
660 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 3, MARCH 2014

Time Synchronization in WSNs: A Maximum-Value-
Based Consensus Approach

Jianping He, Peng Cheng, Member, IEEE, Ling Shi, Jiming Chen, Senior Member, IEEE, and Youxian Sun

Abstract—This paper considers time synchronization in wire-
less sensor networks. When the communication delay is negligible,
the maximum time synchronization (MTS) protocol is proposed
by which the skew and offset of each node can be synchronized
simultaneously. For a more practical case where the intercommu-
nication delays between each connected node are positive random
variables, we propose the weighted maximum time synchroniza-
tion (WMTS), which is able to counteract the impact of random
communication delays. Despite the clock offset that cannot be syn-
chronized, WMTS can synchronize the clock skew completely in
expectation and achieve acceptable synchronization accuracy. For
both protocols, we provide rigorous proofs of global convergence
as well as the upper bounds of their convergence time. Compared
with existing consensus-based synchronization protocols, the main
advantages of our protocols include: 1) a faster convergence speed
so that the synchronization can be achieved in a finite time for
MTS, and in a finite time in expectation for WMTS, respectively;
2) simultaneous synchronization of both skews and offsets; and 3)
random communication delays can be handled effectively. Numer-
ical examples are presented to demonstrate the effectiveness of the
proposed protocols.

Index Terms—Convergence, maximum consensus, time synchro-
nization, wireless sensor network (WSN).

I. INTRODUCTION

T IME synchronization is critical for many applications in
wireless sensor networks (WSNs), such as mobile target

tracking, event detection, speed estimation, environmental
monitoring, etc. [1]–[3]. In these applications, it is crucial that
all sensor nodes have a common time reference. Moreover,
time synchronization also helps save energy in a WSN, since
it provides the possibility of setting nodes into the sleeping
mode [4].
Time synchronization has been studied extensively due to

its importance and difficulty. Elson et al. [5] proposed a syn-
chronization algorithm called reference-broadcast synchroniza-

Manuscript received March 19, 2012; revised June 09, 2013; accepted Oc-
tober 08, 2013. Date of publication October 23, 2013; date of current version
February 19, 2014. This paper was presented in part at the 50th IEEE Confer-
ence on Decision and Control, December 2011. This work was supported in part
by NSFC61222305, 61290325-02, the SRFDP under Grant 20120101110139,
and by an HKUST Grant RPC11EG34. Recommended by Associate Editor L.
Schenato. (Corresponding author: P. Cheng.)
J. He, P. Cheng, J. Chen, and Y. Sun are with the State Key Labo-

ratory of Industrial Control Technology, Zhejiang University, Hangzhou
310027, China (e-mail: jphe@iipc.zju.edu.cn; pcheng@iipc.zju.edu.cn;
jmchen@iipc.zju.edu.cn; yxsun@iipc.zju.edu.cn).
L. Shi is with the Department of Electronic and Computer Engineering, Hong

Kong University of Science and Technology, Kownloon 00852, Hong Kong,
China (e-mail: eesling@ust.hk).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.

tion (RBS) for one-hop time synchronization, where a node
is selected as the reference node and then broadcasts a refer-
ence message to all other nodes for synchronization. Ganeriwal
et al. [6] proposed a timing-sync protocol for sensor networks
(TPSN) for network-wide time synchronization. It first elects
a root node and builds a spanning tree of the network, then
the nodes are synchronized to their parents in the tree. How-
ever, the TPSN protocol can only compensate the relative clock
offset, that is, the instantaneous clock difference, but not the
clock skew, that is, the clock speed. Therefore, TPSN needs
to send excessive messages for re-synchronization. In order to
overcome these shortcomings, Maroti et al. [7] proposed the
flooding-clock synchronization protocol (FTSP). The main idea
is that the algorithm elects a root node and then the root node pe-
riodically floods its current time into the tree network. It should
be noted that all three of these algorithms need a reference node
or root node. Furthermore, TPSN, FTSP, and FBS are tree-based
synchronization protocols, which are fragile to node failures. A
detailed survey for time synchronization protocols inWSNs can
be found in [2] and [8].
In order to enhance the robustness and scalability, various

distributed protocols have been proposed for time synchro-
nization in WSNs. For instance, Solis, et al. [9] proposed
a fully asynchronous distributed time synchronization pro-
tocol (DTSC). Giridhar and Kumar [10] formulated DTSC
as a coordinate-descent optimization problem. Recently, the
consensus concept has been adopted to develop protocols
for time synchronization in WSNs. A consensus-based time
synchronization protocol has three main advantages. First, it
can work in a distributed way. Therefore, it does not require a
tree topology or a root node as a [11], [13], or [14]. Second,
based on the consensus algorithm, more accurate synchronized
clocks, especially for neighboring nodes, may be obtained for
the entire network [15]. Third, it compensates the skew and
offset differences among nodes. Existing consensus algorithms
can be classified into two main categories: 1) synchronous al-
gorithms, for example, [16], [17] and 2) asynchronous ones,for
example, [18]. These two classes of consensus algorithms have
been studied extensively for time synchronization in wired or
wireless ad-hoc and peer-to-peer networks, for example, [4]
and [12]–[15]. Usually, the node adjusts its clock by a mutually
agreed consensus value after each node has learned the clock
values of all its neighbors. For instance, Philipp and Roger
[15] proposed a gradient time synchronization protocol (GTSP)
which is designed to provide synchronized clocks between
neighbors, and this protocol is mainly based on synchronous
consensus algorithms [16]. Schenato and Fiorentin [14] pro-
posed an Average TimeSynch (ATS) protocol, which is built

0018-9286 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

HE et al.: TIME SYNCHRONIZATION IN WSNS 661

on an asynchronous consensus algorithm. The main idea is to
average local information to achieve a global agreement on a
specific quantity of interest.
Communication delays, which are frequently seen in WSNs,

are, however, omitted in GTSP and ATS. Taking the time
delay into consideration, the distributed consensus timing syn-
chronization (DCTS) algorithm may not be able to guarantee
complete synchronization, for example, Xiong and Kishore
[19] computed the asymptotic expectation and mean square of
the global synchronization error of DCTS for WSNs assuming
general Gaussian communication delays between nodes.
Meanwhile, different estimation methods and algorithms are
proposed to estimate the relative clocks between two neighbor
nodes when the delay is considered [21]–[24]. For example,
the relative clock was addressed from a statistical signal-pro-
cessing viewpoint in [22] and Freris et al. [23] proposed a
model-based approach to handle the estimation of the relative
clock. Recently, based on the two-way message-exchange
mechanism [6], [20], Mei and Wu [25] proposed three esti-
mators for the joint estimation of the clock offset and skew
without knowledge of the fixed delay. They also utilized belief
propagation for achieving better synchronization accuracy
than the average consensus-based algorithms [26]. However,
only clock offset compensation was considered. Carli et al.
in [27] and [28] regarded the different clock speeds as un-
known constant disturbances and the different clock offsets as
different initial conditions for the system dynamics, and devel-
oped a proportional-integral (PI) consensus-based controller
to achieve time synchronization. Based on the second-order
consensus algorithm [31], the proposed algorithms in [27] and
[28] can compensate clock skews and offsets. They further
consider time synchronization for WSNs under asymmetric
gossip communication and optimal synchronization using the
PI consensus-based controller in [29] and [30].
The convergence speed of time synchronization is also impor-

tant in WSN applications. However, most existing average-con-
sensus based protocols are time-consuming. Note, as pointed
out by [14], that the exact value of the synchronized clock it-
self is not important as long as a consensus has been achieved.
Hence it is of great interest to explore such characteristic to de-
velop a protocol which provides much faster convergence time
while maintaining the advantages brought by consensus algo-
rithms. In this paper, we also consider time synchronization in
WSNs. Being different from the aforementioned existing works,
our main contributions are as follows.
1) We first consider the situation where the communication
delays can be ignored, and propose a novel maximum
time synchronization algorithm (MTS), using a max-
imum-value-based consensus algorithm, where the defini-
tion of max-consensus is first given in [32].

2) As, in many cases, the communication delay between
nodes is critical and a fundamental limitation in time
synchronization over WSNs [35], we consider the case
where the random communication delay follows a normal
distribution [7], and propose a weighted maximum time
synchronization algorithm (WMTS) to solve the time
synchronization problem.

3) Both protocols are completely asynchronous and dis-
tributed, hence robust to packet losses, node failure,
replacement, or relocation. We provide rigorous proofs of
the convergence. Furthermore, we prove that MTS will
converge in a finite time and WMTS will converge in a
finite time in expectation, and we present the upper bounds
of the finite convergence time in a closed-form for the
two protocols, respectively. Since the upper bounds grow
linearly with the number of nodes, the convergence time is
much smaller than that of the existing average-based con-
sensus algorithms. Extensive simulations are conducted
to demonstrate the effectiveness for static and dynamic
communication topologies.

As the mean and the variance of the random communication
delay are unknown to the nodes and there is no delay com-
pensation in WMTS, the logical clock offset cannot be syn-
chronized by WMTS completely. If there is prior knowledge of
the random communication delay, for example, the mean of the
random delay, we can exploit it to design delay compensation
to increase synchronization accuracy.
The remainder of this paper is organized as follows. In

Section II, the network and clock model for a WSN are
introduced. The maximum-value-based protocol for time
synchronization is proposed in Section III, where a proof
for its convergence is provided as well as the analysis of the
implementation of MTS. In Section IV, WMTS is presented
for handling the random communication delay and a proof for
its convergence is provided. Simulation results are shown in
Section V. Some concluding remarks are given in Section VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Network Model

We model a dynamic WSN as an undirected graph
at each time , where is the

set of nodes (sensors) and represents
the set of available communication links (edges) at time . The
set of neighbors of node is denoted by

. In this paper, we assume that
() if and only if (iff) node successfully receives
information from node at time . We also assume the graph

satisfies the following assumption.
Assumption 2.1: An integer exists such that the graph

is connected for any non-negative in-
teger .
Assumption 2.1 is necessary as the time synchronization will

be impossible for nodes in disconnected parts. The packet drop
and collisions in communications will impact the connectivity
of the communication graph, and a larger is required to guar-
antee Assumption 2.1.
Throughout this paper, denotes the set of positive integer,

and and denote the expectation and variance of a
random variable, respectively.

B. Clock Model

In this section, we briefly introduce a linear clock model [14],
[15]. Consider a WSN consisting of sensors. Each sensor

662 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 3, MARCH 2014

node is equipped with a hardware clock, whose clock reading
at time is given by

(1)

where is the hardware clock skewwhich determines the clock
speed and is the hardware clock offset. As pointed out in [15],
the hardware clock skews may be slightly different from other
nodes due to the imperfect crystal oscillators, ambient tempera-
ture, or battery voltage and oscillator aging. In order to facilitate
the presentation, we assume that initially there is only one node
with the maximum hardware clock skew throughout the net-
work.We also assume that each hardware clock skew satisfies

(2)

where is a constant and typically in the range of
() [38], [39]. It has been

pointed out that and cannot be computed as the absolute
reference time is not available to the sensor nodes [14], [35].
However, by comparing the local clock reading of one node
with another local clock reading of node , we can obtain a
relative clock between them, that is,

It is known that the value of the hardware clock cannot be ad-
justed manually, because other hardware components may de-
pend on a continuously running hardware clock in WSNs [15].
Hence, generally, a logical clock is applied to represent the syn-
chronized time. Specifically, a logical clock value is a
linear function of the hardware clock

(3)

where and are the logical clock skew and offset,
respectively.
Initially, it is common to set a constant for each node in

advance so that each node broadcasts its message periodically
with a period based on its own hardware clock. To simplify the
statements and proofs later on, the data collisions are not taken
into account in this paper. In fact, the data collision will not af-
fect the convergence of our protocols. It turns out that under a
common broadcast period , if all clocks are the same (or have
the same skews and small offsets), collisions will occur con-
stantly. One way to tackle this is by allowing communication
asynchronously at random times, see, for instance, [11] and [16].
It should also be noted that there are many media-access con-
trol (MAC) protocols, for example, time-division multiple ac-
cess (TDMA) and carrier-sense multiple access (CSMA), which
can be easily incorporated for collision avoidance. The introduc-
tion of such a MAC protocol will not affect the main results of
our paper. Moreover, Freris and Zouzias in [42] propose a ran-
domized asynchronous approach which can be further adopted
within each period to avoid the collision.
Definition 2.2: Assume that every node broadcasts its mes-

sage periodically with a common period based on its own
hardware clock. is defined as the pseudoperiod [14].
For each node , its real period is given as .

Since the clock skew is slightly different in general, the
real period for . Under Assumption 2.1, we have

Fig. 1. Uncertainty time delay.

for and . Otherwise, the neighbor nodes
may not successfully receive information from node within
the time interval , which contradicts Assumption
2.1. The second key parameter is called relative skew, which is
defined as follows.
Definition 2.3: The relative skew is defined as

(4)

Since the skew compensation is always based on relative skew
, the relative skew plays an important role in a synchroniza-

tion protocol. The value of cannot be computed by (4) di-
rectly as and are unavailable, but it can be estimated with
their hardware clock readings. The details will be given later on.

C. Delay Model

Communication delay has a direct impact on the accuracy of
synchronization. Delays in packet delivery constitute a funda-
mental limitation in synchronizing clocks over WSNs [35]. In
this paper, we will consider two cases as follows:
1) Delay Free: There is no transmission or reception delay.
2) Random Delay: The communication delays at different

times are identically and independently distributed (i.i.d) posi-
tive random variables with constant mean and variance .
Taking Fig. 1 as an example, node periodically broadcasts

its hardware clock readings to its neighbor node , and
node records its hardware clock readings as for

, where and are the real broadcasting time and the
receiving time for node and node , respectively. Thus,

is the communication delay of the th communi-
cation from nodes to .
Let for , where
and denote the random delay of two consecutive

communications, respectively. Then, it follows that the mean
and variance of each random variable are equal to
0 and , respectively. Moreover, one infers that

. Since are i.i.d,
the random variables and are also independent
of each other for . Hence, .

D. Problems of Interest

The objective of time synchronization is to synchronize all of
the nodes with respect to a common clock, given as

(5)

There always exists for each logical clock such
that for .

HE et al.: TIME SYNCHRONIZATION IN WSNS 663

Our goal in this paper is to design a consensus-based clock
synchronization algorithm to find for each node
, such that

(6)

As pointed by [14], the real values of are not important;
however, it is important that all clocks converge to one common
virtual reference clock, and the final parameters only
depend on the initial condition and the communication topology
of the WSN.
Remark 2.4: The linear clock model is widely used for time

synchronization in WSNs, for example, [12]–[14] and [35].
Note that and may be slowly time varying in practice.
However, as long as the synchronization algorithm can achieve
certain accuracy in a short time, the algorithm can be restarted
once the synchronization error exceeds a given bound.

III. MTS PROTOCOL: DELAY-FREE CASE

A. Maximum Time Synchronization (MTS)

From (6), it is desirable to synchronize the clock skew and
offset simultaneously. Since each hardware clock is a linear
function of time and the communication delay between two
connected nodes is omitted in the Delay Free case, each rela-
tive skew can be computed by

(7)

where and are two pair of hard-
ware clock readings of nodes and with . In fact, when
node receives time message from node , it reads its cur-
rent hardware clock reading and stores ;
meanwhile, when node receives the time message from node
at the second time, the relative skew can be obtained from
(7) based on these two pairs of historical records.We summarize
the aforementioned process in the following algorithm (Max-
imum Time Synchronization).

Algorithm 1 : Maximum Time Synchronization (MTS)

1:Given the initial conditions and for , set
the common broadcast period to each node.

2:If the current hardware clock reading of node ,
satisfies , then node broadcasts its local hardware
clock reading and to its neighbors.

3:If node receives a packet from its neighbor node at
time , then it records its local hardware clock reading
and records the packet information as .

4:If node has a historical record , then compute
from according to (7) and by . After that,

delete the record .

5:If , then

If , then

6:Store .

In step 4, satisfies , which is the ratio of two
nodes’ logical clock skew. Hence, node can know from
whether its neighbor node has the larger logical clock skew.
It follows from step 5 that for MTS, the logical clock skew and
offset are adjusted simultaneously, and the fastest logical clock
among neighbor nodes is selected as the reference clock.
Remark 3.1: Since the protocol drives all nodes throughout

the network to approach the maximum hardware clock, that is,
maximum-consensus, we name the protocol as Maximum Time
Synchronization. According to the protocol, the skew and offset
compensations are conducted simultaneously and completed at
the same time.
Remark 3.2: For an arbitrary node , its hardware clock

reading satisfies , where denotes the reality time
at the th broadcast instant. Thus, we have for

.

B. Convergence of MTS

Before proving the convergence of MTS, we first introduce
some preliminarily results. Define . We use

to denote the set of these nodes whose clock skews are
equal to . Define . Let and

, then the common clock (5) can be rewritten as

(8)

Let be the set of nodes whose logical clock skew and
offset are equal to and at time , respectively.
Clearly, the logical clock of nodes in are equivalent to the
common clock described in (8). Since the initial condition
satisfies and for in MTS, according to
the definition of , it is clear that there exists at least one
node whose hardware clock is equal to the common clock at
the initial time, that is, .
Let be the number of nodes belonging to the set

at time . Define a function

(9)

Since , . Clearly, iff
for , which is equivalent to that

if and only if .
Theorem 3.3: Under Assumption 2.1 and using MTS, the

skew and offset converge and satisfy

(10)

where and .
Proof: The proof is given in Appendix A.

664 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 3, MARCH 2014

In order to simplify the statements, we make the following
assumptions:
Assumption 3.4: Assume that

iff node receives messages more than once successfully from
node within the time interval for all positive
integers .
Based on this assumption, node is defined to be neighboring

with node in the time-interval iff node can re-
ceive messages more than once successfully from node within
this interval.
Theorem 3.5: Under Assumptions 2.1 and 3.4, the conver-

gence time of MTS satisfies .
Proof: From the proof of Theorem 3.3, we know that

is a nonincreasing function. Assume at time (where
). Then, at each time interval ,

Assumption 2.1 ensures that there is at least an edge which
connects one node and another node

. Assumption 3.4 ensures that node can successfully re-
ceive messages from node at least twice within the time in-
terval , which means that node can set its logical
clock equal to the logical clock of node before . Hence,
we have , that is, . Since

, .
It follows from the definition of that , then

. Therefore, we have .

Remark 3.6: For Theorems 3.3 and 3.5, Assumption 2.1 is
used to ensure that there are nodes in the set which
can receive packets from the nodes in set . Clearly, we
can replace it by the following assumption, which is commonly
adopted in related works, for example, [17] and [35].
Assumption 3.7: An integer exists such that the graph

is strongly connected for all non-nega-
tive integers .
Remark 3.8: From the aforementioned theorems, MTS

makes all nodes synchronize their logical clocks as the hard-
ware clock of node with . Note that each
satisfies (2) with , which means that each
is approximately equal to 1, and all nodes’ logical clocks will
be slightly faster or slower than the ideal time . If there is a
misbehaving node with in the network, its neighbor
node will observe from (7). Hence, node will
easily know that node is an irregular node and isolate it. We
can also set an upper bound, for example, , for each node ,
so that node will not utilize the information from its neighbor
node if it detects . In this way, we can avoid the
situation that the misbehaving node drives the clock speed
much faster than the real time. Secure time synchronization
under general malicious attacks, which is another interesting
while challenging problem [40], [41], is beyond the scope of
this paper, and will be pursued in our future research.

C. Analysis of MTS

Compared with the traditional tree-based or reference
(root)-based time synchronization algorithms, for example,
RBS [5], TPSN [6] and FTSP [7], etc., MTS has the advantage
of being fully distributed, asynchronous, robust to packet drop,
sensor node failure and new node joining, and it is adaptive to

time-varying communication topology. Different from tradi-
tional time synchronization protocols, such as FTSP, MTS does
not require setting a root node or building up a tree topology
in advance, which largely reduces the implementing costs and
enhances system robustness especially when the root node or
nonleaf nodes are prone to various faults. Moreover, MTS can
conduct both skew and offset compensation at the same time
and complete them simultaneously in finite time.
Note that different from the existing average consensus al-

gorithms, the basic idea of our approach is to drive the logical
clocks to the maximum value among all nodes so that the net-
work can achieve time synchronization. In the algorithm, each
node periodically broadcasts a packet containing its local hard-
ware clock reading and its current relative logical clock
skew and the offset , without requiring any feedback
information from its neighbors. For each neighbor node , a pair
of hardware clock readings needs to be stored by
node . Compared with the recently developed consensus-based
time synchronization algorithms, that is, GTSP [15] and ATS
[14], the messages for MTS broadcast and storage are the same
as these algorithms. Recently, Carli et al. in [28] and [29] pro-
posed a promising average consensus-based time synchroniza-
tion algorithm, where a distributed PI control law, based on the
standard linear average consensus algorithm, is developed to
achieve time synchronization. Although this algorithm achieves
time synchronization asymptotically as in ATS and GTSP, it re-
quires less computation and communication capabilities as each
node has to keep in memory only two variables. During the
communication, each node only transmits the value of its own
logical clock while in the ATS, GTSP, and MTS algorithms,
and each node has to keep in memory a number of variables
which are proportional to the number of its neighbors. Com-
paring these average consensus-based time synchronization al-
gorithms, the main advantage of MTS is its much faster conver-
gence speed, that is, the average consensus-based time synchro-
nization algorithms converge to global synchronization asymp-
totically, while MTS converges to global synchronization in a
finite time.
Energy cost is a major concern in WSNs. As the computa-

tional energy cost is comparably small due to the simple algo-
rithm, we will focus on the communication energy cost, which
can be measured by the broadcasting times. In the previous sub-
section, we have obtained an upper bound of the convergence
time of MTS. Denote as the broadcasting times of node
from the beginning to the time when the algorithm has just con-
verged. Then based on Theorem 3.5, we obtain an upper bound
of , given by

(11)

Assume that every broadcast of all nodes costs the same amount
of energy and let be the total energy cost for MTS to
convergence, then

(12)

From (12), it is not difficult to see that enlarging the common pe-
riod can decrease the upper bound of . However, a larger
will require a larger in order to ensure the connectivity, which

HE et al.: TIME SYNCHRONIZATION IN WSNS 665

may slow down the finite convergence time (seen from Theorem
3.5). Thus, it is a tradeoff between energy cost and convergence
time. Obtaining an optimal is an interesting problem which
depends on the real applications, and will be our future work.

IV. WMTS PROTOCOL: RANDOM DELAY CASE

There are also many cases when the communication delay
between nodes is considerably large, which may severely affect
the performance of time synchronization if ignored.
Consider the random communication delay as modeled in

Section II. Note that each relative skew , in MTS is
computed based on two adjacent communications, i.e.,

(13)

where . Since is a random variable,
is also a random variable. Thus, for each , it may be true that

, which leads to . As a result,
. This phenomenon will directly impact the accuracy of the

synchronization and even make the logical clock diverge, as
illustrated by the following example.
1) Example 4.1: Consider a network with two nodes indexed,

respectively, by 1 and 2. According to MTS, if node 1 receives
information times successfully from node 2 at time , then node
1 will update its logical clock based on .
Since follows (13), that is, ,

we have . Then, from step 5 of
MTS, we have for
and for , that is, nei-
ther satisfies nor

. Thus, node 1 is
not able to fully synchronize its logical clock as node 2 since

is random and with probability 0. Note that
and ,

which means is nondecreasing and it will be updated
to be equal to or larger than after node 1 re-
ceives information from node 2 at time . By a similar argument,
for node 2, we also have as nondecreasing and it will be
updated to be equal to or larger than after
node 2 receives information from node 1 at time . Therefore,
with the increasing communication between nodes 1 and 2, the
logical clock skew of them increases continually with positive
probability. Note that if the communication delay is equal to a
constant, then we will have in (13), and then the en-
tire network synchronization can still be guaranteed by MTS.
Therefore, when the random delay in communication of the

networks cannot be ignored, we need to revise the MTS al-
gorithm accordingly so that time synchronization can still be
achieved. In this section, we adopt the random delay model in
Section II, and extend the MTS algorithm to handle the random
communication delays.

A. Weighted Maximum Time Synchronization (WMTS)

The accuracy of is crucial for time synchroniza-
tionl; thus, we will introduce a new method to estimate these
relative skews. For , let . Assume that a
node successfully obtains the messages from node at time

, respectively. The following equation is used
to estimate :

(14)

where . Equation (14) is an averaging process which
is a classical stochastic approximation approach [37]. With the
increase of , almost surely, which is the key to
guarantee the convergence of WMTS.

For , let , and let for .
Since each satisfies , we have
and

(15)
Lemma 4.2: Assume that is obtained by (14).

Then

(16)

and

(17)

Proof: From (13), one notes that

Substituting the above equation into (14) yields

(18)

Taking expectation on both sides of (18) yields (16). By
computing the variance on both sides of (18), we have

. Note that
is the time interval between two consecutive instances when a
node successfully receives messages from one neighbor node,
hence . Therefore

(19)

Clearly, for . Taking limitation on
both sides of (19) yields (17).
In order to tackle the problems introduced by the communi-

cation delays, we adapt MTS to WMTS as follows.

Algorithm 2 : Weighted Maximum Time Synchronization
(WMTS)

1:Given the initial conditions , , and
for . Set a common broadcast period to each node.

666 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 3, MARCH 2014

2:If , then node broadcasts packet
including , , and to its neighbors.

3:If node receives the packet -th time from node
at time , then record its local hardware clock reading and
received clock information as and , respectively,
for .

4:If , then compute according to (14), and then
compute .

5:If and or if and , then

6:If and , then compare with ,
where and . If

, then

7:Store and .

InWMTS, there are two decision variables and for each
node , where denotes the source reference node of node
, that is, node has updated its logical clock based on the es-
timate of the logical clock information of node , and rep-
resents the number of hops that the logical clock information
of node is transmitted from the source reference node to
node . Initially, we set the reference number and weight

for , which means that node has not yet updated
its logical clock by referring to any other nodes. During the iter-
ations of WMTS, if two neighbor nodes and obtain different
reference numbers, that is, , then the node with a larger
logical clock will be selected as the reference node; if nodes
and have the same reference number but different weight num-
bers, that is, , , then the node with a smaller
weight number will be selected as the reference node. Mean-
while, after one node is selected as the reference node (assumed
to be node), node will adjust its decision variables and logical
clock, such that , , and , while node
will not update its decision variables and logical clock based
on the messages received from node . Hence, with the use of
decision variables and , two neighbor nodes with the same
reference numbers cannot be the reference node to each other,
and the phenomenon mentioned in Example 4.1 will not occur
under WMTS.

B. Convergence of WMTS

Before proving the convergence of WMTS, we introduce a
few preliminary results.
Define , where and

(is the number of successful times that node
receives information from node before time) is a random

variable with and

(20)

Considering node with and at time , one
can infer that node has obtained the logical clock informa-
tion of node from a node which has and

at time , and node has updated
its parameters and based on the logical clock information
of node obtained from node . Thus, we have

and

, where

and is the number of times that node success-
fully receives messages from node within the time interval

. Similarly, for node , one can infer that it has obtained
the logical clock information of node from a node which
has and at time

. Therefore, given a time , for node with
and , node sequence and time sequence exists with

, such that the information is transmitted
through the following path to node

where and , and each node receives
information of node from node at time . More-
over, each node in the path finishes the last change of its
logical clock within time based on the information
of node obtained from node at time . Thus, for

, we have and
for , which means that these nodes have the same
reference number but a different weight number. Hence, given
a time , for each node with and , we can find a
node path to transmit the logical
clock information of reference node to node , where these
nodes in the path have the same reference number and different
weights. Note that the nodes in the path will be, in general, dis-
tinct. The reason is as follows. If there are two nodes (say and
) in , satisfying , which means
that node has the same reference number but different weights
at time and , we can infer the following two events:
1) Node has changed its reference number at a time

, that is, .
2) There are nodes , in node sequence

, where , which means
there are at least two nodes which have obtained the
logical clock information of node from node .

Note that ; thus, for , we have
for . Since the ref-

erence node satisfies for , it follows
that holds for . Meanwhile, for
WMTS, if two nodes and with different reference numbers
contact each other at time , only when

, node will change its reference number and up-
date its logical clock skew such that

, which increases the logical clock skew of node , that
is, the logical clock skew of each node is increasing when it
changes its reference number. Hence, for the first fact, one can
infer that in expectation, and then

as . However, the hardware
clocks of nodes and are, in general, different from

HE et al.: TIME SYNCHRONIZATION IN WSNS 667

each other as . Thus, the first event will not
occur in most cases. Furthermore, fromWMTS, if two neighbor
nodes and have the same reference number, then
or holds, which means that the second event
cannot occur in static networks or networks having only new
nodes joining and nodes failure. Note that only when the afore-
mentioned events occur simultaneously, there will be repeated
nodes in node sequence . Therefore, without
loss of generality, we assume that the nodes in node sequence

are different from each other in the remainder
of this paper.
Let , and , and recall that
is the random communication delay of two nodes at time ,

which follows a normal distribution.
Theorem 4.3: Suppose that node has and at time
. Then, for , there are node sequence and
time sequence , such that

(21)

and

(22)

where the random variables are independent of
each other and is the number of successful times that
node receives information from node before time .

Proof: The proof is given in Appendix B.
Theorem 4.3 provides the relationship of the logical clock

between node and its reference node at time .
Theorem 4.4: Under Assumptions 2.1 and 3.4, WMTS guar-

antees that

(23)

where .Moreover, the expected value of the logical
clock satisfies

(24)

where .
Proof: The proof is given in Appendix C.

Theorem 4.4 indicates that WMTS guarantees the finite-time
convergence in expectation for time-variant networks. Note
from the item in (24) that the synchronization
error is affected by the weights of nodes and the expectation
of random delay; thus, nodes with different weights will have
slightly different expected logical clocks. This is the limitation
caused by the random communication delay, as pointed out
by Freris et al. [35], [36]. Meanwhile, when it takes two-way
communication, the offset estimation methods proposed in
[23] and [35] can be utilized to alleviate the offset error, for
example, in the case where 0, the delay is known and equal
to , from [35], the offset estimation is exact (just subtract
the known delay in step 5 of WMTS); the same argument

holds for , where a similar approach for offset estima-
tion can asymptotically eradicate the offset error. In addition,
the variance is crucial for synchronization accuracy. Since

, it follows from (21) that:

Thus, for time , from (23)

(25)

where is the communication time from node to
node within the time interval . From (25), it is clear
that the variance of the error of each is a decreasing func-
tion on the variables . Thus, with
more communication between nodes to , the variance of
the error of each will decrease. Especially, if each vari-
able in (25), the variance of the error of each

converges to 0. However, Assumptions 2.1 and 3.4 do
not guarantee that the upper bound provided in (25) is going to
zero for . Thus, the WMTS algorithm does not guar-
antee that synchronization is reached completely. We will fur-
ther discuss the detailed performance of WMTS in the simula-
tion section.
Although it is really difficult to obtain the analytical expres-

sion for the variance of each logical clock in the general time-
variant network, we can rigorously prove that for the time-in-
variant network, WMTS converges in the mean square sense,
which is given in the following Theorem.
Theorem 4.5: Consider the time-invariant connected net-

work. With WMTS, for , we have

and

Proof: The proof is given in Appendix D.
With Theorem 4.5, it can be observed that under WMTS, the

logical clock skew will converge asymptotically in the mean
square sense in time-invariant connected networks. If the net-
work is time variant, we can only guarantee that the expected
value of each logical clock will converge in finite time, and the
synchronization accuracy depends on the mean and the variance
of the random delay. Although we cannot analytically provide
the logical clock variance under time-variant networks, we con-
duct extensive large-scale network simulations which demon-
strate that WMTS also provides good performance even for
time-variant networks.
Remark 4.6: ComparingWMTS andMTS, the basic idea is to

drive the logical clocks to the maximum value among all nodes.
Meanwhile, besides , , and , that is, hardware
clock reading and two parameters of logical clock, which are
needed in MTS, the broadcasting message of node in WMTS
will additionally include and , that is, weight number

668 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 3, MARCH 2014

Fig. 2. Performance comparison in the static network. (a) MTS and ATS.
(b) Skew and offset.

and reference number. In order to implementWMTS, each node
will also need to store in addition to the hardware clock
reading pair . The detailed performance comparison
between MTS and WMTS will be provided in the simulation
section.

V. SIMULATION RESULTS

For the simulation examples, we set and
. Since the typical error for a quartz-crystal oscillator

is [39], which corresponds to a 10 to 100
microsecond (), we assume that each skew of the hard-
ware clock is randomly selected from the set ,
the offset of each node is randomly selected from the set

. We also define two functions as follows:

(26)

Fig. 3. Convergence time of MTS.

where and denote the maximum difference of the
logical skew and of the logical offset between any two nodes,
respectively. Clearly, the global time synchronization is reached
iff and .

A. Delay-Free Case

We compare our algorithm MTS with ATS in [14].
Consider a static ring graph with 30. It is well rec-

ognized that distributed consensus-based algorithms often con-
verge slowly for a ring graph. In Fig. 2(a), it can be observed
that the skew synchronization is reached after 192 broadcasts
(the total number of broadcast of all nodes) under MTS, while
it takes more than 4000 broadcast to obtain comparable accu-
racy under ATS. In addition, from Fig. 2(b), it can be seen that
for MTS, the skew and offset synchronization can be achieved
simultaneously. Note that in MTS, each iteration denotes one
broadcast of nodes. Based on 500 tests, the average iteration
convergence time for MTS in this static network is 208, while
it is more than 4145 to ensure ticks per second
(where tick) [14] under ATS. Fig. 3
shows how MTS converges with the number of sensors in the
network, which shows the good scalability of MTS since the
convergence time is almost linearly increasing with the number
of sensors.
Consider a dynamic graph with 50. The nodes are ran-

domly deployed in an 100 100-m area at initial time 0, and the
maximum communication range of each node is 20 m. Assume
that each node may randomly change its position once every

. As shown in Fig. 4(a),
for by ATS; however, of MTS decreases to zero
when the iteration time . Thus, the convergence speed of
MTS is much faster than that of ATS in a dynamical network.
Furthermore, Fig. 4(b) shows that and of MTS do
converge to 0 at the same time 43 in the dynamical net-
work. The average time for MTS is around 47, and is about 545
for ATS to ensure ticks per second.

HE et al.: TIME SYNCHRONIZATION IN WSNS 669

Fig. 4. Performance comparison in the dynamical network. (a) MTS and ATS.
(b) Skew and offset.

B. Random Delay Case

In the following simulations, we will consider the delay in
the communication, and compare WMTS with MTS and ATS
in [14]. Based on the empirical results in [7] and [34], without
loss of generality, we assume that
in the simulation, where is random positive communication
delay, which means that the delay is in the range of
with 99.97% confidence.
Consider a static ring graph with 30. From Fig. 5,

it can be observed that the maximum logical skew of nodes
diverges under MTS, which confirms Example 4.1. However,
under WMTS, it is clear that the maximum logical skew of
nodes converges to a fixed constant.We also compare the perfor-
mance of MTS, ATS, and WMTS under the static and dynamic
network defined in the previous subsection, which are shown in
Figs. 6 and 7, respectively. It is observed that WMTS always
has faster convergence speed than that of ATS, and with better

Fig. 5. Maximum skew among nodes changes under MTS and WMTS.

Fig. 6. Compare the performance of MTS, ATS, and WMTS under the static
network. (a) 0 to 4000. (b) 2000 to 4000.

synchronization accuracy than those of MTS and ATS. From
Figs. 6(b) and 7(b), it is clear that WMTS has high accuracy

670 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 3, MARCH 2014

Fig. 7. Compare the performance ofMTS, ATS, andWMTS under the dynamic
network. (a) 0 to 1000. (b) 500 to 1000.

as the synchronization accuracy is less than 0.02 ticks/s (about
0.66 s/s) for the static and dynamic network.
Next, we consider the relationship between synchronization

error bound and the mean and variance of the random commu-
nication delay under WMTS. The error bound for skew com-
pensation mainly depends on the variance but not on the mean
of the delay, as the skew compensation depends on the estimate
of relative skew [by (14)] which is only affected by the variance
(seen from Lemma 4.2). However, it follows from (24) that

the error bound for the offset compensation is mainly affected
by the mean . As shown in Fig. 8, the error bound will in-
crease with the variance for skew compensation [see Fig. 8(a)]
while with mean for offset compensation [see Fig. 8(b)]. Fortu-
nately, for skew compensation, it follows from Fig. 8(a) that the
error bounds are always less than 0.3 ticks/s (about 10 s/s) for

(which means that there is a delay in the range of
with 99.97% confidence), that is, WMTS

guarantees that the error bound is less than 10 s even if the
communication delay is in the order of microseconds. Note that

Fig. 8. Performance of WMTS with different mean and variance in the static
network: (a) logical skew and (b) logical offset.

skew compensation is more important since it can extend the
re-synchronization period to save energy; thus, WMTS is able
to well handle the random delay case. Especially, if

(the delay in with a 99.97%
confidence), WMTS will guarantee that the error bounds for
skew compensation and offset compensation will be less than

s and 5 s, respectively, which means that with WMTS,
the maximum logical clock difference between nodes will be
less than 10 s in the time interval s after convergence
of the algorithm. Finally, the performance of WMTS with dif-
ferent means and variances in a dynamic network is shown as
in Fig. 9, where the relationship between synchronization error
bound and the values of mean and variance are the same as those
in the static network. Moreover, by comparing Figs. 9 with 8,
it is observed that for both skew and offset compensation, the
synchronization accuracy of WMTS in the dynamic network is
improved with even faster converging speed. The reason is that
the random dynamic networkmay help to improve network con-
nectivity which accelerates the consensus process.

HE et al.: TIME SYNCHRONIZATION IN WSNS 671

Fig. 9. Performance of WMTS with different mean and variance in the dy-
namic network: (a) logical skew and (b) logical offset.

VI. CONCLUSION

We investigate the time synchronization for WSNs in this
paper. We present two new time synchronization algorithms—
MTS and WMTS protocols for WSNs with delay free and
random delay cases, respectively. These two algorithms conduct
the skew and offset compensations simultaneously. The main
idea is to drive all clocks to the maximum value among the
network. It is proved that the MTS algorithm converges within a
finite time and the expected convergence time of WMTS is also
finite. Both algorithms are fully distributed, asynchronous, and
robust to dynamic network topologies. Extensive simulations
demonstrate the effectiveness of the proposed algorithms. Fu-
ture directions include extending the idea to more complicated
network models and experimental validation of the results.

APPENDIX A
PROOF OF THEOREM 3.3

Proof: According to the definitions of in (8) and
in (9), it is obvious that once 0, the skew and offset of all

logical clocks are equal to and accordingly. Hence,
it suffices to prove 0.
We first prove that is nonincreasing. For any arbitrary

node , its skew and offset
are equal to and , respectively. Hence,

holds for , which means holds for
. In other words, this node will not update its log-

ical clock skew any more as for . Furthermore,
ensures that node has the largest log-

ical clock offset from the definition of , which is equiv-
alent to . Therefore, each node in

will keep its logical clock skew and offset, which means
that is nondecreasing which, in turn, implies that is
nonincreasing.
Assume at time (where).

Then, there is at least one node in the network which is not in
the set . Assumption 2.1 guarantees that the network is
connected during any time interval , which means that there
are edge sequences which connect nodes (

) and (). Hence, exists such that node
in receives packets from node in at time

for the second time by two communication links existing
between nodes and , where the two edges are in

. According to MTS, node will update its logical clock
and then nodes and will have the same logical clock, which
means that node belongs to . Thus,

, that is, satisfies
. Hence, will decrease strictly if . Notice that

is finite; therefore, .

APPENDIX B
PROOF OF THEOREM 4.3

Proof: For WMTS, if node has 0 and
at time , the reference node of node is itself, then node
has not adjusted its logical clock, that is, and

. If node has and at time
, node makes the latest change of its logical clock, reference
number, and weight when it communicates with a node which
has and at an earlier time

. Thus, we have

(27)

where and are equal to the number of successful
times that node received information from node within ,
and

(28)

where is the random communication delay from node to
node of the communication at time . For node , similar to
the previous discussion, one can obtain

(29)

672 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 3, MARCH 2014

where and are equal to the number of
successful times that node receives information from node
within , and

(30)

where node has and , and
.

Substituting (29) and (30) into (27) and (28), respectively,
yields

(31)

and

(32)

where . By repeating this procedure, until the
weight of a node is equal to 0, one obtains (21) and (22) and
the node sequence. Since the nodes in such a node sequence are
different, the random variables in (21) and (22) are independent
of each other.

APPENDIX C
PROOF OF THEOREM 4.4

Let be series random variables
which are independent of each other. Use to denote
that and .

Lemma C.1: Suppose that two neighbor nodes and have
two successful communications within the time interval .
By WMTS, we have

(33)

where is the finishing time of the two successful communi-
cations.

Proof: If , (33) is obtained directly from step
5 and Theorem 4.3.
If , from steps 5 and 6 of the WMTS algorithm,

three cases may appear for nodes and after two successful
communications between them.

Case 1: The reference numbers of them are updated as
. In this case,

, where is the communication times from
nodes to within . Hence

(34)

With WMTS, and satisfy

(35)

and and . Combining (34)
with (35) yields

(36)

and

(37)
From the above inequalities and using Theorem 4.3, one can
conclude that (33) holds.

Case 2: The reference numbers of them are updated as
. The remaining discussion is similar

to that of Case 1.
Case 3: The reference numbers of them are updated as

and . In this case, and
during the communication between nodes and . Hence

(38)
With WMTS, and satisfy

(39)

and and . Thus, with (38) and
(39) and Theorem 4.3, the Lemma holds.
Taking expectation on both sides of (33), we have

, that is, after two successful commu-
nications between two nodes, the node with faster hardware
clock speed will be selected as the source reference clock.

LemmaC.2: Under Assumptions 2.1 and 3.4,WMTS guar-
antees that

(40)

where .
Proof: Divide the time interval into small

time intervals, which are given by , , ,
. According to Assumption 2.1, the network is

connected at each small time interval.
Assume that node with its hardware clock is equal to (8),

that is, . Since the network is connected within each
small time interval, there is at least one node, say , which will
be a neighbor of node within . Assumption 3.4 ensures
that node and have at least two successful communications
within . After two communications, from Lemma C.1

(41)

where is the finishing time of two successful
communications between them. Note that .
Combining (41) with Theorem 4.3 yields that

(42)

where is the number of nodes in which is the node
set satisfying .

HE et al.: TIME SYNCHRONIZATION IN WSNS 673

In the time interval , the network is also connected,
and there is at least one node, say , in the network,
which will be a neighbor node of or (assume it is node
here). From Lemma 1.1, after two successful communications
between nodes and

(43)

where is the finishing time of two successful
communications between them. We have

. Note that node may contact with only
within , that is, . Hence

Combining (43) and (42) with Theorem 4.3, one can obtain

(44)

where is the number of nodes in which is defined as
.

By induction, assume that

(45)

and

(46)

holds for , where is the number of nodes
in which satisfies

Then, within , there is a node
, which becomes a neighbor node of one node

in (assume it is). Similarly, from Lemma 1.1

(47)

where is the finishing time of two suc-
cessful communications between and . We have

. Note that nodes
may contact with only in ,

which guarantees that

From (45), we have

(48)

Combining (47) and (46) with Theorem 4.3 gives

(49)

where is the number of nodes in which satisfies

From the aforementioned discussion, one concludes that (48)
and (49) hold for . It follows that all nodes
belong to and satisfy (49).
Since , we have

Therefore, we obtain

(50)

Taking expectation on both sides of (50) yields
. At the same time, note that holds

for . Thus, (40) holds.
From Lemma C.2, the expected value of the reference node

is equal to that of the node whose hardware clock skew is .
Note that the clock oscillators for sensor nodes are slightly dif-
ferent, which means that the hardware clock skew of nodes is
also slightly different. Hence, by combining Lemma 1.2 and
Theorem 4.3, we can obtain Theorem 4.4.

APPENDIX D
PROOF OF THEOREM 4.5

Proof: Since the network is time-invariant and connected,
each of the random variable in Theorem 4.3 satisfies

when . From (20)

(51)

Hence, from Theorem 4.3, we have

and

(52)

Furthermore, for any neighboring nodes and , from
Lemma 1.1, . Since the

network is connected, it follows that (52) holds for
. Therefore, for , it follows from (52)

that and

674 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 3, MARCH 2014

REFERENCES

[1] J. He, P. Cheng, L. Shi, and J. Chen, “Time synchronization in WSNs:
A maximum value based consensus approach,” in Proc. CDC, Dec.
12–15, 2011, pp. 7882–7887.

[2] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, “Clock synchro-
nization for wireless sensor networks: A survey,” Ad Hoc Netw., vol.
3, no. 3, pp. 281–323, 2005.

[3] J. Du and W. Shi, “APP-MAC: An application-aware event-oriented
MAC protocol for multimodality wireless sensor networks,” IEEE
Trans. Vehicular Technol., vol. 57, no. 6, pp. 3723–3731, Nov. 2008.

[4] Q. Li and D. Rus, “Global clock synchronization in sensor networks,”
presented at the Infocom, Hong Kong, China, Mar. 2004.

[5] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchro-
nization using reference broadcasts,” presented at the Operating Syst.
Design Implement., Boston, MA, USA, Dec. 9–11, 2002.

[6] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol
for sensor networks,” in Proc.SenSys, 2003, pp. 138–149.

[7] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, “The flooding time
synchronization protocol,” in Proc. ACM SenSys, 2004, pp. 39–49.

[8] Y. R. Faizulkhakov, “Time synchronization methods for wireless
sensor networks: A survey,” Programm. Comput. Softw., vol. 33, no.
4, pp. 214–226, 2007.

[9] R. Solis, V. S. Borkar, and P. R. Kumar, “A new distributed time syn-
chronization protocol for multihop wireless networks,” in Proc. IEEE
CDC, San Diego, CA, USA, Dec. 2006, pp. 2734–2739.

[10] A. Giridhar and P. R. Kumar, “Distributed clock synchronization over
wireless networks: Algorithms and analysis,” in Proc. IEEE CDC,
2006, pp. 4915–4920.

[11] M. Akar and R. Shorten, “Distributed probabilistic synchronization al-
gorithm for communication networks,” IEEE Trans. Autom. Control,
vol. 53, no. 1, pp. 389–394, Feb. 2008.

[12] N. Marechal, J. Pierrot, and J. Gorce, “Fine synchronization for wire-
less sensor networks using gossip averaging algorithms,” inProc. IEEE
ICC, 2008, pp. 4963–4967.

[13] C. Liao and P. Barooah, “Time-synchronization in mobile sensor
networks from difference measurements,” in Proc. CDC, 2010, pp.
2118–2123.

[14] L. Schenato and F. Fiorentin, “Average TimeSynch: A con-
sensus-based protocol for time synchronization in wireless sensor
networks,” Automatica, vol. 47, no. 9, pp. 1878–1886, 2011.

[15] S. Philipp and W. Roger, “Gradient clock synchronization in wireless
sensor networks,” in Proc. IPSN, 2009, pp. 37–48.

[16] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1,
pp. 215–233, Jan. 2007.

[17] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “On dis-
tributed averaging algorithms and quantization effects,” IEEE Trans.
Autom. Control, vol. 54, no. 11, pp. 2506–2517, Nov. 2009.

[18] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2508–2530,
Jun. 2006.

[19] G. Xiong and S. Kishore, “Analysis of distributed consensus time
synchronization with Gaussian delay over wireless sensor networks,”
EURASIP J. Wireless Commun. Netw., 2009.

[20] Q. Chaudhari, E. Serpedin, and K. Qaraqe, “Some improved and gener-
alized estimation schemes for clock synchronization of listening nodes
in wireless sensor networks,” IEEE Trans. Commun., vol. 58, no. 1, pp.
63–67, Jan. 2010.

[21] J. Elson, R. M. Karp, C. H. Papadimitriou, and S. Shenker, “Global
synchronization in sensornets,” in Proc. Latin Amer. Symp., 2004, pp.
609–624.

[22] P. Barooah and J. P. Hespanha, “Distributed estimation from rela-
tive measurements in sensor networks,” in Proc. ICISIP, 2005, pp.
226–231.

[23] N. M. Freris, V. S. Borkar, and P. R. Kumar, “A model-based approach
to clock synchronization,” in Proc. CDC, 2009, pp. 5744–5749.

[24] D. Fontanelli and D. Macii, “Towards master-lessWSN clock synchro-
nization with a light communication protocol,” in Proc. IMTC, 2010,
pp. 105–110.

[25] L. Mei and Y. C. Wu, “On clock synchronization algorithms for
wireless sensor networks under unknown delay,” IEEE Trans. Veh.
Technol., vol. 59, no. 1, pp. 182–190, Jan. 2010.

[26] L. Mei and Y.-C. Wu, “Distributed clock synchronization for wire-
less sensor networks using belief propagation,” IEEE Trans. Signal
Process., vol. 59, no. 11, pp. 5404–5414, Nov. 2011.

[27] R. Carli, A. Chiuso, S. Zampieri, and L. Schenato, “A PI consensus
controller for networked clocks synchronization,” in Proc. 17th IFAC
World Congr., 2008, pp. 10289–10294.

[28] R. Carli and S. Zampieri, “Networked clock synchronization based on
second order linear consensus algorithms,” in Proc. CDC, 2010, pp.
7259–7264.

[29] R. Carli, E. Elia, and S. Zampieri, “A PI controller based on asymmetric
gossip communications for clocks synchronization in wireless sensors
networks,” in Proc. CDC-ECC, 2011, pp. 7512–7517.

[30] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, “Optimal synchro-
nization for networks of noisy double integrators,” IEEE Trans. Autom.
Control, vol. 56, no. 5, pp. 1146–1152, May 2011.

[31] W. Ren, “On consensus algorithms for double-integrator dynamics,”
IEEE Trans. Autom. Control, vol. 53, no. 6, pp. 1503–1509, Jul. 2008.

[32] R. Olfati-Saber and R. M. Murray, “Consensus protocols for networks
of dynamic agents,” in Proc. ACC, 2003, pp. 951–956.

[33] H. Tijms, Understanding Probability: Chance Rules in Everyday
Life. Cambridge, U.K.: Cambridge Univ. Press, 2004.

[34] Z. Zhong, P. P. Chen, and T. He, “On-demand time synchroniza-
tion with predictable accuracy,” in Proc. IEEE Infocom, 2009, pp.
2480–2488.

[35] N. M. Freris, S. R. Graham, and P. R. Kumar, “Fundamental limits
on synchronizing clocks over networks,” IEEE Trans. Autom. Control,
vol. 56, no. 6, pp. 1352–1364, Jun. 2011.

[36] N. M. Freris, H. Kowshik, and P. R. Kumar, “Fundamentals of large
sensor networks: Connectivity, capacity, clocks, and computation,”
Proc. IEEE, vol. 98, no. 11, pp. 1828–1846, Nov. 2010.

[37] J. R. Birge and F. Louveaux, Introduction to Stochastic Program-
ming. New York, USA: Springer, 1997.

[38] D. Zhou and T. H. Lai, “An accurate and scalable clock synchroniza-
tion protocol for IEEE 802.11-basedmultihopAdHoc networks,” IEEE
Trans. ParallelDistrib. Syst., vol. 18, no. 12, pp. 1797–1808,Dec. 2007.

[39] B. Choi, H. Liang, X. Shen, and W. Zhuang, “DCS: Distributed asyn-
chronous clock synchronization in delay tolerant networks,” IEEE
Trans. Parallel Distrib. Syst., vol. 23, no. 3, pp. 491–504, Mar. 2012.

[40] S. Ganeriwal, C. Popper, S. Capkun, and M. B. Srivastava, “Secure
time synchronization in sensor networks,” ACM Trans. Inf. Syst. Secu-
rity, vol. 11, no. 4, 2008.

[41] J. Chiang, J. Haas, Y.-C. Hu, P. R. Kumar, and J. Choi, “Funda-
mental limits on secure clock synchronization and man-in-the-middle
detection in fixed wireless networks,” in Proc. Infocom, 2009, pp.
1962–1970.

[42] N. M. Freris and A. Zouzias, “Fast distributed smoothing of relative
measurements,” in Proc. CDC, 2012, pp. 1411–1416.

Jianping He is currently pursuing the Ph.D. degree
in control science and engineering at Zhejiang Uni-
versity, Hangzhou, China.
His research interests include time synchroniza-

tion, consensus, and distributed security algorithm
design problems in wireless sensor networks.
Dr. He is a member of the Group of Networked

Sensing and Control (IIPC-nesC), State Key Lab-
oratory of Industrial Control Technology, Zhejiang
University.

Peng Cheng (M’10) received the B.E. degree in au-
tomation and the Ph.D. degree in control science and
engineering from Zhejiang University, Hangzhou,
China, in 2004 and 2009, respectively.
Currently, he is Associate Professor with the De-

partment of Control Science and Engineering, Zhe-
jiang University. His research interests include net-
worked sensing and control, cyberphysical systems,
and robust control.
Dr. Cheng serves as the publicity Co-Chair for

IEEE MASS 2013.

HE et al.: TIME SYNCHRONIZATION IN WSNS 675

Ling Shi received the B.S. degree in electrical and
electronic engineering from the Hong Kong Uni-
versity of Science and Technology, Hong Kong,
China, in 2002 and the Ph.D. degree in control
and dynamical systems from the California Insti-
tute of Technology, Pasadena, CA, USA, in 2008.
Currently, he is an Assistant Professor at the

Department of Electronic and Computer Engi-
neering, Hong Kong University of Science and
Technology. His research interests include net-
worked control systems, wireless sensor networks,

and distributed control.

Jiming Chen (M’08–SM’11) received the B.Sc. and
Ph.D. degrees in control science and engineering
from Zhejiang University, Hangzhou, China, in 2000
and 2005, respectively.
He was a Visiting Researcher at INRIA in 2006,

National University of Singapore in 2007, and the
University of Waterloo, Waterloo, ON, Canada, from
2008 to 2010. Currently, he is a Full Professor with
the Department of Control Science and Engineering,
and the coordinator of group of Networked Sensing
and Control in the State Key Laboratory of Industrial

Control Technology, andVice Director of the Institute of Industrial Process Con-
trol at Zhejiang University, Hangzhou, China.
Dr. Chen also served/serves as Ad hoc and Sensor Network Symposium

Co-Chair, IEEE Globecom 2011; General Symposia Co-Chair of ACM
IWCMC 2009 and ACM IWCMC 2010, WiCON 2010 MAC track Co-Chair,
IEEE MASS 2011 Publicity Co-Chair, IEEE DCOSS 2011 Publicity Co-Chair,
IEEE ICDCS 2012 Publicity Co-Chair, IEEE ICCC 2012 Communications

QoS and Reliability Symposium Co-Chair, IEEE SmartGridComm The Whole
Picture Symposium Co-Chair, IEEE MASS 2013 Local Chair, Wireless
Networking and Applications Symposium Co-Chair, IEEE ICCC 2013 and
TPC member for IEEE ICDCS’10,’12,’13; IEEE MASS’10,’11,’13; IEEE
SECON’11,’12; IEEE INFOCOM’11,’12,’13, etc. He is currently Associate
Editors for several international journals, including IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS ON INDUSTRIAL
ELECTRONICS, IEEE Network, IET Communications, etc. He was a guest editor
of IEEE TRANSACTIONS ON AUTOMATIC CONTROL, Computer Communication,
Wireless Communication and Mobile Computer, and Journal of Network and
Computer Applications.

Youxian Sun joined the Department of Chemical
Engineering, Zhejiang University, Hangzhou, China,
in 1964. From 1984 to 1987, he was an Alexander
Von Humboldt Research Fellow and Visiting As-
sociate Professor at the University of Stuttgart,
Stuttgart, Germany. He has been a Full Professor at
Zhejiang University since 1988.
In 1995, he was elevated to an Academician of

the Chinese Academy of Engineering, China. He is
author/co-author of 450 journal and conference pa-
pers. Currently, he is the Director of the Institute of

Industrial Process Control and the National Engineering Research Center of In-
dustrial Automation, Zhejiang University. His current research interests include
modeling, control, and optimization of complex systems, and robust control de-
sign and its applications.
Prof. Sun is President of the Chinese Association of Automation. He also

served as Vice-Chairman of IFAC Pulp and Paper Committee and Vice-Presi-
dent of the China Instrument and Control Society.

