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a b s t r a c t

The event-triggered state estimation problem for linear time-invariant systems is considered in the
framework of Maximum Likelihood (ML) estimation in this paper. We show that the optimal estimate
is parameterized by a special time-varying Riccati equation, and the computational complexity increases
exponentially with respect to the time horizon. For ease in implementation, a one-step event-based ML
estimation problem is further formulated and solved, and the solution behaves like a Kalman filter with
intermittent observations. For the one-step problem, the calculation of upper and lower bounds of the
communication rates from the process side is also briefly analyzed. An application example to sensorless
event-based estimation of aDCmotor system is presented and the benefits of the obtainedone-step event-
based estimator are demonstrated by comparative simulations.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In wireless sensor networks, smart sensors and actuators are
normally powered by batteries with limited capacity (Akyildiz,
Su, Sankarasubramaniam, & Cayirci, 2002) and usually perform
two types of tasks (Culler, Estrin, & Srivastava, 2004; Sveda &
Vrba, 2003): simple calculation (including data acquisition) and
data transmission via the wireless channel. The comparison be-
tween standard ZigBee chips designed according to IEEE 802.15.4
(2006) (e.g., CC2530 by Texas Instruments, 2011) and analog to dig-
ital converters (e.g., AD7988, 16-digit ADC from ANALOG DEVICES,
2012) indicates that the energy consumption of wireless transmis-
sion is at least one magnitude greater than that of data acquisition
and basic calculation. Consequently, less communication between
the sensor and the remote state estimator (or actuator) can sig-
nificantly prolong the lifetime of the sensors. Event-based sensor
data schedules provide an inspiring opportunity for reducing the
sensor-to-estimator communications.

Pioneered by the work of Åström and Bernhardsson (2002)
on Lebesgue sampling, event-based data scheduling for state
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estimation has received considerable attention during the last few
years. The optimal event-based finite-horizon sensor transmis-
sion scheduling problems were studied in Imer and Basar (2005),
and Rabi, Moustakides, and Baras (2006) for continuous-time and
discrete-time scalar linear systems, respectively. The results were
extended to vector linear systems in Li, Lemmon, andWang (2010)
by relaxing the zero mean initial conditions and considering mea-
surement noises. The tradeoff between the performance and the
average sampling period was analyzed in Li and Lemmon (2011),
and a sup-optimal event-triggering schemewith a guaranteed least
average sampling period was proposed. Adaptive sampling for
state estimation of continuous-time linear systems was consid-
ered in Rabi, Moustakides, and Baras (2012). Shi, Johansson, and
Qiu (2011) proposed a hybrid sensor data scheduling method by
combining time and event-basedmethods with reduced computa-
tional complexity. In Weimer, Araújo, and Johansson (2012), a dis-
tributed event-triggered estimation problemwas considered and a
global event-triggered communication policy for state estimation
was proposed by minimizing a weighted function of network en-
ergy consumption and communication costwhile considering esti-
mation performance constraints. The joint design of event-trigger
and estimator for first-order stochastic systems with arbitrary dis-
tributions was considered in Molin and Hirche (2012), where a
game-theoretic framework was utilized to analyze the optimal
trade-off between the mean squared estimation error and the ex-
pected transmission rate.

In addition to the scheduling issues, another important prob-
lem is to find the optimal estimate for a specified event-triggering
scheme, which provides additional information to the estimator
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Fig. 1. Block diagram of the overall system. Note that for the proposed one-
step event-triggered ML estimator, the feedback communication from the remote
estimator to the smart sensor (see the dotted arrow) is only requiredwhen an event
occurs at the smart sensor.

evenwhen nomeasurement is transmitted from the sensor. InWu,
Jia, Johansson, and Shi (2013), the Minimum Mean Squared Error
(MMSE) estimator was derived based on the Gaussian assumption
of the prediction error, and the tradeoff between the sensor-to-
estimator communication rate and the performance was analyti-
cally characterized. In Sijs and Lazar (2012), a general description of
event sampling was proposed, and a state estimator with a hybrid
update was derived using a sum of Gaussians approach to reduce
the computational complexity. Trimpe and D’Andrea (2012) con-
sidered the variance-based event-triggering conditions, and the
convergence of the resultant variance iterations to a periodic so-
lution was proved. For linear Gaussian systems with periodic sen-
sor measurements, the MMSE estimate, namely, the Kalman filter,
coincides with the Maximum Likelihood (ML) estimate (Rauch,
Striebel, & Tung, 1965). However, this equivalence no longer holds
when the sensormeasurements are updated according to an event-
triggered scheme, due to the non-Gaussianity of the conditional
Probability Distribution Functions (PDFs).

In this paper, the event-based state estimation problem is con-
sidered under the maximum-likelihood estimation framework.
We study the remote state estimation of a process based on the
measurements taken by a battery-powered smart-sensor on the
process side, the output of which is transmitted to the remote
estimator through a wireless channel. Foreshadowed by the dis-
cussions above, we assume that wireless transmission consumes
more energy than basic calculation, and thus an event-based data-
scheduler is proposed on the process side to prolong the battery
life (utilizing the limited calculation capacity of the smart sensor).
The main contributions of this paper are two folds:

(1) The structure of the event-based ML state estimator is
provided. We show that the optimal estimate is parameterized
by a special time-varying Riccati equation, and the computational
complexity increases exponentially with the time horizon. Note
that the solution to the Riccati equation is not necessarily the
covariance matrix of the estimation error for event-basedML state
estimation problems, due to event-based data updating.

(2) For ease in implementation of the event-basedMLestimator,
a one-step event-based ML estimation problem is formulated,
and its solution is shown to behave like the Kalman filter with
intermittent observations (Sinopoli et al., 2004) and only requires
feedback communication when an event occurs at the smart
sensor. This is different from the results in Wu et al. (2013), where
feedback communication is always needed. Also, discussions on
the communication rates are provided from the process side.

The rest of the paper is organized as follows. Section 2 provides
the system description and problem formulation. The structure of
the solution to the event-based ML state estimation problem is
derived in Section 3, where the implementation issues are also
discussed. In Section 4, the one-step event-based ML estimation
problem is solved and the communication rate is briefly analyzed.
Section 5 presents a numerical example to illustrate the efficiency
of the proposed results, followed by some concluding remarks in
Section 6.
Notations: N and N+ denote the sets of nonnegative and
positive integers, respectively. For a, b ∈ N and a ≤ b, ua:b denotes
{u(a), u(a + 1), . . . , u(b)}. R denotes the set of real numbers. For
m, n ∈ N+, Rm×n denotes the set of m by n real-valued matrices,
whereas Rm is short for Rm×1. For Z ∈ Rm×n, Z⊤ denotes the
transpose of Z , whereas Z−⊤ denotes (Z⊤)−1 if Z is square and
nonsingular. For a random variable x, E (x) denotes its expectation,
and x denotes its realization.

2. Problem formulation

Consider the system in Fig. 1. The process is Linear Time-
Invariant (LTI) and evolves in discrete time driven by white noise:

xk+1 = Axk + wk, (1)

where xk ∈ Rn is the state, and wk ∈ Rn is the noise input, which
is zero-mean Gaussian with covariance Q > 0.

The initial state x0 is Gaussian with E (x0) = µ0 and covariance
P0 > 0. Assume that A is nonsingular. Note that this assumption is
not restrictive as (1) is typically amodel that comes from discretiz-
ing a stochastic differential equation dx = A1xdt + B1dw, in which
case A = eA1h, for a sampling period h, is clearly invertible. The
state information is measured by a battery-powered smart sen-
sor, which communicates with a remote state estimator through
a wireless channel, and the measurement equation is

yk = Cxk + vk, (2)

where vk ∈ Rm is zero-mean Gaussian with covariance R > 0.
In addition, x0, wk and vk are uncorrelated with each other. We as-
sume that (C, A) is detectable. For consideration of the limited sen-
sor battery capacity and the communication cost, an event-based
data scheduler is integrated in the sensor. At each time instant k,
themeasurement information yk is sent directly to the event-based
scheduler; the estimator provides a prediction x̂k|k−1 of the current
state xk and sends the prediction x̂k|k−1 to the scheduler via the
wireless channel. Based on yk and x̂k|k−1, the scheduler computes
γk according to the following event-triggered condition:

γk =


0, if ∥yk − Cx̂k|k−1∥∞ ≤ δ
1, otherwise (3)

and decideswhether to allow a data transmission, where δ is a tun-
ing parameter that determines the sensitivity of the event-based
scheduler. Only when γk = 1, the sensor transmits yk to the esti-
mator. As a result, if γk = 1, the estimator knows the exact value
of yk; otherwise it only knows that the value of yk lies in a known
region. The ultimate goal of the estimator is to provide an estimate
x̂k|k of xk based on the known information. Notice that this type of
feedback communication strategy is not energy-saving itself and
an alternative strategy is to include a copy of the estimator in the
scheduler, which instead adds to the computational burden of the
scheduler. We will show that the obtained result in this paper in
fact does not require the feedback communication except when an
event occurs, and only a simple prediction step is needed for the
scheduler during a non-event time instant.

In this paper, the first objective is to determine, at time k, the
optimal estimate x̂k|k of xk that maximizes the joint probability
distribution function of x0:k and y1:k:

fx0:k,y1:k(x̂0|0, x1, . . . , xk, ŷ1, . . . , ŷk) (4)

where x0:k and ŷ1:k are the optimization parameters. If γt = 1,
ŷt = yt ; otherwise the value of ŷt lies in [y

t
, ȳt ] at time instant

t , where

y
t
= Cx̂t|t−1 − δ1m,

ȳt = Cx̂t|t−1 + δ1m,
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1m = [1 1 ... 1  
m times

]
⊤, t = 1, 2, . . . , k. Consequently, at time instant k,

the estimator solves the following optimization problem:

max
x1:k,ŷ1:k

fx0:k,y1:k(x̂0|0, x1, . . . , xk, ŷ1, . . . , ŷk)

s.t. xt = Axt−1 + wt−1,
yt = Cxt + vt .
ŷt = yt , if γt = 1;
ŷt ∈ [y

t
, ȳt ], if γt = 0.

t ∈ {1, 2, . . . , k}.

(5)

The objective function in (5) is the joint probability distribution
function of x0:k and y1:k, which is always Gaussian regardless of
the event-driven communication. Therefore the additional infor-
mation introduced by the event-based scheduler is not reflected in
the objective function and is only exploited in the constraints in (5).

Based on the solution to (5), we further look into a simpler yet
more interesting one-step event-based ML estimate problem by
taking the determined values of xt and ŷt (at time instant t < k)
into account, namely, by fixing the values of xt and ŷt to the one
determined at time instant t for t = 1, 2, . . . , k − 1 and only
considering xk and ŷk as optimization variables:

max
xk,ŷk

fx0:k,y1:k(x̂0|0, . . . , x̂k−1|k−1, xk, ŷ1, . . . , ŷk)

s.t. xk = Ax̂k−1|k−1 + wk−1,
yk = Cxk + vk.
ŷk = yk, if γk = 1;
ŷk ∈ [y

k
, ȳk], if γk = 0.

(6)

For this problem, we show that the solution has a simple recur-
sive form, and the communication rate is possible to be analyzed
in terms of upper and lower bounds from the process side.

3. Solution to the event-based ML estimation problem

In this section, the solution to problem (5) is derived. From
Lemma 9.3.1 of Goodwin, Seron, and De Dona (2005), we have

fx0:k,y1:k(x0:k, y1:k) = α · exp


−

1
2

k−1
t=0

w⊤

t Q−1wt



· exp


−

1
2

k
t=1

v⊤

t R−1vt



· exp

−

1
2
(x0 − µ0)

⊤P−1
0 (x0 − µ0)

 (7)

whereα is a positive constant, andwt and vt satisfywt = xt+1−Axt
and vt = yt −Cxt , respectively. As a result, the estimation problem
that needs to be solved at time k is equivalent to

min
w0:k−1,v1:k

k−1
t=0

w⊤

t Q−1wt +

k
t=1

v⊤

t R−1vt

+ (x0 − µ0)
⊤P−1

0 (x0 − µ0)
s.t. xt = Axt−1 + wt−1,

Cxt + vt = yt , if γt = 1;
Cxt + vt ≤ ȳt , if γt = 0;

−Cxt − vt ≤ −y
t
, if γt = 0.

t ∈ {1, 2, . . . , k}.

(8)

Before continuing, let us define the value function V (w0:k−1, v1:k)
as

V (w0:k−1, v1:k) :=

k−1
t=0

w⊤

t Q−1wt +

k
t=1

v⊤

t R−1vt

+ (x0 − µ0)
⊤P−1

0 (x0 − µ0). (9)
For brevity, we use V ∗

k to denote the optimal value function at time
k, namely, V ∗

k := V (w∗

0:k−1, v
∗

1:k). In the following, an active-set ap-
proach will be utilized to characterize the structure of the optimal
solution to (8). To maintain the simplicity in the description and
derivation of the results, we assume that C and vt can be decom-
posed as2

C =

C̃⊤

t C̄⊤

t

⊤
(10)

and vt = [ṽ⊤
t v̂⊤

t ]
⊤, where C̃t and ṽt correspond to the set of active

constraints

ṽt + C̃t x̃t = ỹt (11)

at time t that lead to the optimal solution to (8). Correspondingly
the covariance matrix R is decomposed as

R =


R̃t R̂t

R̂⊤

t R̄t

−1

. (12)

Define R∗
t := (R̃t − R̂t R̄−1

t R̂⊤
t )−1. Utilizing these notations, for the

problem in (8), we have the following results.

Theorem 1. The optimal solution to problem (8) has the following
properties:

1. The optimal prediction satisfies

x̂t+1|t = Ax̂t|t;

the optimal estimation x̂t|t satisfies

x̂t|t =


x̂t|t−1 + Pt|t−1C⊤(R + CPt|t−1C⊤)−1

(yt − Cx̂t|t−1), if γt = 1;
x̂t|t−1 + Pt|t−1C̃⊤

t (R∗

t + C̃tPt|t−1C̃⊤

t )−1

(ỹt − C̃t x̂t|t−1), if γt = 0.

(13)

with x̂0|0 = µ0, Pt|t−1 = APt−1|t−1A⊤
+ Q , P0|0 = P0; if γt = 1,

Pt|t = Pt|t−1 − Pt|t−1C⊤(R + CPt|t−1C⊤)−1CPt|t−1;

if γt = 0,

Pt|t = Pt|t−1 − Pt|t−1C̃⊤

t (R∗

t + C̃tPt|t−1C̃⊤

t )−1C̃tPt|t−1.

2. The optimal value function V ∗
t satisfies

V ∗

t = (xt − x̂t|t)⊤P−1
t|t (xt − x̂t|t) + Υt , (14)

with

V ∗

0 = (x0 − x̂0|0)⊤P−1
0|0 (x0 − x̂0|0) + Υ0,

Υ0 = 0; if γt = 1,

Υt = Υt−1 + (yt − Cx̂t|t−1)
⊤(R + CPt|t−1C⊤)−1(yt − Cx̂t|t−1);

if γt = 0,

Υt = Υt−1 + (ỹt − C̃t x̂t|t−1)
⊤

× (R∗

t + C̃tPt|t−1C̃⊤

t )−1(ỹt − C̃t x̂t|t−1).

Proof. The problem in (8) is a quadratic optimization problem
with linear equality and inequality constraints. According to the
first-order Karush–Kuhn–Tucker conditions (which is necessary
and sufficient for local optimality in this case) (Bazaraa, Sherali,
& Shetty, 2006), the global optimizer of this problem can be ob-
tained by enumerating all sets of active constraints and testing
the feasibility with respect to problem (8) of the solution to the

2 Notice that when this decomposition assumption does not hold, the results
can be proved following the same argument but at the cost of more complicated
notations.
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corresponding quadratic optimization problem with equality con-
straints. Therefore, to characterize the structure of the optimal so-
lution, it suffices to consider the set of optimal active constraints
given in (11).

Without loss of generality, we first claim that the optimal value
function V ∗

t−1 at time instant k − 1 has the following form:

V ∗

t−1 = Υt−1 + (xt−1 − x̂t−1|t−1)
⊤P−1

t−1|t−1(xt−1 − x̂t−1|t−1), (15)

and thenweprovide an inductive proof for it. Note that this is satis-
fied at k = 1withΥ0 = 0 and V ∗

0 = (x0− x̂0|0)⊤P−1
0|0 (x0− x̂0|0)+Υ0,

where x̂0|0 = µ0, P0|0 = P0.
If γt ≠ 0, following a similar argument as that in the proof of

Lemma 9.6.1 of Goodwin et al. (2005), we have

V ∗

t = (xt − x̂t|t)⊤P−1
t|t (xt − x̂t|t) + Υt ,

Υt = Υt−1 + (yt − Cx̂t|t−1)
⊤(R + CPt|t−1C⊤)−1(yt − Cx̂t|t−1),

x̂t|t−1 = Ax̂t−1|t−1,

x̂t|t = x̂t|t−1 + Pt|t−1C⊤(R + CPt|t−1C⊤)−1(yt − Cx̂t|t−1),

Pt|t−1 = APt−1|t−1A⊤
+ Q ,

Pt|t = Pt|t−1 − Pt|t−1C⊤(R + CPt|t−1C⊤)−1CPt|t−1.

(16)

If γt = 0, at time instant t , we solve

min
wt−1,vt

w⊤

t−1Q
−1wt−1 + v⊤

t R−1vt

+ (A−1xt − A−1Bwt−1)
⊤P−1

t−1
(A−1xt − A−1Bwt−1)

s.t. ṽt + C̃t x̃t = ỹt ,

(17)

where Υt−1 is independent of wt−1 and vt , and the relationship
xt−1 = A−1xt − A−1wt−1 is used.

From (12), the resulting optimization problem with equality
constraints can be written as

min
wt−1,ṽt ,v̂t

w⊤

t−1Q
−1wt−1 + ṽ⊤

t R̃t ṽt + ṽ⊤

t R̂t v̂t

+ v̂⊤

t R̂⊤

t ṽt + v̂⊤

t R̄t v̂t + Υt−1

+ (A−1xt − A−1Bwt−1)
⊤P−1

t−1
(A−1xt − A−1Bwt−1)

s.t. ṽt + C̃t x̃t = ỹt .

(18)

This problem can be solved in two steps:

1. Optimal prediction. In this step, we identify the optimal wt−1.
Due to the structure of the problem, we obtain the same result
as that in the case γt = 1. The optimizer is

w∗

t−1 = (A−⊤P−1
t−1|t−1A

−1
+ Q−1)−1

A−⊤P−1
t−1|t−1(A

−1xt − x̂t−1|t−1), (19)

and the optimal prediction and the corresponding value func-
tion are x̂t|t−1 = Ax̂t−1|t−1 and

V ⋆
t = (xt − x̂t|t−1)

⊤P−1
t|t−1(xt − x̂t|t−1) + ṽ⊤

t R̃t ṽt

+ ṽ⊤

t R̂t v̂t + v̂⊤

t R̂⊤

t ṽt + v̂⊤

t R̄t v̂t + Υt−1, (20)

respectively, where Pt|t−1 = APt−1|t−1A⊤
+ Q .

2. Measurement update. In this step, we optimize V ⋆
t with respect

to ṽt and v̂t subject to the active constraints. To do this, we in-
clude the constraints into the objective function and differenti-
ate V ⋆

t with respect to xt and v̂t , respectively, which leads to

P−1
t|t−1(xt − x̂t|t−1) − C̃⊤

t R̃t(ỹt − C̃txt) − C̃t R̂t v̂t = 0,
R̂⊤

t (ỹt − C̃txt) + R̄t v̂t = 0.
(21)
Some further matrix manipulations lead to

V ∗

t = (xt − x̂t|t)⊤P−1
t|t (xt − x̂t|t) + Υt ,

Υt = Υt−1 + (ỹt − C̃t x̂t|t−1)
⊤

× (R∗

t + C̃tPt|t−1C̃⊤

t )−1(ỹt − C̃t x̂t|t−1),

x̂t|t = x̂t|t−1 + Pt|t−1C̃⊤

t (R∗

t + C̃tPt|t−1C̃⊤

t )−1(ỹt − C̃t x̂t|t−1),

Pt|t = Pt|t−1 − Pt|t−1C̃⊤

t (R∗

t + C̃tPt|t−1C̃⊤

t )−1C̃tPt|t−1,

R∗

t = (R̃t − R̂t R̄−1
t R̂⊤

t )−1. (22)

This completes the proof. �

Remark 2. The above result provides insights into the structure of
the optimal solution to (5). However, to find the optimal solution
to (5) at time k, we need to consider all possible (3mk) combinations
of active constraint sets considering t = 1, 2, . . . , k and compare
the corresponding value functions according to (16) and (22). As
a result, the computation burden will increase exponentially with
respect to the time horizon. Alternatively, since the problem is a
Quadratic Programming (QP) problem subject to linear constraints,
standard QP solvers can be applied to find the optimal solution as
well. However, the issue is that the dimension of the optimization
parameters in the QP problem increases linearly with respect to
k, due to the lack of a recursive structure of the optimal solution
from time k to k+ 1 (this follows from the observation that the set
of optimal active constraints for problem (5) at time k may not be
part of the set of optimal active constraints for the problem at time
k + 1).

4. One-step event-based ML state estimation

Motivated by the implementation issues of the optimal solution
to problem (5) discussed in Remark 2, we further look into the
one-step event-basedML estimation problem in (6) in this section.
As will be shown later, this formulation allows us to obtain
a recursive solution and is a consequence of the compromise
between optimality and implementability.

4.1. Solution to the problem

In this case, the problem that needs to be solved at time k is
equivalent to

V (w
Ď
k−1, v

Ď
k ) := min

wk−1,vk

k−1
t=0

w⊤

t Q−1wt +

k
t=1

v⊤

t R−1vt

+ (x0 − µ0)
⊤P−1

0 (x0 − µ0)
s.t. xk = Axk−1 + wk−1,

Cxk + vk = yk, if γk = 1;
Cxk + vk ≤ ȳk, if γk = 0;

−Cxk − vk ≤ −y
k
, if γk = 0.

wt−1 = w
Ď
t−1, vt = v

Ď
t ,

t ∈ {1, 2, . . . , k − 1}.

(23)

For notational simplicity, define V Ď
k := V (w

Ď
k−1, v

Ď
k ). For this

problem, we have the following result.

Theorem 3. The optimal solution to problem (23) has the following
properties:
1. The optimal prediction is unbiased and satisfies x̂k+1|k = Ax̂k|k; the

optimal estimation x̂k|k is also unbiased and satisfies

x̂k|k =


Ax̂k−1|k−1 + Pk|k−1C⊤

(R + CPk|k−1C⊤)−1(yk − CAx̂k−1|k−1),
if γk = 1;

Ax̂k−1|k−1, if γk = 0.

(24)
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with x̂0|0 = µ0, Pk|k−1 = APk−1|k−1A⊤
+ Q , P0|0 = P0; if γk = 1,

Pk|k = Pk|k−1 − Pk|k−1C⊤(R + CPk|k−1C⊤)−1CPk|k−1;

if γk = 0,
Pk|k = APk−1|k−1A⊤

+ Q .

2. The optimal value function V Ď
k satisfies

V Ď
k = (xk − x̂k|k)⊤P−1

k|k (xk − x̂k|k) + Υk, (25)

with

V Ď
0 = (x0 − x̂0|0)⊤P−1

0|0 (x0 − x̂0|0) + Υ0,

Υ0 = 0; if γk = 1,

Υk = Υk−1 + (yk − Cx̂k|k−1)
⊤(R + CPk|k−1C⊤)−1(yk − Cx̂k|k−1);

if γk = 0, Υk = Υk−1.

Proof. The proof of this result follows from a similar argument as
that in Theorem 1. In particular, when γk = 0 and no constraint is
active, the counter-part of results in (22) reduces to

V Ď
k = (xk − x̂k|k)⊤P−1

k|k (xk − x̂k|k) + Υk,

Υk = Υk−1,
x̂k|k = x̂k|k−1,
Pk|k = Pk|k−1.

(26)

The optimizer for this unconstrained case satisfies all constraints
in (23). In addition, since R > 0, by Schur complement, we have
R∗

k > 0 in (22), which further implies Υk ≥ Υk−1 and thus the
solution to the constrained case leads to a cost larger or equal than
the solution to the unconstrained case. Therefore, when γk = 0,
the optimization problem in (23) is solved by (26).

Finally, the unbiasedness of the optimal prediction and
estimation follows directly from their structure and the fact that
x̂0|0 = E(x0), which completes the proof. �

The above result indicates that when the exact value of the
measurement is unavailable and the information of the set-valued
measurement ŷt ∈ [y

t
, ȳt ] is exploited instead, the one-step opti-

mal state prediction also serves the optimal estimation in the sense
of one-step maximum likelihood. Note that this does not hold in
general for the event-based ML estimation problem in (5). Since
the conditional distribution fx1:k|y1:k(x1:k|y1:k) is no longer Gaussian
due to the additional information of the set-valued measurement,
theML estimate does not necessarily coincide with theMMSE esti-
mate for event-based estimation, which is different from the case
of periodic state estimation of linear Gaussian systems.

Remark 4. In Wu et al. (2013), when γk = 1, Pk|k has the same
update equation, but when γk = 0, Pk|k evolves rather differently.
The resultant estimate here has a much simpler form, which does
not require to solve the integrations in Wu et al. (2013). Notice
that for original ML estimation problems in (5), Pk|k is not the
estimation error covariance matrix for the estimate x̂k|k, but rather
a time-varying parameter that helps to generate the ML estimate
subject to the event-triggering rule. As a result, the obtained
update equations have essentially different meanings compared
with those in Sinopoli et al. (2004).

4.2. Discussions on the communication rate

We now briefly elaborate on the average communication rate.
Viewed from the process side, the resultant state estimator be-
haves exactly like the standard Kalman filter with intermittent
observations (Mo & Sinopoli, 2012; Sinopoli et al., 2004): when
γk = 1, the optimal estimator considers both time and measure-
ment updates of the Kalman filter; when γk = 0, the optimal
estimator only performs the time update. Therefore on the process
side the resultant prediction error êk|k−1 := xk − x̂k|k−1 is zero-
mean Gaussian with covariance Pk|k−1.3 Denote zk := yk − Cx̂k|k−1.
Since yk − Cx̂k|k−1 = Cêk|k−1 + vk, we have E(zk) = 0 and
E(zkz⊤

k ) := Φk = CPk|k−1C⊤
+R. DefineΩ := {z ∈ Rm

| ∥z∥∞ ≤ δ},
and we have

E(γk) = 1 −


Ω

fzk(z)dz, (27)

where fzk(z) = (2π)−m/2(detΦk)
−1/2 exp(− 1

2 z
⊤Φ−1

k z). Although
the analytical calculation of the integration in (27) is not possible,
we show that lower and upper bounds for E(γk) can be developed.

To do this, consider the calculation of


Ω0
fzk(z)dz, whereΩ0 :=

{z| z⊤Φ−1
k z ≤ r2}. Define Ω⊥

0 := {z| z⊤Φ−1
k z > r2}. Since

Ω0∪Ω⊥

0 = Rm,


Ω0
fzk(z)dz = 1−


Ω⊥

0
fzk(z)dz. For the integration

over Ω⊥

0 , we have the following result.

Lemma 5.


Ω⊥
0
fzk(z)dz = Γ (m/2, r2/2)/Γ (m/2).

Proof. See Appendix A. �

From this result, the upper and lower bounds of E(γk) can be eval-
uated by considering inner and outer ellipsoidal approximations
Ω0 ofΩ , themain effort of which lies in finding appropriate values
for r .

In addition, due to the structure of the optimal estimate, the
estimator does not need to send the optimal prediction to the re-
mote scheduler when no event occurs, since in this case the same
prediction can be generated by the scheduler based on the previ-
ous prediction (which is also the optimal estimation) according to
x̂t+1|t = Ax̂t|t−1 = Ax̂t|t with a little additional computation cost.
In this way, the communication cost is further reduced by the pro-
posed state estimation method.

5. Application to sensorless event-based estimation of a DC
motor system

In this section, we illustrate the proposed results with a sen-
sorless remote estimation problem involving a DC motor. The me-
chanical and electrical dynamics of the DC motor system are given
by (Franklin, Powell, & Emami-Naeini, 2006)

Jm
d2θm

dt2
+ b

dθm
dt

+ TL = Kt ia,

La
dia
dt

+ Raia = va − Ke
dθm
dt

,

where Jm is the rotor inertia, θm is the shaft rotational position, TL is
the load torque, b is the viscous friction coefficient, Kt is the torque
constant, Ke is the electric constant, La is the armature inductance,
Ra is the armature resistance, and va is the DC voltage input. The
motor parameters are summarized in Table 1, which are obtained
based on experimental measurements of a 500 W permanent
magnet DC motor with rated speed, current and voltage equal to
314.16 Rad/s, 3.5 A and 180 V, respectively (Chevrel & Siala, 1997).

The objective here is to estimate the shaft rotational position
θm, shaft rotational speed θ̇m and armature current ia with a cur-
rent sensor (e.g., a Hall effect sensor). This is called the sensorless
control/estimation technique4 in the industrial electronics com-
munity (Holtz, 2002, 2005; Su & McKeever, 2004). The estimation

3 Notice that according to the standard Kalman filter theory (Anderson & Moore,
1979), this covariance is unconditional.
4 Here ‘sensorless’ means the elimination of the speed sensor.
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Table 1
Motor parameters.

Parameter Value Unit

La 20.25 H
Ra 16.4 Ω

Ke 0.0233 V/(Rad/s)
Kt 0.0183 N m/A
Jm 9 g cm2

b 0.0064 N m/(Rad/s)

Fig. 2. Plot of the input signals.

is performed by a remote estimator collecting the measurement
information through a battery-powered wireless channel. In this
work, we consider the load type to be piecewise constant, which
can be provided by a synchronous machine. Since both the load
torque and DC voltage are only subject to step changes, it is rea-
sonable to assume that these signals are known/generated by the
remote estimator.

To implement the estimator, a state-space model is first de-
rived. Since the direct consideration of shaft rotational position
will introduce an undetectable mode (in fact the corresponding
eigenvalue equals 1) to the system, we choose the state vector as
x := [θ̇m ia]⊤, the input vector as u := [TL va]

⊤, and the measure-
ment output as y := ia, which lead to the state-space model:

ẋ(t) =

−
b
Jm

Kt

Jm

−
Ke

La
−

Ra

La

 x(t) +

−
1
Jm

0

0
1
La

 u(t), (28)

y(t) =

0 1


x(t). (29)

Notice that based on the estimation of the rotational speed, the
shaft rotational position can be estimated as well. With these pa-
rameter settings, a discrete-time model is obtained with sampling
time chosen as Ts = 0.001 s:

xk+1 =


0.9951 0.2289

−0.0177 0.8672


xk +


−0.4158 0.0038
0.0038 0.0301


uk

+wk, (30)

yk =

0 1


xk + vk, (31)

where wk and vk are further introduced to model the noisy oper-
ating environment. Specifically, wk := [w1

k w2
k]

⊤ with w1
k char-

acterizing the mechanical noise that couples into the speed-loop
and w2

k modeling the electrical noise that couples into the voltage
input, and vk models the measurement noise. The covariance ma-
trices of wk and vk are assumed to be Q =


0.2013 0.0430
0.0430 0.0363


and

R = 0.03, respectively. Since both inputs are known to the remote
estimator, the proposed results can be applied by only modifying
Fig. 3. Performance of the state estimation strategy.

Fig. 4. Tradeoff between the estimation performance and the communication rate.

the prediction as x̂k|k−1 = Ax̂k−1|k−1 + Buk, B being the discretized
input matrix.

First, the event-triggering level is set to δ = 0.4 A. The input
signals utilized are plotted in Fig. 2. The proposed event-based
sensor data scheduling and state estimation strategy are applied
and the estimation performance is shown in Fig. 3.

Second, by varying the event-triggering threshold δ, the rela-
tionship between estimation performance and average commu-
nication rate is further analyzed and compared with the other
three methods, namely, the Kalman filter with periodic packet
dropouts5, Kalman filter with intermittent observations (Sinop-
oli et al., 2004), and the event-based MMSE estimator (Wu et al.,
2013). The results are shown in Fig. 4, where the average commu-
nication rate is defined by

γ̃ :=
1
N

N
k=1

γk, (32)

N being the simulation horizon, and the average estimation error
is defined by

ϵ :=
1
N

N
k=1

∥xk − x̂k|k∥2. (33)

It is shown that at the same average communication rate, the per-
formance of the Kalman filter with intermittent observations is
better than that with periodic packet dropouts, and the perfor-
mance of the one-step event-based ML estimator is very close to
that of the event-based MMSE estimator, at a much decreased

5 To implement this filter, we assume that the first L measurement are lost in
each period T ; when no measurement is available, only prediction is performed.
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communication burden (due to the fact that no feedback commu-
nication is required for predicted state when γk = 0 and no nor-
malizingmatrix needs to be transmitted to the scheduler at all time
instants). In this sense, the ML estimator has greater applicability
in this wireless communication scenario with satisfactory estima-
tion performance and potentially prolonged battery life.

6. Conclusion

In thiswork, an event-based state estimation problem is studied
in the framework of ML estimation. We show that the optimal es-
timator is parameterized by a time-varying Riccati equation asso-
ciated with an exponential computational complexity. A one-step
event-based estimation problem with reduced computation bur-
den is also studied and a recursive solution similar to the Kalman
filter with intermittent observations is obtained. Discussions on
the communication rate are also presented for this problem. An
alternative approach to reduce the computational burden of the
general event-based ML estimation problems is to consider the
formulation of receding horizon estimation (Alessandri, Baglietto,
& Battistelli, 2003; Goodwin et al., 2005; Muske, Rawlings, & Lee,
1993; Rao, Rawlings, & Lee, 2001), which points out the topic for
future research. Furthermore, if data is droppedwith probability p,
then the estimator can infer with probability 1−p that yk is within
a threshold and with probability p that yk is sent but lost, i.e., with
probability p that yk is out of the two bounds, which is also some
information. Our framework should be rich enough to deal with
this situation.
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Appendix. Proof of Lemma 5

From the definition of Ω⊥

0 , we have
Ω⊥

0

fzk(z)dz

=


z⊤Φ

−1
k z>r2

(2π)−
m
2 (detΦk)

−
1
2 exp


−

1
2
z⊤Φ−1

k z

dz

= (2π)−
m
2


p⊤p>r2

exp


−
1
2
p⊤p


dp

= (2π)−
m
2

2πm/2

Γ (m/2)


∞

r
vm−1 exp(−v2/2)dv

=
1

Γ (m/2)


∞

r2/2
tm/2−1 exp(−t/2)dt

=
Γ (m/2, r2/2)

Γ (m/2)
,

where the second equality is obtained by using p = Φ
−1/2
k z and

dp = (detΦk)
−1/2dz, the third equality is obtained by converting

the Cartesian coordinates p = [p1, p2, . . . , pm]
⊤ to polar coordi-

nates [v, θ1, θ2, . . . , θm−1]
⊤ and dp = vm−1 sinm−2 θ1 sinm−3 θ2 · · ·

sin θm−2dvdθ1dθ2 · · · dθm−1, the fourth one is obtained by using
t = p2/2 and the surface area formula for an (m− 1)-dimensional
unit sphere Sm−1 = 2πm/2/Γ (m/2), where Γ (m/2) :=


∞

0 tm/2−1

exp(−t)dt , and the fifth one follows from the definition of the in-
complete Gamma function Γ (a, b) :=


∞

b ta−1 exp(−t)dt .
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