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a b s t r a c t

We consider distributed state estimation over a resource-limited wireless sensor network. A stochastic
sensor activation scheme is introduced to reduce the sensor energy consumption in communications,
under which each sensor is activated with a certain probability. When the sensor is activated, it observes
the target state and exchanges its estimate of the target statewith its neighbors; otherwise, it only receives
the estimates from its neighbors. An optimal estimator is designed for each sensor by minimizing its
mean-squared estimation error. An upper and a lower bound of the limiting estimation error covariance
are obtained. A method of selecting the consensus gain and a lower bound of the activating probability is
also provided.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

A wireless sensor network (WSN) is composed of a large num-
ber of geographically distributed sensor nodes, and each sensor
is capable of measuring certain parameters of interest such as
temperature, humidity or position and velocity of a vehicle. Dis-
tributed state estimation using a WSN has attracted increasing at-
tention recently due to its broad applications including battlefield
surveillance, intelligent transportation, environment monitoring,
health care, etc. A large number of works on consensus-based dis-
tributed estimation have been reported since it can drastically
reduce the utilization of communication resources, has no require-
ment on the network topology, and is more flexible for ad-hoc
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deployment when compared with centralized state estimations
(Anderson & Moore, 1979; Iftar, 1993; Rao, Durrant-Whyte, &
Sheen, 1993; Sanders, Tacker, & Linton, 1974).

Most of these works (Demetriou, 2010; Federico & Ali, 2010;
Kamgarpour & Tomlin, 2008; Li & Ghassan, 2007; Olfati-Saber,
2009; Olfati-Saber & Shamma, 2005; Ren, Beard, & Kingston,
2005; Saber, 2007; Schizas, Ribeiro, & Giannakis, 2008; Shen,
Wang, & Hung, 2010; Spanos, Saber, &Murray, 2005a,b; Stanković,
Stanković, & Stipanović, 2009; Xi, He, & Liu, 2010; Yu, Chen, Wang,
& Yang, 2009) on distributed estimation introduce a consensus
scheme to the standard Kalman filter, and they can be broadly
classified into two categories: one is to add a consensus term to
the Kalman filter update step (Olfati-Saber, 2009; Olfati-Saber &
Shamma, 2005; Saber, 2007), and the other is to drive the con-
sensus of the a priori estimate in the Kalman filter prediction step
(Federico & Ali, 2010; Stanković et al., 2009). More precisely, those
works include distributedweighted average consensus algorithms
(Spanos et al., 2005a,b), distributed Kalman filtering (Olfati-Saber,
2009; Olfati-Saber & Shamma, 2005; Saber, 2007), convergence
properties of a decentralized Kalman filter (Kamgarpour & Tomlin,
2008), decentralized state estimation with intermittent observa-
tions and communication faults (Stanković et al., 2009), diffusion
strategies for distributed Kalman filtering and smoothing (Federico
&Ali, 2010), distributed estimation of deterministic signals in noisy
links (Schizas et al., 2008), distributed parameter estimation over
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a WSN with bit rate constraint (Li & Ghassan, 2007), adaptive con-
sensus filter (Demetriou, 2010; Xi et al., 2010), distributed consen-
sus filtering algorithmwith pinning observers (Yu et al., 2009), and
distributedH∞-consensus filtering over a finite-horizon for sensor
networks with multiple missing measurements (Shen et al., 2010).
More related works can be found from the references therein.

In a typical WSN, communication and computing capabilities
of sensors are limited due to various design and implementation
considerations such as small battery and finite bandwidth. For ex-
ample, the energy for data collection and transmission is limited,
and sensors may not transmit data all the time. It is an expen-
sive operation to replace or recharge the batteries in many ap-
plications. Therefore, proper sensor activation is important and
often necessary. It is equivalent to scheduling sensor data trans-
mission. Sensor scheduling for centralized state estimation and
control has attracted some attention in the past (Gupta, Chung,
Hassibi, & Murray, 2006; Shi, Cheng, & Chen, 2011; Walsh & Ye,
2001). Vitus, Zhang, Abate, Hu, and Tomlin (2012) considered the
problem of selecting one from a group of sensors at each time
step to minimize a weighted function of the state estimation er-
ror. There are few studies, however, on sensor scheduling for dis-
tributed state estimation.

In this paper, we consider distributed state estimation over
a wireless sensor network and introduce a stochastic sensor ac-
tivation scheme for a consensus-based distributed estimation
algorithm. In real applications, a stochastic sensor scheduling
strategy is easy to implement and is computationally tractable. For
example, Gupta et al. (2006) proposed a stochastic sensor selec-
tion strategy for the case that multiple sensors cannot operate si-
multaneously and their measurements need to be scheduled. Mo,
Ambrosino, and Sinopoli (2011) proposed a stochastic sensor selec-
tion strategy tominimize the remote state estimation errors. In our
stochastic sensor scheduling strategy, each sensor implements a
minimum mean-squared error estimator for estimating the target
state, and is activated with a certain probability. When the sensor
is activated, it observes the target state and exchanges datawith its
neighbors; otherwise, it only receives data from its neighbors. It is
challenging to analyze the mean-square stability of the state esti-
mators as the estimation errors at different sensors are correlated.
Instead, we derive an upper and a lower bound of the steady-state
estimation error covariance. In the meantime, we obtain an upper
bound of the consensus gain and a lower bound of the activating
probability by solving a few linear matrix inequalities (LMIs).

The remainder of the paper is organized as follows. In Section 2,
we describe the system model and design an optimal distributed
state estimator under stochastic sensor scheduling. In Section 3,
we study the stability of the expected estimation error covariance.
An upper bound of the consensus gain and a lower bound of the
activating probability are given by solving a few LMIs. Differences
between our estimator and one existing estimator are compared
and discussed. In Section 4, a numerical example is provided. Fi-
nally, some concluding remarks and future work are presented in
Section 5.

2. Problem statement

Consider the following linear discrete-time system:

x(k + 1) = Ax(k)+ w(k), (1)

where x(k) ∈ Rm is the state vector,w(k) ∈ Rm is the process noise
which is assumed to be zero-meanwhite Gaussianwith covariance
matrix Q > 0. The initial state x(0) is also zero-mean Gaussian
with covarianceΠ0 ≥ 0, and is independent ofw(k) for all k ≥ 0.

A wireless sensor network consisting of n sensors is used to
measure x(k). Themeasurement equation of the ith sensor is given
by

yi(k) = γ i(k)(H ix(k)+ vi(k)), (2)
where vi(k) ∈ Rm is zero-mean white Gaussian with covariance
matrix Ri > 0 which is independent of x0, w(k) ∀k, i, and is inde-
pendent of vj(s) when i ≠ j or k ≠ s, γ i(k) = 1 or 0 is a decision
variable whether the ith sensor is activated or not, i.e., if γ i(k) = 1,
the ith sensor is activated. It then measures the system state and
exchanges its estimate with its neighbors. If γ i(k) = 0, the ith sen-
sor only receives the estimates from its neighbors. In this paper,
we adopt a stochastic scheduling approach by setting γ i(k) as i.i.d.
Bernoulli random variables with mean E[γ i(k) = 1] = q. Assume
that γ i(k), w(k), vi(k) and the initial state x(0) are mutually inde-
pendent for all i, k.

We model the sensor network as a directed graph G = (V , E)
with the nodes V = {1, 2, . . . , n} being the sensors and the edges
E ⊂ V ×V representing the communication links. The existence of
edge (i, j) means the ith sensor receives data from the jth sensor.
Define the neighboring sensors of the ith sensor by Ni = {j :

(i, j) ∈ E}. Let di = |Ni| be the number of neighboring sensors of
the ith sensor. In this paper, we assume that the graph is strongly
connected. Recall that the ith sensor cannot send information to its
neighbors if γ i(k) = 0. Define the Laplacianmatrix of Gk, the graph
G at step k, as Lk = [lij(k)], where

lij(k) =


−γ j(k), if (i, j) ∈ E, i ≠ j,
−


j∈Ni

lij(k), if i = j,

0, otherwise.

Consider the following distributed state estimator at the ith
sensor:

x̂i(k + 1|k) = Ax̂i(k|k − 1)+ K i
p(k)(yi(k)− γ i(k)H ix̂i(k|k − 1))

− εA

j∈Ni

γ j(k)[x̂i(k|k − 1)− x̂j(k|k − 1)], (3)

with x̂i(0| − 1) = 0, ∀i. In Eq. (3), ε is the consensus gain and is in
the range of (0, 1/∆), ∆ = maxi(di), and K i

p(k) is the estimator
gain. In this paper, we design K i

p(k) by minimizing the mean-
squared estimation error

E{[x(k + 1)− x̂i(k + 1|k)][x(k + 1)− x̂i(k + 1|k)]T }, (4)

where the expectation is taken over w, vi and γ i
∀i. Define the

estimation error at the ith sensor as

ei(k|k − 1) = x̂i(k|k − 1)− x(k).

To simplify the notations, we write ei(k|k − 1) = eik. From Eq. (3),
eik evolves as follows:

eik+1 = Aeik − εA

j∈Ni

γ j(k)(eik − ejk)

− K i
p(k) · γ i(k) · H ieik + K i

p(k)γ
i(k)vi(k)− w(k). (5)

Let Fi(k) = A − γ i(k)K i
p(k)H

i. Then, it follows from (5) that

eik+1e
jT
k+1 = Fi(k)eike

jT
k F T

j (k)− εFi(k)

s∈Nj

γ s(k)(eike
jT
k − eike

sT
k )A

T

+ εw(k)

s∈Nj

γ s(k)(eiTk − esTk )A
T

− εA

r∈Ni

γ r(k)(eik

× ejTk − erke
jT
k )Fj(k)

T
+ w(k)w(k)T

− εA

r∈Ni

γ r(k)(eik − erk)γ
j(k)vj(k)TK jT

p (k)

− εγ i(k)K i
p(k)v

i(k)

s∈Nj

γ s(k)(eiTk − esTk )A
T

+ ε2A

r∈Ni


s∈Nj

γ r(k)γ s(k)[eike
jT
k



2072 W. Yang et al. / Automatica 50 (2014) 2070–2076
− eike
sT
k − erke

jT
k + erke

sT
k ]AT

+ γ j(k)Fi(k)eikv
j(k)TK jT

p (k)

+ γ i(k)K i
p(k)v

i(k)ejTk Fj(k)T

− Fi(k)eikw(k)
T

− wke
jT
k Fj(k)T

+ εA

r∈Ni

γ r(k)(eik − erk)w
T (k)

+ γ i(k)γ j(k)K i
p(k)v

i(k)vj(k)K jT
p (k). (6)

As Pi,j(k) = E{eike
jT
k }, one has

Pi,j(k + 1) = F̄i(k)Pi,j(k)F̄j(k)T + Q + q2K i
p(k)Ri,jK j

p(k)
T

+ ε2A

r∈Ni


s∈Nj

q2[Pi,j(k)

− Pi,s(k)− Pr,j(k)+ Pr,s(k)]AT

− εF̄i(k)

s∈Nj

q(Pi,j(k)− Pi,s(k))AT

− εA

r∈Ni

q(Pi,j(k)− Pr,j(k))F̄j(k)T , (7)

where
F̄i(k) = A − qK i

p(k)H
i.

Letting i = j, and taking expectation with respect to γ i(k), w(k)
and vi(k) on both sides of Eq. (6), one obtains
E{eik+1e

iT
k+1} = (1 − diqε)2APi(k)AT

+ 2(qε − q2ε2)A

s∈Ni

Pi,s(k)AT
+ q2ε2A

×


r,s∈Ni

Pr,s(k)AT
+ Q − q2A


Pi(k)+ qε

×


s∈Ni

[Pi,s(k)− Pi(k)]


H iM−1

i (k)

·H iT


Pi(k)+ ε


s∈Ni

[Pi,s(k)− Pi(k)]

T

AT

+ [K i
p(k)− K i⋆

p (k)]Mi(k)[K i
p(k)− K i⋆

p (k)]
T , (8)

where

Pi(k) = E{eike
iT
k }, Pi,s(k) = E{eike

sT
k },

K i⋆
p (k) = qA


Pi(k)+ qε


s∈Ni

[Pi,s(k)− Pi(k)]


H iTM−1

i (k), (9)

Mi(k) = qH iPi(k)H iT
+ qRi. (10)

Note that qε < 1 implies 2qε− 2q2ε2 > 0. As a result, E{eik+1e
iT
k+1}

is minimized when K i
p(k) = K i⋆

p (k).

Remark 1. We can rewrite Eq. (6) as

Pi(k + 1) = F̄i(k)Pi(k)F̄ T
i (k)+ q(1 − q)(K i

p(k)H
i)Pi(k)(K i

p(k)H
i)T

+Q + qK i
p(k)RiK iT

p (k)+1P(k), (11)

where

1P(k) = −qεF̄i(k)

s∈Ni

[Pi(k)− Pi,s(k)]AT
− qεA

×


r∈Ni

[Pi(k)− Pr,i(k)]F̄ T
i (k)+ q2ε2

× A

r,s∈Ni

[Pi(k)− Pi,s(k)− Pr,i(k)+ Pr,s(k)]AT .
If ε = 0, then

K i⋆
p (k) = qAPi(k)H iTM−1

i (k),

Pi(k + 1) = F̄i(k)Pi(k)F̄ T
i (k)+ Q + qK i

p(k)RiK iT
p (k)

+ q(1 − q)(K i
p(k)H

i)Pi(k)(K i
p(k)H

i)T ,

which are the sub-optimal Kalman gain and the estimation error
covariance, respectively, obtained in Zhang, Song, and Shi (2012).

Note that we designed an optimal estimator gain (9) for the
estimator (3). In the remainder of the paper, we search for an upper
bound of ε to guarantee a bounded estimation error covariance for
any given q. Alternatively,when ε is given,weobtain a lower bound
of q to guarantee a bounded estimation error covariance.

3. Convergence analysis

In this section, we analyze the stability of the proposed estima-
tor (3) with the optimal estimator gain (9). Due to the coupling of
the estimation errors among the neighboring sensors, it is difficult
to prove that the estimation error covariance converges to a unique
positive definitematrix such as in the centralized Kalman filter. In-
stead, we derive an upper bound and a lower bound of the steady-
state estimation error covariance.

Define ek = [e1k, e
2
k, . . . , e

n
k]

T and vk = [v1k , v
2
k , . . . , v

n
k ]

T . By
stacking all the estimation errors in vector form, one obtains
ek+1 = (In ⊗ A)ek − ε(Lk ⊗ A)ek − diag{γ i(k)K i

p(k)H
i
}ek

+ γ i(k)diag{K i
p(k)}vk − 1n ⊗ wk

= Γ (k)ek + W (k), (12)
where
Γ (k) = In ⊗ A − εLk ⊗ A − diag{γ i(k)K i

p(k)H
i
},

W (k) = diag{γ i(k)K i
p(k)}vk − 1n ⊗ wk.

Let P(k) = E{ekeTk }. Then

P(k + 1) = Γ̄ (k)P(k)Γ̄ (k)T + E{W (k)W (k)T }, (13)
where Γ̄ (k) = In⊗A−εqL⊗A−q·diag{K i

p(k)H
i
}. Note that L is the

Laplacian matrix of the physical sensor network. If the ith sensor
has a link with the jth sensor, then lij = −1; otherwise, lij = 0.

Similarly to Zhang et al. (2012), wemake the following assump-
tions.

Assumption 2. (AT , qH iT , 0,H iT ), 0 < q < 1 is stabilizable for
all i.

Assumption 3. (AT , 0,Q 1/2) is exactly observable.

Remark 4. Here, (AT ,HT , AT
0,H

T
0 ) is called stabilizable if there

exists a feedback control u(k) = Kx(k), with K being a constant
matrix, such that for any x0 ∈ Rm, the closed-loop system

x(k + 1) = [AT
+ HTK ]x(k)+ [AT

0 + HT
0 K ]x(k)ω(k), x(0) = x0,

is asymptotically mean-square stable. The random sequence ω(k)
is a wide sense stationary, second-order process with E{ω(k)} = 0
and E{ω(k)ω(j)} = σδkj. One method from Boyd, Ghaoui, Feron,
and Balakrishnan (1994) is provided here to verify the mean-
square stability of the above system by solving the following
Lyapunov equation of P:

(AT
+ HTK)TP(AT

+ HTK)− P
+ σ 2(AT

0 + HT
0 K)

TP(AT
0 + HT

0 K)+ I = 0

and by checking whether P > 0.

Remark 5 (Zhang et al., 2012). Consider the stochastic system

x(k + 1) = AT x(k)+ AT
0x(k)ω(k),

y(k) = HT x(k).
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Here, (AT , AT
0,H

T ) is called exactly observable if

y(k) ≡ 0 a.s. ∀k ∈ {0, 1, . . . , } ⇒ x0 = 0.

Lemma 6 (Federico & Ali, 2010). Consider a recursion of the form

Xk+1 = A(k)XkA(k)⋆ + B(k),

where A(k) and B(k) converge uniformly to A and B, respectively, as
k → ∞, and A is a stable matrix. Then, Xk converges to X, the solution
of the Lyapunov equation

X = AXA⋆ + B.

We now state one of the main results in this paper.

Lemma 7. Given a fixed q, under Assumptions 2–3, for any 0 < ε ≤

ε̄, P(k) given by (13) is bounded as k → ∞, where ε̄ is the solution
of the following optimization problem:

ε̄ = argmax
ε

Φε(L, A) > 0, 0 < ε < 1/∆,

Φε(L, A) =


Inm Inm − εqL ⊗ A

(Inm − εqL ⊗ A)T Inm


.

Proof. Based on Assumption 2, we consider a constant matrix K i
c

such that A − qK i
cH

i is stable for all i. Its corresponding estimation
error covariance is

Pc(k + 1) = Γ̄ c(k)Pc(k)Γ̄ cT (k)+ E{W c(k)W cT (k)},

where Γ̄ c(k) = In ⊗ A − εqL ⊗ A − qdiag{K i
cH

i
} and W c(k) =

diag{K i
cH

i
}vk − 1n ⊗ w(k). Note that one can always find a

sufficiently small ε such that ρ(Γ̄ c(k)) < 1. By Lemma 6, Pc(k+1)
converges to a constant block matrix. Since P(k) given by (11) is
the least estimation error covariance associated with the optimal
estimator, Pc(k) ≥ P(k) ≥ 0, which implies that P(k) is bounded
as k → ∞. Note that

Γ̄ c(k) < Inm − εqL ⊗ A

as A − qK i
cH

i is stable. Note that the graph is strongly connected.
It implies that the Laplacian L has only one zero eigenvalue.
Therefore, a sufficient condition for ρ(Γ̄ c(k)) < 1 is

∥Inm − εqL ⊗ A∥2 < 1,

from which, ε̄, an upper bound of ε, can be found via the stated
optimization problem. �

Lemma 8. If (A, B) is stable, the solution of the equation

Pe(k + 1) = APe(k)AT
+ BPe(k)BT

+ Q +1P(k)

is upper bounded.

Proof. Since P(k) is bounded as k → ∞, there always exists a
sufficiently small ε such that ∥1P(k)∥ < κ and Q − κ Im > 0 for a
positive real number κ . Define a fictitious equation as follows:

P(k + 1) = AP(k)AT
+ BP(k)BT

+ Q + κ Im. (14)

Let the initial conditions be Pe(0) = P(0) ≥ 0. For k = 1, it is easy
to see that

Pe(1) < P(1).

The inequality follows from the fact that ∥1P(k)∥ < κ . Assume
that Pe(k) < P(k). Then, it is not difficult to verify that Pe(k+1) <
P(k+1). By Lemma2 in Zhang et al. (2012), Eq. (14) admits a unique
solution P ≥ 0. Hence, Pe(k) is upper bounded for all k. �

Now, we derive an upper bound and a lower bound for Pi(k) for
all k.
Define an algebraic Riccati equation as follows:

P̂i(k + 1) = F̄ κi (k)P̂i(k)F̄
κT
i (k)

+ q(1 − q)(K iκ
p (k)H

i)P̂i(k)(K iκ
p (k)H

i)T

+Q + qK iκ
p (k)RiK iκT

p (k)+ κ Im, (15)

where F̄ κi (k) = A − qK iκ
p (k)H

i, K iκ
p (k) = qA{P̂i(k) + qε


s∈Ni

[P̂i,s(k) − P̂i(k)]}H iTM−1
i (k). Then, similar to Zhang et al. (2012),

one can prove that the above equation converges to a limit P̂i. We
can also prove that the equation

P̌i(k + 1) = F̄ κi (k)P̌i(k)F̄
κT
i (k)

+ q(1 − q)(K iκ
p (k)H

i)P̌i(k)(K iκ
p (k)H

i)T

+Q + qK iκ
p (k)RiK iκT

p (k)− κ Im (16)

has a unique solution P̌i.

Theorem 1. Under Assumptions 2–3, with the same initial values
Pi(0) = P̂i(0) = P̌i(0) and Pi,j(0) = P̂i,j(0) = P̌i,j(0) for all j ∈ Ni,
the matrix Pi(k) in (11) is upper bounded by P̂i and lower bounded by
P̌i as k → ∞.

Proof. In the proof of Lemma 7, (A − qK i
cH

i,−K i
cH

i) is mean-
square stable (Zhang et al., 2012). By Lemma8, the estimation error
covariance is given by

Pc
i (k + 1) = F̄i(k)Pc

i (k)F̄
T
i (k)+ Q + qK i

cRiK iT
c +

+ q(1 − q)(K i
cH

i)Pc
i (k)(K

i
cH

i)T +1P(k)

which is bounded. Since P(k) is the least estimation error covari-
ance associated with the optimal estimator, Pc

i (k) ≥ Pi(k) ≥ 0.
Thus, Pi(k) is bounded for all i, k.

Note that 1P(k) ≤ κ Im. With the same initial condition, it is
easy to see that Pi(1) < P̂i(1). Assume Pi(k) < P̂i(k) for k, k − 1,
. . . , 1. Then

P̂i(k + 1) = F̄ κi (k)P̂i(k)F̄
κT
i (k)+ Q + qK iκ

p (k)RiK iκT
p (k)

+ q(1 − q)(K iκ
p (k)H

i)P̂i(k)(K iκ
p (k)H

i)T + κ Im

≥ F̄ κi (k)Pi(k)F̄
κT
i (k)+ Q + qK iκ

p (k)RiK iκT
p (k)

+ q(1 − q)(K iκ
p (k)H

i)Pi(k)(K iκ
p (k)H

i)T + κ Im

≥ F̄i(k)Pi(k)F̄ T
i (k)+ Q + qK i

p(k)RiK iT
p (k)

+ q(1 − q)(K i
p(k)H

i)Pi(k)(K i
p(k)H

i)T + κ Im

≥ F̄i(k)Pi(k)F̄ T
i (k)+ Q + qK i

p(k)RiK iT
p (k)

+ q(1 − q)(K i
p(k)H

i)Pi(k)(K i
p(k)H

i)T +1P(k)

= Pi(k + 1). (17)

Thus, as k goes infinity, Pi(k) is upper bounded by P̂i. Note that
Eq. (11) is equivalent to

Pi(k + 1) = APi(k)AT
+ Q − K i

p(k)Mi(K)K i
p(k)+1P(k).

Furthermore, by comparing each term of the above equation and
that of Eq. (8), one has 1P(k) < 0 if


s∈Ni

Pi(k) − Pi,s(k) > 0.
Then, by a similar method as deriving the upper bound, we obtain
the lower bound P̌i. �

Lemma 9. Given a fixed ε ≤ 1/∆, if (A,Q 1/2) is reachable and
(A,H i) is detectable, then P(k) given by (13) is bounded for all q >
maxi{q̄(P̂i)}, where q̄(P̂i) is the solution of the following optimization
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Fig. 1. ε̄ as function of the activating probability q.

problem:

q̄(P̂i) = argmax
q

ψq(X i, Z i) > 0,

0 < X i
≤ I, Z i

= X iK , 0 < q < 1,
ψq(X i, Z i)

=

 X i

q(1 − q)Z iH i X i(A − qK iH i)

q(1 − q)H iTZ iT X i 0
X i(A − qK iH i) 0 X i

 .
Proof. Note that we have proved that P̂i(k) > Pi(k) for all k. The
critical value q̄(P̂i)which renders P̂i in Eq. (15) convergence is given
by Zhang et al. (2012) as the solution to the above optimization
problem. Thus, if q > maxi{q̄(P̂i)}, then the matrix Pi(k) is
bounded. �

To illustrate the optimization procedure, we consider a wire-
less sensor network consisting of 30 sensors with maximal degree
∆ = 5. Other parameters are the same as the example in Sec-
tion 4. Fig. 1 shows ε̄ for a list of q by solving the optimization
problem in Lemma 7. Obviously, each corresponding ε̄ is larger
than 1/∆. Intuitively, it is easier to obtain the value of the maxi-
mal node degree than the corresponding network topology. Thus,
we can choose ε from (0, 1/∆), and then find a lower bound for q
by solving the optimization problem in Lemma 9. Moreover, we
also find that ε which satisfies ε ≤ ε̄ has very mild influence
on the estimation performance as Fig. 1 shows. In Fig. 1, MSE is
the average mean-squared estimation error over last 100 steps ask̄

k=k̄−100

n
i=1 e

iT
k eik/100n, k̄ is a large enough time step at which

Pi(k) has converged to a constant for all i.

4. Simulation results

In this section, we illustrate the results derived in Section 3
by numerical simulations. Moreover, we compare the estimation
performance of the proposed estimator and the consensus-based
distributed Kalman filter (CBDKF) (Federico & Ali, 2010; Stanković
et al., 2009).

Consider a wireless sensor network with n = 30 sensors. The
discrete-time system and sensor parameters are given as follows:

A =


1.01 0
0 1.01


, Q =


2 0
0 2


,

H i
=


2δi 0
0 2δi


, Ri =


2νi 0
0 2νi


,

Fig. 2. Tracking performance of the proposed estimator: the blue curves corre-
spond to 30 sensors and the red curve corresponds to the given target.(For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 3. Trace of covariance of the proposed estimator: node 1.

where δi, νi ∈ (0, 1] for all i. We choose an undirected network
topology G which has its second eigenvalue λ2(L) = 1.2483 and
maximal degree∆ = 17.Moreover, γi(k) is the activating indicator
with Pr{γ i

k = 1} = 0.9 and Pr{γ i
k = 0} = 0.1. We also choose

ε = 0.01. As Fig. 2 shows, all the sensors (in blue lines) are
able to track the unstable object system state of (1) (in red line).
Furthermore, Fig. 3 demonstrates that Pi(k) indeed converges.

Next, we compare the proposed estimator with the CBDKF esti-
mator. Denote themean-squared estimation error as

n
i=1 e

iT
k eik/n.

The plot in Fig. 4(a) demonstrates that the proposed estimator has
smaller estimation error than that of the CBDKF estimator. Due to
the introduction of a consensus term, the disagreement of a sen-
sor’s estimates also reflects the estimation performance. Similar to
Saber (2007), we use ∥δ(k)∥ = (

n
i=1(δ

i(k))2)1/2 with δi(k) =

x̂i(k|k−1)−m(k), wherem(k) =
1
n


i x̂

i(k|k−1), to measure the
disagreement of the estimates. From Fig. 4(b), we can see that the
proposed estimator has more cohesive estimates when compared
with the CBDKF estimator.

Note that the activating probability in our proposed stochastic
sensor activation strategy is constant. To further utilize the net-
work resources during filtering process, we propose one special
type of adaptive activating strategy in which the activating proba-
bility of each sensor qi(k) depends on the past γi(k)′s. Each sensor
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a

b

Fig. 4. Comparison of the proposed estimator and the CBDKF estimator.

checks its past l steps’ γi(k) at time step ks withmod(ks, l) = 0, and
decides what probability to use over the next l steps. Denote the
number of activating times in each past l steps as ni

ks . Let m̌ < m̂.
Each sensor updates its activating probability as follows:

qi(ks+1)

=


qi(ks)+ a · (1 − qi(ks))


1 −

1
l − ni

ks

b

, if ni
ks ≤ m̂,

qi(ks)− a · qi(ks)


1 −

1
l − ni

ks

b

, if ni
ks ≥ m̌,

qi(ks), otherwise.

where ks+1 = ks + l, and qi(k) = qi(ks), k ∈ [ks, ks+1).

Remark 10. Intuitively, a small l leads to more frequent variation
of the activating probability, which may in turn lead to instability
of the networked system. On the other hand, the estimate
performance of a large l is close to that of the constant probability
strategy. Therefore, a tradeoff exists between the network stability
and the estimate performance for different choices of l. In practice,
one can run sufficient simulations to determine an appropriate l.
Moreover, note that different choices of the parameters a, b, m̂, m̌
lead to different strategies, which may substantially decrease or
increase the activating probability over the next ten steps, based
on the activating numbers in the past ten steps. A larger a leads to
a larger variation of the activating probability. The parameter b can
tune the weight to increase or to decrease, depending on the gap
between the activating probability and m̌ or m̂. Moreover, larger
a

b

c

Fig. 5. Comparison of the adaptive probability strategy (adaptive q) and the
constant probability strategy (constant q).

m̌ and smaller m̂ lead to more frequent variation of the activating
probability.

Next, we compare the estimation performance of the adaptive
probability strategy with our constant probability strategy. In the
example, we set l = 10. To make a fair comparison with the
constant q strategy, i.e., the two strategies have the same average
activating numbers in the long run, we choose m̌ = 2, m̂ = 8, a =

0.5, b = 1, and set q = 0.5 for the constant probability strategy.
Intuitively, if over the past ten steps, the activating number is less
than 2 (which is smaller than the expected number 5), then over
the next ten steps, the activating probability increases; and if over
the past ten steps, the activating number is more than 8 (which is
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more than the expected number 5), then over the next ten steps,
the activating probability decreases.

In the simulations, we randomly set the initial activating prob-
ability such that the average initial activating probability of all the
sensors is equal to 0.5 for the adaptive strategy. As Fig. 5(a) and (b)
show, both strategies have very similar estimation performance,
and the adaptive probability strategy obtains a slightly better es-
timate than the constant probability strategy. Fig. 5(c) shows how
the randomly selected five sensors’ qi(k) evolve.

5. Conclusion

In this paper, we have considered distributed state estima-
tion over a sensor network and designed an optimal estimator for
each sensor with a stochastic scheduling scheme byminimizing its
mean-squared estimation error. Under somemild assumptions,we
have derived an upper bound and a lower bound for the estimation
error covariance. To implement the proposed estimator in real ap-
plications, we have provided a method to obtain an upper bound
of parameter ε, and a lower bound of probability q by solving a few
LMIs. Moreover, we have compared the proposed estimator with
the CBDKF estimator. The result shows that our design has smaller
estimation errors and more cohesive estimates. Furthermore, we
have designed an adaptive probability strategy in which each sen-
sor tuned its activating probability by considering its past ten steps’
activating numbers. By comparing with the constant probability
strategy, simulation results show that both strategies have similar
estimation performance.

Futureworks along the line of the current research include con-
sidering different activating probabilities qi in a heterogeneous
sensor network and finding the optimal qi, analyzing estimation
performance as a function of the network topology, and construct-
ing the optimal topology subject to communication and resource
constraints.
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