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a b s t r a c t

In this paper, we consider the problem of sensor transmission power scheduling for remote state estima-
tion. We assume that the sensor has two transmission energy levels, where the high level corresponds to
a high packet reception ratio. By exploiting the feedback information from the remote estimator, we aim
to find an optimal transmission power schedule.We formulate the problem as aMarkov decision process,
and analytically develop a simple and optimal dynamic schedulewhichminimizes the average estimation
error under the energy constraint. Furthermore, we derive the necessary and sufficient condition under
which the remote state estimator is stable. It is shown that the estimation stability only depends on the
high-energy packet reception ratio and the spectral radius of the system dynamic matrix.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Networked control systems (NCSs) have attracted great re-
search interest in the past decade, which have a broad range
of applications including autonomous vehicles, environmental
monitoring, industrial automation, smart grid, etc., (Hespanha,
Naghshtabrizi, and Yonggang (2007)). In all these applications,
state estimation is an indispensable ingredient. In this paper, we
consider the scenario where a sensor is monitoring a system and
transmits its local estimation data to a remote state estimator via
a wireless communication network.

We assume the sensor has two transmission power levels, and
the higher one corresponds to a lower data packet drop rate. To
save energy usage (or equivalently to increase lifetime), the sensor
tends to use lower transmission power as much as possible. This,
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however, introduces a large number of data packet drops which
in turn deteriorate the estimation quality at the remote estimator.
Therefore, when there is a constraint on the sensor energy usage,
it is of great importance to optimally schedule the transmission
power levels so as to minimize the estimation error at the remote
estimator.

We also consider in this scenario that the remote estimator
is able to send an acknowledgment packet back (which can be
for example achieved by the media access control (MAC) protocol
(Tanenbaum (2002))) to the sensor which indicates whether the
transmitted packet is received or not. Under this feedback mecha-
nism, the sensor is aware of the packet receptions in the previous
times.

Before we present our main contributions and our approach for
tackling the power scheduling problem, we briefly go over some
related works in the literature. More references can be found from
the references therein.

In Baras and Bensoussan (1988), they considered the optimal
selection of a schedule of sensors, so as to optimally estimate a
function of an underlying parameter. For a number of sensors and
actuators, Walsh and Hong (2001) and Walsh, Hong, and Bushnell
(2002) investigated when to schedule which process to access the
network so that each process can remain absolutely stable. Gupta,
Chung, Hassibi, and Murray (2006) proposed a stochastic sensor
schedule and gave an optimal probability distribution over the sen-
sors which minimizes an upper bound of the expected estimation
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errors. Sandberg, Rabi, Skoglund, and Johansson (2008) considered
a heterogeneous sensor network, i.e., low-quality measurement
with small cost and high-quality measurement with high cost, and
proposed an optimal schedule using time-periodic Kalman filter.
Similar problemsof sensor schedulingwere also considered inArai,
Iwatani, and Hashimoto (2008) and Arai, Iwatani, and Hashimoto
(2009). Savage and La Scala (2009) considered an optimal sensor
scheduling that minimizes the terminal estimation error covari-
ance for scalar systems. Cao, Chen, Zhang, and Sun (2008) proposed
a micro-environmental monitoring and data processing system
based on wireless sensor network. In Cao, Cheng, Chen, and Sun
(2013), they considered a networked cyber–physical system and
developed a joint optimization framework, which consists of com-
munication protocol and online control. Ren, Cheng, Chen, Shi, and
Sun (2013) considered an optimal periodic sensor scheduling that
minimizes the average estimation error covariance.

Walrand and Varaiya (1983) showed that feedback information
is helpful in encoder–decoder design. Bansal and Başar (1989) pro-
posed a simultaneous design of measurement and control strate-
gies for ARMA models. Lipsa and Martins (2011) considered the
joint design of pre-processor and estimator, to minimize an ob-
jective that combines the expected squared state estimation error
and communication cost. They showed that threshold policies at
the pre-processor and the estimator are jointly optimal. Both the
problems in Walrand and Varaiya (1983) and Lipsa and Martins
(2011) are analyzed in the finite time horizon. The most related
work to this paper is Shi, Cheng, and Chen (2011), which consid-
ered a scheduling problem with two transmission power levels,
where high level corresponds to perfect communication (i.e., the
packet drop rate is 0) and low level introduces random packet
drops. Compared with Shi et al. (2011), we have the following ma-
jor differences.

1. We aim to find an optimal schedule among the entire schedule
space, while Shi et al. (2011) only analyzed periodic schedules.

2. The tools used in this paper is different, which utilizes the com-
munication feedback to improve the remote estimation quality.

3. Each transmission energy level introduces a packet drop rate,
which is more realistic, while a higher transmission level leads
to perfect communication in Shi et al. (2011).

4. Since the transmitted data can be randomly dropped and is
never guaranteed to arrive under any transmission power level,
the state estimation error at the remote estimator side may di-
verge. Thus it is necessary to analyze the stability condition,
which is not an issue in Shi et al. (2011).

Themain contributions of this paper are summarized as follows.

1. We show how online information can be exploited to minimize
the average expected estimation error covariance by an energy-
constrained sensor. The problem is formulated as a Markov de-
cision process.

2. We develop a simple and optimal scheduling scheme, and de-
rive an analytical expression of the minimum expected average
estimation error covariance.

3. We derive a sufficient and necessary condition under which the
stability of the estimator is guaranteed.

The remainder of this paper is organized as follows. In Section 2,
we introduce the systemmodels and problem formulation. In Sec-
tion 3, we give some notations and some preliminaries on Kalman
filter. Section 4 shows that we only need to consider stationary
schedules. The optimal sensor scheduling scheme with a simple
structure is derived in Section 5. Section 6 provides the sufficient
andnecessary condition for the estimator’s stability. Two examples
are provided in Section 7 to demonstrate the results. Conclusion is
given at the end.

Notations. Z is the set of integers. Z+ is the set of positive inte-
gers; k ∈ Z+ is the time index. N is the set of nonnegative integers.
ACK

SensorProcess Estimator

Fig. 1. System block diagram.

Rn is the n-dimensional Euclidean space. 0n is an 1 × n row vector
(0, 0, . . . , 0). Sn

+
is the set of n×n positive semi-definite matrices.

We simply write X ≥ 0, when X ∈ Sn
+
; and write X > 0, when X is

positive definite. For functions f , f1, f2: Sn
+

→ Sn
+
, f1 ◦ f2 is defined

as f1 ◦ f2 , f1(f2(X)), and f t is defined as f t(X) , f ◦ f ◦ · · · ◦ f  
t times

(X)

(particularly, f 0(X) = X).

2. Systemmodels and problem definition

2.1. System models

Consider the following dynamical model

xk+1 = Axk + ωk, yk = Cxk + νk,

where xk ∈ Rn is the state of system, yk ∈ Rm is the measurement
obtained by the sensor, andA, C are known time-invariant realma-
trices. ωk ∈ Rn and νk ∈ Rm are both zero-mean Gaussian random
noises with covariances E[ωkω

′

j] = ∆kjQ ,Q ≥ 0, E[νkν
′

j ] = ∆kjR,
R > 0, and E[ωkν

′

j ] = 0∀j, k, where ∆kj = 0 if k ≠ j and ∆kj = 1
otherwise. The initial state x0 is also a zero-mean Gaussian random
vector which is uncorrelatedwithωk or νk and has covariance P0 ≥

0. Assume the pair (A,
√
Q ) is controllable and (C, A) is observable.

Let Yk = {y1, . . . , yk} be all themeasurement data of the system
collected by the sensor from time 1 to time k. Based on Yk, the
sensor is able to estimate the system’s state as x̂sk which is given by

x̂sk = E[xk|Yk], P s
k = E[(xk − x̂sk)(xk − x̂sk)

′
|Yk],

where P s
k is the corresponding estimation error covariance. We as-

sume that the sensor has two energy levels to transmit x̂sk to the
remote estimator (see Fig. 1). When the sensor uses a low energy
Ψ1 at time k, the data packet can be successfully delivered to the
remote estimator with probability (w.p.) p1 ∈ [0, 1); when the
sensor uses a high energy Ψ2(Ψ2 > Ψ1 > 0), the data packet can
be successfully delivered w.p. p2 ∈ (0, 1]. From Zuniga and Krish-
namachari (2004), the reception rate under transmission power Pt
can be approximated by

p =


1 −

1
2
exp−

Pt−PL−Pn
2

1
0.64

8f

.

We can see p is increasing in Pt . Thus it is reasonable to assume
p2 > p1. At time k, sensor will choose one power level to transmit
the packet. Let γk = 0 or 1 be the sensor’s decision variable at time
k whether it chooses the low level or high level to send its current
data packet. We use θ to denote sensor’s scheduling scheme that
assigns the value of γk at each k.

In this paper, we assume there is a communication feedback
between the sensor and the remote estimator (see Fig. 1): when a
packet containing x̂sk has been transmitted by the sensor, the sensor
will be know that whether this packet is successfully received by
the estimator after time k. This communication feedback can be
achieved by the media access control (MAC) data communication
protocol (Rossi, Badia, & Zorzi, 2006; Tanenbaum, 2002). For
example, in the popular used CSMA/CA protocol, receiver will send
a short acknowledgment frame (ACK) back to the transmitter to
signify the receipt. If the sender does not receive an ACK frame, it
indicates that the transmission was unsuccessful.
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2.2. Problem definition

Under a schedule θ , the estimator will calculate a state estimate
x̂k(θ) of the system which has an error covariance Pk(θ). We will
write x̂k(θ) as x̂k, etc., for short, when the underlying scheduling
scheme θ is clear. Let T ∈ Z+ be the time horizon. Then the average
energy cost is

Ja(θ) , lim sup
T→∞

1
T

E
 T
k=1

(1 − γk)Ψ1 + γkΨ2


. (1)

And the average expected estimation error covariance is

Pa(θ) , lim sup
T→∞

1
T

E
 T
k=1

Pk(θ)

. (2)

Assume the sensor has a limited energy budget δ (Ψ1 < δ < Ψ2).2
In this paper, we are interested in the following problem.

Problem 1.

min
θ

Pa(θ) s.t. Ja(θ) ≤ δ.

That is, we wish to find a scheduling scheme such that the average
expected error covariance at the estimator is minimized under the
energy constraint. As in the long run, the estimator’s error will
fluctuate around the average covariance.

Remark 1. Note that Problem 1 includes two simple scenarios as
its special cases. If we set p2 = 1, i.e., the high energy transmission
is perfect, and consider no feedback, Problem 1 reduces to the set-
ting in Shi et al. (2011). If we assume p1 = 0 and p2 > 0, Problem 1
reduces to the single power scheduling problem that the sensor
decides whether to transmit or drop the packet intentionally for
saving energy.

Since p1 and p2 may be both less than 1, the transmitted packet
is never guaranteed to arrive at the estimator side, Pk may diverges,
which leads to the instability of Pa(θ). In Problem 1, we only
consider the schedules where Pa(θ) is convergent. Thus, unlike Shi
et al. (2011), it is necessary to analyze the stability of Pa(θ).

Problem 2. Find the condition underwhich Pa converges, when an
optimal schedule of Problem 1 is used.

3. Kalman filter preliminaries

In this section, we present some notations and a brief summary
of the standard Kalman filter theory, which will be used frequently
in the following sections.

First, we define the functions h and g as

h(X) , AXA′
+ Q ,

g(X) , X − XC ′
[CXC ′

+ R]−1CX,

where (A, C,Q , R) are as shown in Section 2. It can be proved that if
0 ≤ X ≤ Y , then h(X) ≤ h(Y ), g(X) ≤ g(Y ) and g(X) ≤ X (see Shi,
Epstein, and Murray (2010)). Based on the standard Kalman filter
theory, at the sensor’s side, x̂sk and P s

k are calculated by a Kalman
filter. Denote P = limk→∞ P s

k|k as the steady-state error covariance,
i.e., the solution of matrix equation g ◦ h(P) = P with P ≥ 0 and
P ≠ 0 (Anderson and Moore (1979)). Then P has the following
property:

2 Here, we only analyze the case for Ψ1 < δ < Ψ2 . This is because, when δ = Ψ1
(δ = Ψ2), the sensor only has one schedule: always use low (high) energy to send
the packets.
Property 1. Suppose that 0 ≤ k1 ≤ k2. Then hk1(P) ≤ hk2(P) and
h(P) ≠ P.

Since P s
k converges to P exponentially fast, we assume the

Kalman filter enters steady-state at the sensor side. Then (x̂k, Pk)
at the estimator side is simply given as

(x̂k, Pk) =


(x̂sk, P), if x̂sk is received,
Ax̂k−1, h(Pk−1)


, otherwise.

Hence if the latest time that the estimator has received a packet is
at time k1, the estimator’s error covariance at time k2(k2 ≥ k1) is
Pk2 = hk2−k1(P) (note that, if k2 = k1, Pk2 = h0(P) = P).

4. Stationary schedule

Let S , {P, h(P), h2(P), . . .}. Then Pk will take one value in S.
Since the estimator has a communication feedback, before the sen-
sor decides to send a packet, the sensor will know whether previ-
ous packets have been received by the estimator or not. Then, at
the beginning of time k (just before choosing the value of γk), the
sensor will know the estimator’s covariance Pk−1. We can design
the sensor’s decision γk based on Pk−1, which leads to the follow-
ingMarkov decision process (or called discrete-time stochastic dy-
namic system (Bertsekas (2000)):
Pk = f (Pk−1, γk), k = 1, 2, . . . (3)
where

k induces discrete time,
Pk is the state of the Markov decision process and Pk ∈ S,
γk is the decision variable to be selected at time k and

γk = 0 or 1.

Let Pr(Pk|Pk−1, γk) denote a transition probability that the esti-
mator’s covariance goes from Pk−1 to Pk, if the sensor takes decision
γk at time k. From the definition of γk, we have Pr(Pk|Pk−1, γk) =

p1(1 − γk) + p2γk if Pk = P , Pr(Pk|Pk−1, γk) = q1(1 − γk) + q2γk if
Pk = h(Pk−1), where q1 , 1 − p1, q2 , 1 − p2. This transition pro-
cess is depicted in Fig. 2, where the dotted lines represent the tran-
sitions based on low energy, the solid lines represent those based
on high energy, and the values on the lines represent the transi-
tion probabilities. We can see Problem 1 is to design the value of
γk in the process (3) such that Pa is minimized under the energy
constraint.

Generally, there are different types of schedules. Under some
schedules, γk may vary with time, e.g., the periodic schedules. Un-
der some ones, γk only depends on the preceding state Pk−1 and
does not depend on time. This type of schedules are called sta-
tionary schedules. Under some schedules, γk will vary with the
time and the state simultaneously. We can see, in the time inter-
val (0, T ], {γ1, γ2, . . . , γT } has 2T possibilities. Finding the optimal
schedule within all the schedules is difficult. Here, we will show
that an optimal schedule can be a stationary schedule. Then later
we only need to consider the stationary schedules.

Let µ be a general stationary sensor schedule. Then it can be
defined as a row vector3:
µ = (µ0, µ1, µ2, . . .), (4)
where µi ∈ [0, 1] represents that, at any time k, γk = 1 w.p. µi,
and γk = 0 w.p. 1 − µi, when Pk−1 = hi(P).

Under schedule µ given by (4), if Pk−1 = hi(P) (i = 0, 1, . . .),
we will have Pk = P w.p. (1 − µi)p1 + p2µi = p1 + uµi, and
Pk = hi+1(P) w.p. q1 − uµi, where u , p2 − p1. Then schedule

3 Note that, within vector µ, the first entry is denoted as µ0 , the second entry
is µ1 , etc. It is similar to other two vectors π and φ(m) given later. What is more,
in the matrix Tµ given later, we also impose that the first row index and the first
column index are both 0.
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Fig. 2. Transition process.

µ generates a Markov chain with the transition probability matrix
Tµ given as follows:

Tµ =


p1 + uµ0 q1 − uµ0
p1 + uµ1 q1 − uµ1
p1 + uµ2 q1 − uµ2

...
. . .

 ,

where the (i, j)th entry in the matrix is Tµ(i, j) = Pr

Pk = hj(P)|

Pk−1 = hi(P), γk = 1 w.p. µi

, the missing entries are 0.

Let π = (π0, π1, π2, . . .) be the Markov chain limiting
distribution, i.e.,

πi = lim
T→∞

E

total number of hi(P) occurred in (0, T ]


T

.

π can be derived by the following equations (Stroock (2005))

πTµ = π,

∞
i=0

πi = 1. (5)

Then using the vector π , the average error covariance is given as
(provided Pa(µ) converges)

Pa(µ) =

∞
i=0

πihi(P), (6)

and the average energy cost is

Ja(µ) =

∞
i=0

πi

(1 − µi)Ψ1 + µiΨ2


= Ψ1 + (Ψ2 − Ψ1)

∞
i=0

πiµi. (7)

Lemma 1. An optimal schedule for Problem 1 can be achieved by a
stationary schedule given by (4).

Proof. See Appendix A. �

In the proof, we show that, under the same energy constraint,
each scheduling scheme can be achieved by a schedule (4), includ-
ing time-varying schedules, the widely used periodic ones in Shi
et al. (2011). A similar result can be obtained from Altman (1999),
but our proof is different from theirs and is derived from the prob-
lem’s characteristics. Based on this result, we can therefore focus
on looking for the optimal stationary schedules which would also
be an optimal schedule in the whole schedule set. We introduce
some notations that will be used throughout the rest of this paper:
• U = {µ|Ja(µ) ≤ δ}, µ∗

= argminµ∈U Pa(µ),
• Uδ = {µ|Ja(µ) = δ}, µ∗

δ = argminµ∈Uδ
Pa(µ).

Hence, we only need to consider the schedules in the set U and µ∗

is an optimal schedule to Problem 1.

5. Optimal sensor schedule

In this section, we will construct an optimal sensor sched-
ule, which utilizes the communication feedback. Unlike periodic
schedules in Shi et al. (2011), this schedule is a closed-loop scheme.
We can see that this optimal schedule has a simple structurewhich
will be easily implemented by the sensor.

5.1. Necessary condition for optimal schedule

First, we have a result for the schedule µ∗

δ .

Lemma 2. For any energy level Ψ1 < δ < Ψ2, a schedule µ = µ∗

δ if
and only if it satisfies the following conditions:
(1) Ja(µ) = δ, i.e., µ ∈ Uδ;
(2) µ has a structure that (m ∈ N and µm ∈ (0, 1])

µ = (0, . . . , 0  
m times

, µm, 1, 1, . . .). (8)

The proof is presented at Appendix B. We prove it by the follow-
ing argument: for any schedule µ(1)

∈ Uδ that does not have
structure (8), we can always find a new schedule µ(2)

∈ Uδ and
Pa(µ(2)) < Pa(µ(1)). Next, we have a necessary condition of the
optimal scheduling scheme.

Theorem 1. The optimal schedule µ∗ to Problem 1 satisfies Ja(µ∗)
= δ.

For saving space, we only provide an outline of the proof. Let
δ1 < δ and µ(1)

= µ∗

δ1
, then from Lemma 2, µ(1)

= (0, . . . , 0,
µ

(1)
m , 1, 1, . . .). Define a new schedule µ(2)(ϵ) = (0, . . . , 0, µ(1)

m +

ϵ, 1, 1, . . .) (if µ
(1)
m < 1) or µ(2)(ϵ) = (0, . . . , 0, ϵ, 1, 1, . . .) (if

µ
(1)
m = 1). We can prove that there exists an ϵ > 0 such that

Ja(µ(2)) ≤ δ and Pa(µ(2)) < Pa(µ(1)). Theorem 1means that an op-
timal schedule must consume all the energy. Hence we have µ∗

∈

Uδ . Sinceµ∗

δ = argminµ∈Uδ
Pa(µ), we have the following corollary.

Corollary 1. Optimal schedule to Problem 1 is µ∗
= µ∗

δ .

5.2. Optimal schedule

Define a schedule φ(m) = (0m, 1, 1, . . .), i.e., the entries are
φi(m) = 0 if 0 ≤ i ≤ m − 1, φi(m) = 1 if i ≥ m. Then its limiting
distribution is πi = π0qi1, i = 0, 1, . . . ,m, πi = π0qm1 q

i−m
2 , i ≥

m + 1, where π0 =
p1p2

p2(1−qm+1
1 )+p1q2qm1

. The average energy cost by

φ(m) is Ja(φ(m)) = Ψ1 +(Ψ2 −Ψ1)


∞

i=0 πiφi(m) = Ψ1 +π0(Ψ2 −

Ψ1)qm1 /p2. As a consequence of Lemma 2 and Corollary 1, we are
ready to present the analytical expression of the optimal schedule
based on Ja(φ(m)).

Theorem 2. Given energy level Ψ1 < δ < Ψ2, we have the following
results:
(1) An optimal sensor schedule to Problem 1 is

µ∗
= (0m∗ , µ∗

m∗ , 1, 1, . . .), (9)

where m∗ is a nonnegative integer such that Ja(φ(m∗)) ≥ δ and
Ja(φ(m∗

+ 1)) < δ, and µ∗

m∗ = p2(1 − qm
∗
+1

1 )/(up1qm
∗

1 ) +

q1/u − p2/(αuqm
∗

1 ), where α = p1 + u δ−Ψ1
Ψ2−Ψ1

;
(2) Under the optimal scheme µ∗,

Pa(µ∗) = α

m∗
i=0

qi1h
i(P) + αqm

∗

1 (q1 − uµ∗

m∗)

×

∞
i=m∗+1

qi−m∗
−1

2 hi(P). (10)

Proof. Since Ja(φ(m)) is decreasing with m, the critical value m∗

such that Ja(φ(m∗)) ≥ δ and Ja(φ(m∗
+1)) < δ is unique. We now

prove that the schedule (9) defined above is an optimal solution.



Z. Ren et al. / Automatica 50 (2014) 1235–1242 1239
Under the scheme (9), the limiting distribution of µ∗ (denoted
as π∗

i ) is obtained as follows:

π∗

i =


π∗

0 q
i
1, 0 ≤ i ≤ m∗,

π∗

0 q
m∗

1 (q1 − uµ∗

m∗)qi−m∗
−1

2 , i ≥ m∗
+ 1,

where π∗

0 = α. It can be calculated that Ja(µ∗) =


∞

i=0 π∗

i


(1 −

µ∗

i )Ψ1 + µ∗

i Ψ2


= δ. Then from Lemma 2, we have µ∗
= µ∗

δ . And
from Corollary 1, we have proved thatµ∗ is an optimal schedule to
Problem 1.

Again, using π∗

i and µ∗

i , from Pa(µ∗) =


∞

i=0 π∗

i h
i(P), we get

the Pa(µ∗) as in (10). �

This theorem implies that, at time k, when the estimator’s co-
variance Pk−1 < hm∗

(P), it is optimal for the sensor to use low en-
ergy; when covariance Pk−1 > hm∗

(P), it is optimal to use high
energy; and when Pk−1 = hm∗

(P), sensor will use high energy w.p.
µ∗

m∗ . Such a clear structured schedule would be quite easy to be
implemented in the modern sensor nodes.

6. Stability condition

Owing to the random property of p1 and p2, the estimator can-
not guarantee a successful transmissionwithin a finite time. In this
section, we will study the stability conditions under which the ex-
pected error covariance will converge. Assume the matrices A,Q
are as defined in Section 2. Let ρ(A) represent the spectral radius
of A, i.e., ρ(A) = max{|λi|}, where λi is an eigenvalue of A. Based
on the property of A,Q , we have the following result.

Lemma 3. If Q ≥ 0 and (A,
√
Q ) is controllable, the series


∞

i=0 A
i

QA′i converges absolutely if and only if ρ(A) < 1.
Proof. See Appendix C. �

Theorem 3. Under scheme µ∗, Pa(µ∗) converges absolutely, if and
only if p2 > 1 −

1
ρ(A)2

.

Proof. Under µ∗, from (10), we can see the convergence of P(µ∗)

is only related to the series


∞

i=m∗+1 q
i−m∗

−1
2 hi(P). Since

∞
i=m∗+1

qi−m∗
−1

2 hi(P) = q−m∗
−1

2

∞
i=m∗+1

qi2h
i(P),

we only need to find the convergence condition for the series
∞

i=0 q
i
2h

i(P). Now,
∞
i=0

qi2h
i(P) = P + q2(APA′

+ Q ) + q22(A
2PA′2

+ AQA′
+ Q )

+ q32(A
3PA′3

+ A2QA′2
+ AQA′

+ Q ) + · · ·

=

∞
i=0

qi2A
iPA′i

+

∞
i=1

qi2
i−1
j=0

AjQA′j

=

∞
i=0

qi2A
iPA′i

+
q2

1 − q2

∞
i=0

qi2A
iQA′i

=

∞
i=0

(
√
q2A)iP(

√
q2A′)i

+
q2

1 − q2

∞
i=0

(
√
q2A)iQ (

√
q2A′)i.

From Lemma 3, we know this series converges absolutely if and
only if ρ(

√
q2A) < 1, i.e., p2 > 1 −

1
ρ(A)2

. Thus, the proof is
complete. �

From this theorem, given the system parameters, the estima-
tor’s stability condition is only determined by p2, the packet recep-
tion ratio of high energy. This result can be explained intuitively.
Fig. 3. Performance of Pa(µ∗) under two p2 ’s (p1 = 0.5, δ = 2).

Fig. 4. Performance of different policies (p1 = 0.5, p2 = 0.8, δ = 2.5).

Under the optimal scheduling (9), when Pk−1 > hm∗

(P), the sensor
will always use the high energy to transmit packets. Whenever a
successful transmission happens, Pk will recover to P immediately.
Then, the larger of p2, the faster will the estimator recover to P .
Thus, the estimator’s covariance will not increase too large.

7. Illustrative examples

We give two examples to illustrate our results. Assume the
system’s parameters are defined as follows:

A =


1 0.6
0.5 1


, C =


1 2


, Q =


0.3 0.3
0.3 0.3


,

and R = 1. Suppose that Ψ1 = 1, Ψ2 = 4.

Example 1. Let p1 = 0.5. Then from Theorem 3, when p2 > 1 −
1

ρ(A)2
= 0.58, Pa will be stable. In Fig. 3, we assume the energy bud-

get δ = 2, and depict the trace of average covariance Pa conducted
by two scheduling schemeswith structure (9) which are generated
from two different p2’s, respectively. It can be observed that, when
p2 = 0.52 < 0.58, Pa(µ∗) diverges, while p2 = 0.7 > 0.58, Pa(µ∗)
converges rapidly.

Example 2. In Fig. 4, we fix p1 = 0.5, p2 = 0.8 and δ = 2.5. It can
be derived that an optimal scheme is µ∗

= (0.23, 1, 1, . . .). We
will compare µ∗ with another three schemes:

(1) periodic scheme θ (1)
= {1 1 0 0}: γk = 1 when k = 4n + 1

or k = 4n + 2 (n ∈ Z); γk = 0 when k = 4n + 3 or k = 4(n + 1).
(2) periodic scheme θ (2)

= {1 0 1 0}: γk = 1 when k = 4n + 1
or k = 4n + 3; γk = 0 when k = 4n + 2 or k = 4(n + 1).

(3) µ(3)
= (0.6, 0, 0.7, 1, 1, . . .): a stationary scheme in Uδ .

Fig. 4 plots the trace of Pa under four above schemes, which
shows that the trace of µ∗ outperforms all the others.
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8. Conclusion

In this paper, we consider the sensor scheduling problem with
transmission energy constraint. Based on the communication feed-
back from the remote estimator, the sensor dynamically decides
the optimal transmission energy level for minimizing the average
expected estimation error. We formulate the problem as a Markov
decision process, and first prove that the optimal solution can be
achieved by a stationary schedule. Thenwe derive a necessary con-
dition for a schedule to be optimal. Based on the necessary condi-
tion, we analytically develop an optimal dynamic schedule with a
simple structure. We further provide the necessary and sufficient
condition for the estimation stability under the optimal schedule.
Examples and simulation are provided to demonstrate the results.

Appendix A. Proof of Lemma 1

Let θ ar be an arbitrary sensor schedule.Wewill show that, there
exists a stationary schedule µs

= (µs
i ) given by (4) such that

Ja(µs) ≤ Ja(θ ar) and Pa(µs) ≤ Pa(θ ar).

Define sequences f P,ar
T =

1
T E
T

k=1 Pk(θ
ar)

, f γ ,ar

T =
1
T ET

k=1 γk(θ
ar)

, f arT ,i =

1
T E
T

k=1 I
ar
k,i


(i ∈ N), T = 1, 2, . . ., where

Iark,i denotes an indicator and is defined as Iark,i = 1 if Pk(θ ar) = hi(P),
Iark,i = 0, otherwise. Then


∞

i=0 f
ar
T ,i = 1, ∀T .

Let Tn ∈ Z+ be some increasing sequence of times such that
all the limits limn→∞ f P,ar

Tn , rH,ar , limn→∞ f γ ,ar
Tn , π ar

i , limn→∞

f arTn,i(i ∈ N) exist. Then π ar
i = limn→∞ E


total number of hi(P)

occurred in (0, Tn]

/Tn. It can be proved that


∞

i=0 π ar
i = 1. To see

this, since f arTn,i is nonnegative, from Fatou Lemma (Royden and Fitz-
patrick (2010)), we have

1 = lim inf
n→∞

∞
i=0

f arTn,i ≥

∞
i=0

π ar
i .

Since when n is sufficiently large, f arTn,i ≤ 2π ar
i , it follows that


∞

i=0
π ar
i = 1. Then vector (π ar

i ) can be seen as a probability distribu-
tion.

Now, we will design the stationary schedule µs
= (µs

i ). Let
π s

= (π s
i ) be π s’s limiting distribution and Tµs be the transition

probabilitymatrix incurred byµs. Setπ s
i = π ar

i , ∀i. Sinceµs andπ s

satisfy equationsπ sTµs = π s and


∞

i=0 π s
i = 1, all the values ofµs

i
can be calculated from π s. Then µs is obtained. Under this design,
we have Pa(µs) =


∞

i=0 π s
i h

i(P) =


∞

i=0 π ar
i hi(P). Comparedwith

Pa(θ ar),

Pa(θ ar) = lim sup
T→∞

1
T

E
 T
k=1

Pk(θ ar)


≥ lim
n→∞

1
Tn

E
 Tn
k=1

Pk(θ ar)


= lim
n→∞

∞
i=0

f arTn,ih
i(P) ≥

∞
i=0

π ar
i hi(P) = Pa(µs).

It is observed that the average estimation error of schedule µs is
less than θ ar .

On the other hand, let index IL,ark = 1 if γk = 0 and Pk = P;
IL,ark = 0, otherwise. Let IH,ar

k = 1 if γk = 1 and Pk = P; IL,ark = 0,
otherwise. From the definition of π ar

0 and rH,ar , we get

π ar
0 = lim

n→∞

1
Tn

E
 Tn
k=1

IL,ark +

Tn
k=1

IH,ar
k


= lim

n→∞

1
Tn

 Tn
k=1

E(IL,ark ) +

Tn
k=1

E(IH,ar
k )



= lim
n→∞

1
Tn

 Tn
k=1

p1E(1 − γk) +

Tn
k=1

p2E(γk)


= p1(1 − rH,ar) + p2rH,ar , (A.1)
i.e., there is a relation between π ar

0 and rH,ar . In addition, there also
exists a relation between Ja(θ ar) and rH,ar as shown in the follow-
ing.

Ja(θ ar) = lim sup
T→∞

1
T

E
 T
k=1

Ψ1(1 − γk(θ
ar)) + Ψ2γk(θ

ar)


≥ lim
n→∞

1
Tn

E
 Tn
k=1

Ψ1(1 − γk(θ
ar)) + Ψ2γk(θ

ar)


= Ψ1(1 − rH,ar) + Ψ2rH,ar . (A.2)
Replacing rH,ar in (A.2) by π ar

0 from (A.1), Ja(θ ar) ≥ Ψ1 + (Ψ2 −

Ψ1)
πar
0 −p1
p2−p1

is obtained. To Ja(µs), we have

Ja(µs) =

∞
i=0

π s
i


(1 − µs

i )Ψ1 + µs
iΨ2


= Ψ1 + (Ψ2 − Ψ1)

∞
i=0

π s
i µ

s
i .

From equation π sTµs = π s, π s
0 = p1 +u


∞

i=0 µs
iπ

s
i which leads to

Ja(µs) = Ψ1 + (Ψ2 − Ψ1)
π s
0−p1

p2−p1
≤ Ja(θ ar). Therefore the designed

stationary schedule is better than θ ar , which completes the proof.

Appendix B. Proof of Lemma 2

Since the statement of condition (1) is clear, we mainly focus
on condition (2). Assume vector µ(1)

= (µ
(1)
i ) ∈ Uδ but does not

possess the structure (8). Then inµ(1), we can find an integer t such
that the entry µ

(1)
t > 0 and µ

(1)
t+1 < 1. Define a new schedule:

µ(2)
= (µ

(1)
0 , . . . , µ

(1)
t−1, µ

(1)
t − ϵ1, µ

(1)
t+1 + ϵ2, µ

(1)
t+2, . . .), where

ϵ1, ϵ2 > 0. First, we will prove that, there exist ϵ1, ϵ2 > 0 such
that µ

(1)
t − ϵ1 ≥ 0, µ(1)

t+1 + ϵ2 ≤ 1 and Ja(µ(2)) = δ. Note that, if
µ

(1)
t − ϵ1 < 0, µ(1)

t+1 + ϵ2 > 1, µ(2) will not be a feasible schedule.
Since any stationary policy µ must satisfy equation πTµ = π ,
∞

i=0 πi = 1, where π is µ’s limiting distribution. It follows that
πi =

i−1
j=0(q1 − uµj)π0, i ≥ 1. Thus

Ja(µ) =

∞
i=0


(1 − µi)Ψ1 + µiΨ2


πi = Ψ1 + (Ψ2 − Ψ1)

×


π0µ0 +

∞
i=1

π0µi

i−1
j=0

(q1 − uµj)

. (B.1)

Pa(µ) = π0P +

∞
i=1

π0hi(P)

i−1
j=0

(q1 − uµj). (B.2)

Let L(µ) , 1 +


∞

i=1
i−1

j=0(q1 − uµj). Then from


∞

i=0 πi = 1,
we have π0 = 1/L(µ). In addition, from the proof in Lemma 1, we
have Ja(µ) = Ψ1 + (Ψ2 − Ψ1)

π0−p1
p2−p1

, which means Ja(µ) is only
determined by π0.

Let vectors π (1)
= (π

(1)
i ) and π (2)

= (π
(2)
i ) be the limiting

distribution for schedule µ(1) and µ(2), respectively. We begin to
calculate the values of ϵ1, ϵ2 by solving the equation L(µ(1)) =

L(µ(2)), which is equivalent to

−uϵ1
t−1
j=0

(q1 − uµ(1)
j ) +

∞
i=t+1


j∈Λt,i

(q1 − uµ(1)
j )

×

β1ϵ1 + β2(ϵ1)ϵ2


= 0, (B.3)
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where β1 = −u(q1 − uµ(1)
t+1), β2(ϵ1) = u(q1 − uµ(1)

t ) + u2ϵ1,
Λt,i = {0, 1, . . . , t − 1, t + 2, . . . , i}. Assume ϵ1 is given. Let
γ1(ϵ1) = uϵ1

t−1
i=1 (q1 −uµ(1)

j )−β1ϵ1


∞

i=t+1


j∈Λt,i
(q1 −uµ(1)

j ),

γ2(ϵ1) = β2(ϵ1)


∞

i=t+1


j∈Λt,i
(q1 − uµ(1)

j ), then Eq. (B.3) implies
ϵ2 = γ1(ϵ1)/γ2(ϵ1) > 0. Observe that,when ϵ1 = 0,γ1(0) = 0 and
γ2(0) > 0. Thus ϵ2 = γ1(ϵ1)/γ2(ϵ1) and ϵ1 both can be arbitrarily
small. When ϵ1 is small enough, we will have ϵ1, ϵ2 > 0 such that
µ

(1)
t − ϵ1 ≥ 0, µ(1)

t+1 + ϵ2 ≤ 1.
Nowusing the ϵ1, ϵ2 obtained above,wehave L(µ(1)) = L(µ(2)),

then π
(1)
0 = π

(2)
0 . Then from (B.1) and (B.3) (or since for any µ,

Ja(µ) is only determined by π0), we get Ja(µ(1)) − Ja(µ(2)) = 0,
i.e., Ja(µ(2)) = δ.

Next, we establish that Pa(µ(1)) > Pa(µ(2)). Since (p1−p2)ϵ1 <

0 and q1 − uµ(1)
j > 0, from (B.3), we have β1ϵ1 + β2(ϵ1)ϵ2 > 0.

Then, using Eq. (B.2),

Pa(µ(1)) − Pa(µ(2)) = π
(1)
0 ht+1(P)

t−1
j=1

(q1 − uµ(1)
j )(p1 − p2)ϵ1

+ π
(1)
0


β1ϵ1 + β2(ϵ1)ϵ2

 ∞
i=t+1

hi+1(P)

j∈Λt,i

(q1 − uµ(1)
j )

> π
(1)
0 ht+1(P)

t−1
j=0

(q1 − uµ(1)
j )(p1 − p2)ϵ1

+

β1ϵ1 + β2(ϵ1)ϵ2


×

∞
i=t+1


j∈Λt,i

(q1 − uµ(1)
j )


= 0.

Hence Pa(µ(1)) > Pa(µ(2)), i.e., the new policy µ(2) is better than
µ(1). Therefore, proceeding this modification, at last, the optimal
schedule must possess the structure (8), which proves the state-
ment.

Appendix C. Proof of Lemma 3

‘‘⇐’’: We can see ∥AiQA′i
∥ ≤ ∥Ai

∥ × ∥A′i
∥ × ∥Q∥, where ∥ · ∥

is a compatible norm. When ρ(A) < 1, ∥Q∥


∞

i=0(∥A
i
∥ × ∥A′i

∥)

converges. Thus


∞

i=0 A
iQ (A′)i converges absolutely.

‘‘⇒’’: Let T−1AT = J be a Jordan decomposition of A, where T is
invertible and J = diag(J1, J2, . . . , Js) is the Jordan normal form of
Awith Jordan blocks, 1 ≤ i ≤ s,

Ji =


λi 1

. . .
. . .

λi 1
λi

 . (C.1)

We assume the Jordan blocks are ordered in increasing order of the
absolute values of the eigenvalues. Then |λs| = ρ(A). With (C.1),
the last row of J is (0, . . . , 0, λs). Since

∞
i=0

AiQA′i
=

∞
i=0

TJ iT−1

Q (

Q )′(TJ iT−1)′

= T


∞
i=0

(J iT−1

Q )(J iT−1


Q )′


T ′, (C.2)

the convergence of


∞

i=0 A
iQA′i is equivalent to (C.2). Then, when

∞

i=0 A
iQA′i converges absolutely, we have

lim
i→∞

(J iT−1

Q )(J iT−1


Q )′ = 0. (C.3)

Let Mc =

√
Q , A

√
Q , A2√Q , . . . , An−1√Q


denote the con-

trollability matrix. Since (A,
√
Q ) is controllable, we have rankMc

= n. This implies every row of Mc will not be all zeros. Recall that
the last row of J is (0, . . . , 0, λs). With

Mc =


Q , TJT−1


Q , TJ2T−1


Q , . . . , TJn−1T−1


Q


= T

T−1


Q , JT−1


Q , J2T−1


Q , . . . , Jn−1T−1


Q

,

there is one J jT−1√Q (0 ≤ j ≤ n − 1) having form

J jT−1

Q =


∗ ∗ ∗

∗ λj
srn,k ∗


,

where rn,k ∈ R and one of them, say rn,k0 , is nonzero in the last row
of T−1√Q . Therefore, when i > j,

(J iT−1

Q )(J iT−1


Q )′ =


∗ ∗ ∗

∗ λi
srn,k ∗


∗ ∗ ∗

∗ λi
srn,k ∗

′

=

∗ ∗

∗ λ2i
s r

2
n,k0 + λ2i

s


k≠k0

r2n,k

 .

Hence, from (C.3), we have |λs| < 1, i.e., ρ(A) < 1.
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