared to [4] and [9], our method has relatively light
computational complexity for high-dimensional systems. Note that
[8] also considered remote estimation, but with a different scheduling
algorithm. We show by simulations that the scheduler in [8] is slightly
better than our scheduler when the communication rate is low, and the
difference is negligible when the communication rate increases. Using
our scheduler, however, we provide with a closed-form expression
of the relationship between the threshold and the estimation error
covariance; while it relies on numerical computations to analyze the
scheduler in [8]. The remainder of this paper is organized as follows.
In Section II, we provide the mathematical model and problem setup.
In Sections III and IV, we derive the MMSE estimator under the
proposed scheduler and find a sub-optimal scheduler by solving a GGP
optimization problem. Simulation is provided in Section V and some
concluding remarks are given in Section VI.
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Fig. 1. Finite-state online scheduler for remote state estimation.

Notations: Z (or Z+) is the set of non-negative (or positive) inte-
gers. Sn

+ is the set of n by n positive semi-definite matrices. σ(·) is the
smallest σ-algebra generated by random variables. ‖x‖∞ is the infinity
norm of a vector x. S denotes the state space of a Markov chain. Define

the function h : Sn
+ → S

n
+ as h(X)

Δ
= AXA′ +Q.

II. PROBLEM SETUP

Consider a linear time-invariant process (Fig. 1)

xk+1 =Axk + wk (1)

yk =Cxk + vk (2)

where xk ∈ R
n is the process state vector, yk ∈ R

m is the obser-
vation vector, wk ∈ R

n and vk ∈ R
m are zero-mean Gaussian ran-

dom vectors with E[wkw
′
j ] = δkjQ(Q ≥ 0), E[vkv

′
j ] = δkjR(R >

0), E[wkv
′
j ] = 0 ∀j, k. The δkj is the Kronecker delta function with

δkj = 1 if k = j and δkj = 0 otherwise. The initial state x0 is a zero-
mean Gaussian random vector that is uncorrelated with wk and vk and
has covariance Σ0 ≥ 0. The pair (C,A) is assumed to be observable
and (A,

√
Q) is controllable.

Define Fs
k as the filtration generated by all the measurements

collected by the sensor up to time k, i.e., Fs
k

Δ
= σ(yt, 0 ≤ t ≤ k). We

will use a triple (Ω,F ,P) to denote the common probability space for
all random variables in this paper, where F = σ(∪∞

k=1Fk) and P is
the probability measure on F . The sensor computes x̂s

k, the MMSE
estimate of xk in (1) based on Fs

k , i.e., x̂s
k = E[xk|Fs

k ] ∈ Fs
k . Let

esk and P s
k be the corresponding estimation error and error covariance

matrix, i.e.

esk =xk − x̂s
k (3)

P s
k =E

[
(esk) (e

s
k)

′ |Fs
k

]
(4)

which are computed recursively via a Kalman filter [10]. The recursion
starts from x̂s

0 = 0. As P s
k converges to its steady-state value, P ,

exponentially fast [10] and we consider an infinite-time horizon, we
omit the transient estimation process at the sensor side and assume
Σ0 = P in the sequel. As a result, we make a standing assumption
throughout the paper, which is P s

k = P , ∀k ∈ Z. The following result
is a useful properties of P . See [11] for a proof.

Lemma 2.1: For 0 ≤ t1 < t2, the following inequality holds:

Tr
(
ht1(P )

)
< Tr

(
ht2(P )

)
. (5)

After x̂s
k is computed, the sensor decides whether it will send x̂s

k to
the remote estimator. Let γk ∈ {0, 1} be its decision variable at time k,
i.e., if γk = 1, x̂s

k is sent; otherwise x̂s
k is not sent. Define the holding

time τk ∈ Z as follows:

τk
Δ
= k − max

1≤t≤k
{t : γt = 1} (6)

which denotes the time between k and the most recent instance when
the sensor communicated with the estimator. When the time index is
clear from the context, we will write τk as τ for simplicity. We define

Ik as the information pattern available to the remote estimator up to
time k, i.e., Ik = {x̂s

1, x̂
s
2, . . . , x̂

s
k−τ} ∪ {γ1, γ2, . . . , γk}.

Define an infinite time-horizon schedule θ as θ = {γ1, . . . , γk,
. . .} ∈ {0, 1}∞. Under a given θ, the remote estimator calculates
x̂k and Pk, its own MMSE estimate of xk and the corresponding
estimation error covariance, based on Ik

x̂k = E[xk|Ik] and Pk = E [(xk − x̂k)(·)′|Ik] .

Define J(θ) as the trace of the average expected estimation error

covariance, i.e., J(θ)
Δ
=lim supT→+∞(1/T )

∑T−1

k=0
Tr(Pk(θ)). We

are interested in finding a schedule θ which solves the following
problem:

min
θ

J(θ), s.t. lim sup
T→+∞

1

T

T−1∑
k=0

γk(θ) = Ψ (7)

where Ψ ∈ [0, 1] denotes the maximum rate that the sensor commu-
nicates with the estimator. For simplicity, Ψ is assumed to be rational
and can be written as Ψ = v/u for two co-prime integers u and v.
Note that there must exist q ∈ Z+ which satisfies

qv < u ≤ (q + 1)v. (8)

The following proposition presents an optimal offline schedule to
(7), which is periodic and easy to implement in practice. The proof,
which is similar to the proof of Theorem 5.2 in [12], is omitted.
As shown in the next few sections, by properly utilizing the online
information and constructing the corresponding online schedule, the
estimation quality can be improved.

Proposition 2.2: An optimal offline schedule θ�off over one period u
in (8) depicted as⎛
⎝1, 0, . . . , 0︸ ︷︷ ︸

q times

⎞
⎠ , . . . ,

⎛
⎝1, 0, . . . , 0︸ ︷︷ ︸

q times

⎞
⎠

︸ ︷︷ ︸
(vq+v−u) times ⎛

⎝1, 0, . . . , 0︸ ︷︷ ︸
(q+1) times

⎞
⎠ , . . . ,

⎛
⎝1, 0, . . . , 0︸ ︷︷ ︸

(q+1) times

⎞
⎠

︸ ︷︷ ︸
(u−vq) times

provides an optimal offline solution to (7). The corresponding cost
function J is given by

J (θ�off) = Ψ

q−1∑
i=0

Tr
(
hi(P )

)
+ (1−Ψq)Tr

(
hq(P )

)
. (9)

Remark 2.3: Let us treat each (1, 0, . . . , 0︸ ︷︷ ︸
q times

) or (1, 0, . . . , 0︸ ︷︷ ︸
q+1 times

) as one

unit. Any permutation of every unit inside one period generates an
optimal offline schedule θ�off .

III. A STOCHASTIC ONLINE SENSOR SCHEDULER

In control of engineering systems, actions are often taken only after
certain events occur. These events may contain useful information
about the system. Wu et al. [13] proposed two simple online schedulers
which, however, only apply when communication rate is in the range
of (0.5, 1). In this section we construct an online sensor scheduler
with time-out condition to overcome the limitations of the hybrid
scheduler in [13], where the decision of γk is made based on how the
measurement history is generated.
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A. Preliminaries

Define εk as the incremental innovative information in x̂s
k compared

to x̂s
k−1

εk
Δ
= x̂s

k −Ax̂s
k−1. (10)

It has the properties given in the following lemma.
Lemma 3.1: The following statements on εk hold:

1) εk is zero-mean Gaussian with E[εkε
′
k] = h(P )− P . For any

d ∈ Z, εk−d and esk are independent and E[eskε
′
k−d] = 0.

2) εj and εk are independent for any j 
= k.

Proof: From (3) and the previous two parts, one obtains that
E[xk(e

s
k)

′]=E[(esk+x̂sk)(e
s
k)

′]=P . Therefore E[(xk−Ax̂s
k−1)(e

s
k)

′]=

E[xk(e
s
k)

′]−AE[x̂s
k−1(e

s
k)

′] = P , which results in

E [εkε
′
k] =E

[(
xk −Ax̂s

k−1 − êsk
) (

xk −Ax̂s
k−1 − êsk

)′]
=E

[(
xk −Ax̂s

k−1

)
(·)′
]
− E

[(
xk −Ax̂s

k−1

)
(esk)

′]
− E

[
esk
(
xk −Ax̂s

k−1

)′]
+ E

[
(esk) (e

s
k)

′]
=h(P )− P .

The other parts are from properties of innovations sequence [10]. �
Let the rank of h(P )− P be r. Since h(P )− P ≥ 0, there ex-

ists an orthonogal matrix U ∈ R
n×n such that U ′(h(P )− P )U =

diag(Λ,0n−r), where Λ = diag(λ1, . . . , λr) and λ1, . . . , λr ∈ R are

the r positive eigenvalues of h(P )− P . Define F ∈ R
n×n as F

Δ
=

Udiag(Λ−(1/2), In−r). Then F ′(h(P )− P )F = diag(Ir,0n−r).

Define εk as εk
Δ
= F ′εk. Through this linear transformation, the

coordinates of εk are decorrelated, which enables us to analyze the
performance of the proposed scheduler in subsequent sections. Note
that εk has the following property.

Corollary 3.2: The εk’s are mutually independent and have zero-
mean. For any d ∈ Z, εk−d and esk are independent. Consequently,
E[eskε

′
k−d] = 0 and E[εkε

′
j ] = 0 for all k 
= j.

Proof: The result follows easily from Lemma 3.1. �
In order to illustrate the idea of our proposed stochastic online

scheduler, let us consider the special case when γk−1 = 1 and εk = 0.
If the remote estimator is aware of the fact that εk = 0, then even
without receiving any data from the sensor, its state estimate x̂k =
Ax̂k−1 will have error covariance P instead of h(P ), which is greater
than P . This motivates us, similar to [5], to consider the following
simple scheduler θs for a properly chosen δ > 0:

γk =
{
0, if ‖εk‖∞ < δ,
1, otherwise.

(11)

It can be shown that when A is unstable and Ψ ≤ 1− (1/maxi |
λi(A)|2), we have limk→+∞ E[Pk] = +∞. The simple scheduler θs
defined by (11) performs worse than θ�off . Simulation result in Section
VII also demonstrates this observation. To properly utilize the online
information and avoid the divergence issue of θs, we propose the
following stochastic scheduler θe(N) with a time-out condition:

γk+1 =
{
0, if τk ≤ N − 1 and ‖εk+1‖∞ < δτk+1,
1, otherwise

(12)

where N ∈ Z+ and δi ∈ [0,+∞], i = 1, . . . , N , are design parame-
ters. Note that under θe(N), we restrict τk to take only finite values
with a maximum value N , i.e., if the sensor has not communicated
with the estimator for N consecutive time steps, then the sensor
is forced to send its estimate to the estimator. The intuition behind
this is that although the incremental innovation can be very small,
the cumulative estimation error may increase. The time-out condition
then guarantees that the cumulative effect is eliminated after at most
N steps.

Fig. 2. A Markov chain modeling the evolution of τk .

It is easy to see that the τk’s form a Markov chain with state space
S = {0, 1, . . . , N} as illustrated by Fig. 2, where pi ∈ [0, 1] is the
state transition probability from τk−1 = i− 1 to τk = i, and given by
pi = Pr(‖εk‖∞ < δi). Note that for δi = +∞, we have pi ≡ 1. The
transition probability matrix P is given by

P =

⎡
⎢⎢⎣

1− p1 p1 · · · 0
...

. . .
...

1− pN 0 · · · pN
1 0 · · · 0

⎤
⎥⎥⎦ .

Since the Markov chain has finite states and is irreducible, it ap-

proaches the unique stationary distribution Π
Δ
= [π0, . . . , πN ] with an

arbitrary initial state. Simple calculation yields that

πj =

∏j

i=1
pi∑N

l=0

∏l

i=1
pi

, j = 0, 1, . . . , N (13)

where
∏0

i=1
pj

Δ
= 1. We have pi = πi/πi−1 and πj ≤ πj−1.

B. Estimation and Communication Under θe(N)

The following two theorems show how the remote estimator calcu-
lates x̂k and the corresponding estimation error covariance Pk under
the online scheduler θe(N).

Theorem 3.3: The MMSE estimate of xk is

x̂k =

{
x̂s
k, if γk = 1,

Aτ x̂s
k−τ , if γk = 0. (14)

Proof: To make the presentation simple and clear, we only
consider τk = 2 in this proof as other cases can be proved in a
similar way.

When γk = 1, it is obvious that x̂k = x̂s
k since x̂s

k is the MMSE
estimate of xk conditioning on Fs

k . Now consider γk = 0. It suffices
to show that E[xk|Ys

k−2, γk−1 = γk = 0] = A2x̂s
k−2. At time k − 2,

the remote estimator receives x̂s
k−2 from the sensor, and γk−1 = γk =

0 implies that ‖εk−1‖∞ < δ1 and ‖εk‖∞ < δ2. The Tower property
gives

E
[
xk|Ys

k−2, γk−1 = 0, γk = 0
]

=E
[
E [xk|Fs

k ] |Ys
k−2, γk−1 = 0, γk = 0

]
=E

[
A2x̂s

k−2 +AF ′−1εk−1 + F ′−1εk|Ys
k−2, γk−1=γk=0

]
=A2x̂s

k−2

where the last equality is due to that εk−1 and εk are independent
(Corollary 3.2) and their means are both zero. �

Theorem 3.4: Under θe(N), when γk = 1, Pk = P . And when
γk = 0, Pk is given by

Pk = P +

τk−1∑
i=0

[
1− β

(
δτk−i

)] [
hi+1(P )− hi(P )

]
(15)
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where β is given by

β(δ)
Δ
=

2√
2π

δe−
δ2

2 [1− 2Q(δ)]−1 (16)

and Q(δ)
Δ
=
∫ +∞
δ

(1/
√
2π)e−(x2/2)dx is the Q-function.

Proof: We only prove the case when γk = 0 as the other case
is straightforward to see. At the estimator, if no data are received at
time k, then γk = 0 and ‖εk−τ+1‖∞ < δ1, . . . , ‖εk‖∞ < δτ . Since
x̂k = Aτxs

k−τ , we have

E
[
(xk − x̂k)(·)′|Ys

k−τ , γk−τ+1 = 0, . . . , γk = 0
]

=E
[(
esk + εk +Aεk−1 + . . .+Aτ−1εk−τ+1

)
(·)′|

Ys
k−τ , ‖εk−τ+1‖∞ < δ1, . . . , ‖εk‖∞ < δτ

]
=E

[
E
[(
esk + εk +Aεk−1 + . . .+Aτ−1εk−τ+1

)
(·)′|Fs

k

]
|Ys

k−τ , ‖εk−τ+1‖∞ < δ1, . . . , ‖εk‖∞ < δτ
]

=E
[
(esk) (e

s
k)

′ |Fs
k

]
+ E

[
(εk) (εk)

′|‖εk‖∞ < δτ
]

+AE
[
(εk−1)(εk−1)

′|‖εk−1‖∞ < δτ−1

]
A′ + . . .

+Aτ−1
E
[
(εk−τ+1)(εk−τ+1)

′|‖εk−τ+1‖∞ < δ1
]
A′τ−1

=P +

τk−1∑
i=0

[
1− β(δτk−i)

] [
hi+1(P )− hi(P )

] Δ
= Pk

where the second equality is from the Tower property and the third one
is due to the fact that εk−τ+1, . . . , εk are independent of Ys

k−τ . �
Remark 3.5: In [5], a commonly used Gaussian approximation from

nonlinear filtering is adopted to derive a simple recursive form of the
remote state estimator. Theorem 3.4 gives a closed-form expression of
the estimation error covariance without using any approximation.

The following lemma states the relations between limk→+∞ E[Pk]

and J(θe(N)), π0 and limT→+∞(1/T )
∑T

k=1
γk(θe(N)), allowing

us to replace the time average using the ensemble average.
Lemma 3.6: Under θe(N), we have limk→+∞ Tr(E[Pk]) =

J(θe(N)) and limT→+∞(1/T )
∑T−1

k=0
γk(θe(N)) = π0 P-almost

surely.
Proof: Define f : {0, . . . , N} → R as

f(j) =

⎧⎪⎪⎨
⎪⎪⎩

Tr(P ), if j = 0,

Tr

(
P +

j−1∑
i=0

[1− β(δj−i)][
hi+1(P )− hi(P )

])
, if j 
= 0.

Since the Morkov chain {τk} has finite states and is irreducible and
f is bounded, by ergodic theorem (see [14]) we immediately have

the first assertion. If we define f(j) =
{
1, if j = 0,
0, if j = 1, . . . , N

, the last

assertion follows. �
Since τk approaches a limiting distribution Π, Theorem 3.4 and

Lemma 3.6 together lead to that, P-almost surely,

J (θe(N))=P+

N∑
j=1

πj

j−1∑
i=0

[1−β(δj−i)]
(
hi+1(P )−hi(P )

)
. (17)

To make sure (7) holds, we have π0 ≤ Ψ. According to (13), N must
satisfy N ≥ q. If N ≤ q − 1, we have π0 = (

∑N

l=0

∏l

i=1
pi)

−1 ≥
q−1, which contradicts the definition of q in (8). We now construct

a θe(N) with a fixed N ≥ q such that J(θe(N)) is minimized while
π0 ≤ Ψ, i.e, we consider the following problem:

min
θe(N)

Tr

(
P+

N∑
j=1

πj

j−1∑
k=0

[1−β(δj−k)]
[
hk+1(P )−hk(P )

])

s.t. pi = [1− 2Q(δi)]
r , i = 1, . . . , N,

πj =

∏j

i=1
pi∑N

l=0

∏l

i=1
pi

, j = 0, . . . , N, π0 ≤ Ψ.

By selecting δi, i = 1, . . . , N , one can find an optimal schedule θ�e (N)
which minimizes J(θe(N)). However, the objective and inequality
constraints are non-convex functions and are difficult to be converted
into convex ones. In the following section, we will replace the objec-
tive function by an upper bound and provide a suboptimal solution.

IV. RELAXATION AND IMPLEMENTATION

A. An Upper Bound for J(θe(N))

Lemma 4.1:

1− β(δ) ≤ [1− 2Q(δ)]2 .

Proof: See Appendix. �
Replacing 1− β(δi) by its upper bound [1− 2Q(δi)]

2, one can
define one upper bound of J(θe(N)) as

Ju (θe(N))

Δ
= Tr

(
P +

N∑
j=1

πj

j−1∑
k=0

(
πj−k

πj−k−1

) 2
r [

hk+1(P )− hk(P )
])

.

The following proposition claims the existence of a θe(N) such that
Ju(θe(N)) ≤ J(θ�off).

Proposition 4.2: Let N ≥ q. Then we always have that minθe(N)

Ju(θe(N)) ≤ J(θ�off).
Proof: Consider a θe(N) with the following parameters: δ1 =

δ2 = · · · = δq−1 = +∞, δq = Q−1((1− (u/(v − q))1/r)/2) and
δq+1 = · · · = δN = 0. When u/v = q + 1, Ju(θe(N)) = J(θ�off) =

(1/q)
∑q−1

i=0
Tr(hi(P )). Observe that when q < u/v < q + 1, using

the upper bound of β(δ), we obtain

Ju (θe(N)) = (1−Ψq)Tr
(
hq(P )

)
+Ψ

q−1∑
i=0

Tr
(
hi(P )

)
−(1−Ψq)

(
1− [1− 2Q(δ)]2

)
Tr
(
h(P )− P

)
.

Then

J (θ�off)− Ju (θe(N))

= (1−Ψq)
(
1− [1− 2Q(δ)]2

)
Tr
(
h(P )− P

)
which shows Ju(θe(N)) ≤ J(θ�off) by Lemma 2.1 and completes the
proof. �

B. Relaxation and Implementation

As shown in (13), Π is uniquely determined by P (hence by the
pi’s). pi’s are uniquely determined by πi’s. Thus, θe(N) can be al-
ternatively represented from {π0, . . . , πN}. By replacing the objective



3114 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 11, NOVEMBER 2014

function in the previous problem with its upper bound and letting Π be
the optimization variable, we obtain the following problem:

min
Π

Tr

(
P +

N∑
j=1

πj

j−1∑
k=0

(
πj−k

πj−k−1

) 2
r [

hk+1(P )−hk(P )
])

(18)

s.t.

N∑
j=0

πj = 1, Ψ ≥ π0 ≥ . . . ≥ πN ≥ 0. (19)

Denote by θ̂�e (N) the optimal schedule for the above relaxed
optimization problem. It can be shown that the schedule θ̂�e (N) = Π̂�

must satisfy π̂�
0 = Ψ and

∑N

j=1
π̂�
j = 1−Ψ. Otherwise, there must

exist an integer l such that l=min1≤j≤N{j :
∑j

i=1
π̂�
i ≥ 1−Ψ}.

Then choose ϕ ∈ (0, 1) satisfying
∑N

i=1
π̂�
i − (1−Ψ) = (1− ϕ)∑N

i=l
π̂�
i . Consider a θe(N) given by π0 = Ψ, πi = ϕπ̂�

i , i = l,

. . . , N and other πi’s equal to those of Π̂�. One has that π0 > π̂�
0 and

πj < π̂�
j ∀j = l, . . . , N . Note that Ju(θe(N)) < Ju(θ̂

�
e (N)), which

contradicts the property of Π̂�. Hence π0 in (19) can be assumed to
be equal to Ψ, i.e., π0 = Ψ, and (19) can be relaxed to an inequality
constraint, i.e.,

∑N

j=1
πj ≥ 1−Ψ. According to the above reasoning,

Π̂� is still feasible for the relaxed problem. Since πj is a proper
fraction, we let pj be the optimization variable to avoid numerical error
made by inversion of πj . Then πj = π0

∏j

i=1
pi, and (18) and (19) are

transformed into the following ones:

min
{p1,...,pN}

Tr

(
P+Ψ

N∑
j=1

j∏
i=1

pi

j−1∑
k=0

p
2
r
j−k

[
hk+1(P )−hk(P )

])
,

s.t. 1−Ψ−Ψ

N∑
j=1

j∏
i=1

pi≤0, pj ∈ [0, 1], j = 1, . . . , N.

This is a GGP problem characterized by posynomial objective and
constraints that are the difference of monomials, which has a non-
convex feasible region. There are a few optimization approaches
attempting to attain the global optimum of GGP problems, such as
[15], [16]. In [16], Maranas and Floudas provided a deterministic
global optimization algorithm for GGP, which was applied to a num-
ber of small to medium size engineering design problems and was
shown to ε-converge to the global minimal solution. To solve this
problem efficiently, we adopt this algorithm. At each iteration, GGP
is relaxed into a geometric program, which is solved in polynomial
time complexity of N . The iteration time depends on convergence
tolerance. Once pj is obtained, we can compute δ1 to δN by invoking
(13) and (20). In this way θ̂�e (N) is obtained. Note that in [9] and
[4], this rate-error trade-off problem was posted as a Markov decision
problem. As the cardinalities of state space and action space both
grow with the system dimension, the computational complexity of
solving these Markov decision problems becomes exponential in the
system dimension. Our proposed scheduler is simple and can be easily
computed, having a computational complexity that is independent of
the system dimension.

Remark 4.3: As we mentioned previously, N ≥ q is necessary and
sufficient for θe(N) to outperform θ�off . How to choose the optimal N
is an interesting question. In practice, one may simply choose N = q
for a guaranteed estimation quality (as we do in the simulations).
In general, the larger N is, the better estimation quality we may
expect. This, however, increases the computation complexity. Simu-
lation examples show that once N is sufficiently large, the incremental
estimation quality it improves is marginal.

Fig. 3. The relation between N and J(θ̂�e (N)) for different A’s.

V. EXAMPLES

Consider the following parameters for system (1), (2):

A =

[
0.5 0.5
0 1.5

]
, C = [ 1 1 ], Q =

[
5 0
0 5

]
, R = 5.

For Ψ > 0.35, we have q ≤ 2. To abide by the communication
rate constraint, N should satisfy N ≥ 2. In principle, J(θe(N1)) ≤
J(θe(N2)) for N1 > N2 as we can always choose δi = 0, i = N2 +
1, . . . , N1. The influence of N on J(θe(N)) depends on different
system parameters, especially on how stable/unstable A is. The more
unstable A is, the faster Pk will grow. Even with a large N , the
scheduler θe(N) tends not to let τk be large and the influence of N
on J(θe(N)) is therefore marginal.

Let us take Ψ = 0.35 as an example. In Fig. 3(a), when we consider

a more stable A, e.g., A =

[
0.5 0.5
0 1.2

]
, a larger N introduces an

obvious improvement to J(θ̂�e (N)). In Fig. 3(b), J(θ̂�e (N)) is al-
most constant as N increases. For the remainder, we choose N = 2
by default to illustrate the main results. After solving a GGP
problem, we obtain that p1 = 0.9442 and p2 = 0.9668. Therefore,
δ1 = Q−1((1− p

1/r
1 )/2) = 1.9129 and δ2 = Q−1((1− p

1/r
2 )/2) =

2.1299. We compare this θ̂�e(N) with four other schedules:

1) θ�off : the optimal offline sensor schedule given in Section II.
2) θr: a stochastic sensor schedule where γk’s is an i.i.d sequence

and E[γk] = Ψ;
3) θc: the scheduler for a single sensor case when the sensor has an

embedded local MMSE estimator in [8].1

4) The optimal θ�e (N) which minimizes J(θe(N)).

We compare J(θ�off), J(θ̂
�
e (N)), J(θr), J(θ�e (N)) and J(θc) for

Ψ ranged from 0.35 to 1. As shown in Fig. 4, J(θ�off) ≥ J(θ̂�e (N)).
Under an equal communication rate using θ̂�e (N) can reduce 43%
estimation error compared to offline scheduling. Note that in this ex-
ample J(θ̂�e (N)) agrees with J(θ�e (N)), although it does not happen
in general since Π̂� does not necessarily minimize Ju(θe(N)) and
J(θe(N)) simultaneously, but at any rate, one can guarantee that
J(θ�r ) ≥ J(θ�off) ≥ J(θ̂�e (N)). θ̂�e (N) offers a much better tradeoff
between the sensor-estimator communication rate and the estimation
quality. Note that Fig. 4 illustrates that J(θ�off) is a piecewise affine
function with respect to Ψ whose slope increases at each Ψ = 1/q.
Fig. 4 also shows that, for the parameters specified in this paper, J(θc)

1The state of the system is directly observed in [8]. In this paper, the local
event is defined as ‖x̂s

k −Ax̂k−1‖∞ ≥ δ. We assume that the synchronization
is operated every T = 2 steps.
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Fig. 4. Performance comparison.

Fig. 5. Realization of θ�off and θ̂e(N)� for Ψ = 0.5.

Fig. 6. Sample average vs time average.

is slightly better than J(θ̂�e (N)) when the communication rate is low,
and the difference becomes negligible when the communication rate
increase. An important thing to note is that in this work we give a
closed-form expression of the relationship between the communication
rate and the estimation error covariance; while to analyze the strategy
θc in [8], it relies on numerical computations.

Fig. 6 shows that (1/T )
∑k=T−1

k=0
J(θ̂�e (N)) and limk→∞ E[Pk

(θ̂�e (N)], (1/T )
∑k=T−1

k=0
γk(θ̂

�
e (N)) and π0 are close after 100 steps,

which agree with Lemma 3.6. We also plot in Fig. 5 a sample path
of e2k under θ�off and θ̂�e (N) for Ψ = 0.5, respectively. In Fig. 5, a
red arrow indicates a time instance k when γk = 1. Note that under
the offline schedule, as Ψ = 0.5, the sensor transmission times are
scheduled alternatively (and periodically). On the contrary, the sensor

transmission times become random under θ̂�e (N) which considers the
importance of the sensor data and thereby reduces the estimation error
and improves the estimation quality.

VI. CONCLUSION

We present an online sensor scheduler with time-out condition
and show that it leads to a significant improved estimation quality
when compared with the optimal offline sensor scheduler, a periodic
data transmission strategy. This scheduler is simple and can be easily
computed. Compared to [4] and [9], it has relatively light computa-
tional complexity for high-dimensional systems. In addition, under
our proposed scheduler, the remote estimate is MMSE estimate and
both the estimation error covariance matrix and communication rate
are given in closed-form. Future work includes extensions to multi-
sensor scheduling and close-loop control.

APPENDIX

Lemma A.1: β(δ) in (16) satisfies the following

1) β(δ) is strictly decreasing in δ.
2) limδ→+∞ β(δ) = 0 and limδ→0 β(δ) = 1.

The proof is straightforward from the definition and is omitted.
Lemma A.2: Let x ∈ R be a standard Gaussian random variable.

For δ > 0, we have E[x2||x| < δ] = 1− β(δ).
Proof: The proof is straightforward from the conditional ex-

pectation and the definition of β(δ). �
Proof to Lemma 4.1: It suffices to show ϕ(δ)

Δ
= (1− β(δ))/[1−

2Q(δ)]2 ≤ 1, ∀δ > 0. Take derivative of ϕ(δ), i.e.

dϕ(δ)

dδ
=

2√
2π

e−
δ2

2

[1− 2Q(δ)]4

⎧⎨
⎩δ2 [1− 2Q(δ)]− 3

δ∫
−δ

t2e−
t2

2

√
2π

dt

⎫⎬
⎭ .

Let δ2[1− 2Q(δ)]− 3
∫ δ

−δ
(t2/

√
2π)e−(t2/2)dt

Δ
= φ(δ). One obtains

dφ(δ)

dδ
= 2δ

⎛
⎝ δ∫

−δ

1√
2π

e−
t2

2 dt− 2δ√
2π

e−
δ2

2

⎞
⎠ > 0,

since
∫ δ

−δ
(1/

√
2π)e−(t2/2)dt−(2δ/

√
2π)e−(δ2/2)>0 for any δ>0.

Therefore φ(δ)>0 observing that φ(0)=0. Note that (2/
√
2π)e−(δ2/2)/

[1−2Q(δ)]4>0 leads to dϕ(δ)/dδ>0. Altogether with the fact that

lim
δ→+∞

ϕ(δ) =
limδ→+∞ [1− β(δ)]

limδ→+∞ [1− 2Q(δ)]2
= 1

one has ϕ(δ) ≤ 1. �
Lemma A.3: Let ξ ∈ R

r be a Gaussian random vector with zero
mean and E[ξξ′] = Ir . For δ > 0, we have Pr(‖ξ‖∞ < δ) = [1−
2Q(δ)]r and E[ξξ′|‖ξ‖∞ < δ] = [1− β(δ)]Ir .

Proof: Denote ξi as the ith element of ξ(0 ≤ i ≤ r). Each ξi
is then a standard Gaussian random variable with zero mean and
unit variance, and ξi, ξj are mutually independent if i 
= j. Note that
‖ξ‖∞<δ iff |ξi|<δ. We get Pr(‖ξ‖∞<δ)=

∏r

i=0
Pr(|ξi| ≤ δ)=

[1− 2Q(δ)]r . The second equation follows from Lemma A.2. �
Lemma A.4:

P
(
‖εk‖∞ ≥ δ

)
=1− [1− 2Q(δ)]r ,

E
[
εkε

′
k|‖εk‖∞ < δ

]
= [1− β(δ)]

[
h(P )− P

]
. (20)
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Proof: Let εk =
[ξ1

k

ξ2
k

]
where ξ1k ∈ R

r and ξ2k ∈ R
n−r . Since

E[εkε
′
k] = h(P )− P , we have

E [εkε
′
k] = F ′

E [εkε
′
k]F = diag(Ir,0n−r).

Hence ξ1k is a zero mean Gaussian random vector with unit variance,
and ξ2k = 0 P-almost surely. Lemma A.3 leads to (20) and

E
[
εkε

′
k|‖εk‖∞ < δ

]
= [1− β(δ)] diag(Ir,0n−r).

Since U ′ = U−1, one has

E
[
εkε

′
k|‖εk‖∞ < δ

]
=(F ′)

−1
E
[
εkε

′
k|‖εk‖∞ < δ

]
F−1

= [1− β(δ)]Udiag(Λ,0n−r)U
′

= [1− β(δ)]
[
h(P )− P

]
which completes the proof. �
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