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SATS: Secure Average-Consensus-Based Time
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Abstract—It is important and challenging to achieve secure
time synchronization in wireless sensor networks, which may
be deployed in a hostile environment under various malicious
attacks. The recently developed average-consensus-based time
synchronization protocol (ATS) is a promising alternative as it
does not depend on any reference node or network topology, which
makes it robust to different kinds of attacks, e.g., denial-of-service,
node destruction, etc. However, the in-network information fusion
nature of average consensus makes the ATS vulnerable to the
well-known message manipulation attacks. In this paper, we focus
on how to defend the ATS protocol in wireless sensor networks
under message manipulation attacks. We first investigate the
impact of message manipulation attacks over ATS, and derive a
necessary condition for ATS to converge. Then based on the ob-
tained insights, we propose a novel adjusting parameter checking
mechanism which exploits the two-hop neighboring information
to dynamically constrain the attackers. We further incorporate
all checking processes into the traditional ATS protocol to form
a secure average-consensus-based time synchronization protocol
(SATS). We prove that SATS guarantees the network time syn-
chronization with an exponentially converging speed.

Index Terms—Wireless sensor networks, time synchronization,
average consensus; security, message manipulation attack.

I. INTRODUCTION

T IME synchronization is a crucial requirement for various
applications in wireless sensor networks (WSNs), e.g.,

data aggregation, target tracking, scheduling and sensor nodes
cooperation [1]. Different protocols have been proposed for
time synchronization in various scenarios [2]–[4], [6]–[10].
Most of those protocols are developed under the assumption
of benign environments, which makes them vulnerable to fail
under various malicious attacks, e.g., denial-of-service (DoS)
[17], message-delay attack [22] and message manipulation
attack [24], etc.
Recently, the average-consensus-based time synchroniza-

tion protocols have been proposed for achieving global time
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synchronization in wireless sensor networks [5], [6], [8]–[14].
The principle of average consensus is that each node takes an
average of its own clock parameter and its neighboring ones
to drive the network to achieve a consensus reference clock
with an exponentially converging speed [9]. Since such mech-
anism does not rely on any specific reference node or network
topology and can be implemented in a purely distributed and
asynchronous way, it is inherently robust to certain kinds of
malicious attacks, e.g., denial-of-service [17], node destruction
[24], etc.
Unfortunately, the nature of average consensus makes the

corresponding protocols vulnerable to a severe kind of security
threat known as message manipulation, in which the external at-
tackers or in-network compromised nodes inject corrupted mes-
sages into the network. Although the message manipulation at-
tack is not new, its impact on consensus-based time synchro-
nization protocol is devastating since such corrupted informa-
tion will be propagated in an epidemic way. Therefore, the av-
erage consensus mechanism introduces new challenges in the
detecting and possibly utilizing the manipulated messages as it
permits all in-network nodes to actively utilizing the received
messages.
In this paper, we focus on defending the average-consensus-

based time synchronization (ATS) in wireless sensor network
under message manipulation attacks. Different from most prior
works which are mainly devoted to passively detecting and for-
bidding the malicious attacks [23]–[25], we propose a novel de-
fense mechanism to allow the safe nodes to pro-actively accept
and utilize the manipulated messages. The major contributions
of this work are summarized as follows:
1) To the best of our knowledge, this is the first work that in-
vestigates the impact of message manipulation attack over
ATS, and defends ATS against the message manipulation
attack.

2) We analytically and numerically investigate the impact of
message manipulation attack on the ATS protocol, and pro-
vide a necessary condition for ATS to converge under such
attacks.

3) Both hardware clock checking process and adjusting pa-
rameter checking process are proposed to defend against
the message manipulation for different protocol parame-
ters. We further incorporate these processes into the orig-
inal ATS to form a novel secure average-consensus-based
time synchronization protocol (SATS).

4) We prove that SATS guarantees the network time synchro-
nization with an exponentially converging speed.

This paper is organized as follows. Section II discusses re-
lated works. In Section III, the problem of secure time synchro-
nization is formulated. Section IV analyzes the performance
of ATS under message manipulation attacks while Section V
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presents the detailed SATS protocol. Simulation is presented in
Section VI. Finally, Section VII concludes the paper.

II. RELATED WORK

Secure time synchronization in WSNs has long been recog-
nized as a difficult and important problem [18]–[20].
Many efforts have been devoted to providing secure time

synchronization protocols in WSNs [21]–[28]. Most of these
existing protocols achieve secure time synchronization by de-
signing different safeguard techniques for transitional reference
node-based and tree topology-based protocols, e.g., TPSN
[3] and FTSP [4]. For example, Huang et al. propose several
techniques to reinforce the structure of classical protocol FTSP
to avoid attacks by malicious nodes [27]. Sun et al. propose a
secure and resilient time synchronization subsystem (TinySeR-
Sync) for WSNs running TinyOS, which uses authenticated
technique to overcome attacks by malicious nodes [21]. By
introducing high power nodes to form hierarchical topologies
and using public-key based broadcast authentication, Du et al.
achieve the secure time synchronization [31]. Benzaid et al.
in [29] propose a secure pairwise broadcast time synchroniza-
tion by using a public key cryptography based authentication
scheme proposed in [30]. Song et al. develop two approaches to
detect and accommodate a specific type of attack called delay
attack, i.e., outlier-based and threshold-based techniques [22].
Using threshold-based technique, Ganeriwal et al. in [23] pro-
pose a suite of secure pairwise and group-wise synchronization
protocol, which prevents the pulse-delay attack by checking
if the end-to-end delays exceed a prescribed threshold. The
authors in [25] tackle the man-in-the-middle attack, where the
attacker could prevent the proper operation of the protocol,
and present associated secure time synchronization protocol
for WSNs. By using Pairing and Identity-based cryptography,
a secure time synchronization protocol is proposed by Rahman
et al. to reduce the communication and storage requirements
for heterogenous sensor networks [28].
Most of existing works, however, only consider the compen-

sation of clock offset, and rely on certain reference clocks and
hierarchical structure. Therefore, they are more vulnerable to
single node failure and intelligent attacks. Recently, Hu et al.
propose a distributed and secure synchronization protocol, i.e.,
attack-tolerant time synchronization protocol (ATSP), which is
more desirable for WSNs [24]. Although ATSP is able to ac-
curately detect attacks and iteratively achieve synchronization
across the network in a fully distributed manner, the clock skew
errors are not compensated. Moreover, ATSP only promises
bounded ultimate synchronization error.
Compared with the aforementioned protocols, our pro-

posed SATS protocol has several advantages. First, SATS
compensates both skew and offset, and is a fully distributed,
asynchronous time synchronization protocol. Second, instead
of identifying and prohibiting attack nodes, SATS pro-actively
utilizes the corrupted messages from attack nodes. Third, we
prove that SATS also has an exponential convergence speed,
which is comparable with traditional ATS protocol.

III. SYSTEM MODEL AND PROBLEM SETUP

Consider a sensor network with safe nodes and
malicious nodes (attack nodes), where the attack

TABLE I
NOTATION DEFINITIONS

nodes can be external attackers or in-network nodes compro-
mised by attackers. These nodes are assumed to have
different and unique identity numbers, e.g., the safe and attack
nodes are indexed by and ,
respectively. Assume each node only knows whether itself is an
attack node without any pre-knowledge about other nodes.
Let be the graph of whole network, where
denotes the set of vertices and is the set of communi-

cation links. Similarly, let and
denote the graphs composed by the attack nodes and

by the safe nodes, respectively. Clearly, . For easing
the later presentation, we assume that the graph composed by
safe nodes is always connected. Consider the scenario that the
attack nodes in the network are sparse, and any two attack nodes
are thus assumed to be never neighboring with each other. We
assume that the communication between nodes is reliable, and
each node will send authenticated message so that the receiving
node can only read or copy the message without any modifica-
tion [19], [21], [23], [30]. Some important notation definitions
are given in Table I.

A. Clock Model

Different from [3] where only clock offset is considered, we
consider a more general hardware clock model as in [4], [16],
[24]. Specifically, the hardware clock reader of any node
at time is modeled as the following linear function

(1)

where is the hardware clock skewwhich determines the clock
speed and is the hardware clock offset. As proved in [8], the
hardware clock skews may be slightly different for each node
due to several reasons, e.g., imperfect crystal oscillators, am-
bient temperature or battery voltage and oscillator aging. How-
ever, they can still be modeled as bounded values [8], i.e.,

(2)

where is a constant.
It has been pointed out that and cannot be exactly calcu-

lated [9]. However, by comparing the local clock readings, the
hardware clock of node can be expressed as follows

(3)
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where is the relative hardware clock skew and
is the relative hardware clock offset, both of which

can be estimated based on the hardware readings of node and
[9].
The value of the hardware clock should not be adjustedmanu-

ally as the other hardware components may depend on a contin-
uously running hardware clock [8]. Hence, a logical clock value

is developed to represent the synchronized time of node
. It is calculated as a function of the current hardware clock,
which is given by

(4)

where and denote the logical clock
skew and the logical clock offset, respectively.
The communication delay is also assumed to be ignored in

this paper, which is the same as [8], [9], since we focus on
the secure average consensus-based time synchronization. Note
that Schenato et al. [9] pointed out that by utilizing the MAC
layer time-stamping [32] available in many sensor network de-
vices, the reading of the local clock at the transmitting
node and the reading of the local clock at the receiving
node are instantaneous, i.e., (see Section V.C in [8] for
a detailed description), thus the communication delay can be
safely assumed to be 0. If this is not the case, the average con-
sensus-based time synchronization protocols need to be modi-
fied to handle the packet delivery delay (see, e.g., [1], [6], [33],
[34] for transmission delay compensation). A brief discussion
on the effect of communication delay is provided in Section V-F.

B. Attack Model

Time synchronization protocols in WSNs are vulnerable to
different security attacks including replay attack, sybil attack,
message manipulation attack, delay attack and Dos attack, etc.
[18], [23], [28]. In this paper, we mainly focus on the following
attack.
Message Manipulation: includes dropping and transmitting

fake synchronization messages. For instance, an attacker pre-
tends as a safe node and corrupts the synchronization informa-
tion, e.g., hardware clock reading and adjusting parameters, and
broadcasts to its neighbor nodes. In this way, the attack nodes
can mislead their neighbor nodes and damage the synchroniza-
tion [24], [38], [39].
From the above definition of Message manipulation, it fol-

lows that the replay attack and delay attack can also be viewed
as the different kinds of message manipulation. For example,
replay attack can be modelled as adding a negative time to the
real message, while delay attack can be regarded as adding a
delay to the real message. In this work, we assume that the at-
tack node has the ability to freely manipulate and broadcast its
own hardware clock readings as well as all the adjusting param-
eters required in the ATS protocol.
It should be pointed out that there are some methods of signal

processing, e.g., belief propagation [34], maximum likelihood
estimation [35], [36], etc., which can be utilized to cope with
time synchronization when the attack strategies of message ma-
nipulation taken by attackers are to add some random variables
which follow certain distributions, such as Gaussian or expo-
nential distribution, which can be viewed as delay attacks. For
example, Kim et al. [33] combine Gaussian mixture Kalman

particle filter with an iterative noise density estimation proce-
dure to achieve robust time synchronization in the presence of
unknown network delay distributions. And, under exponential
delays, the maximum likelihood estimation proposed in [35],
[36] can handle both clock skew and offset compensation. In this
paper, the attackers can freely manipulate their message, which
renders the signal processing methods proposed in [33]–[36] in-
applicable.

C. Problem Setup

For each hardware clock , there always exists a pair of
adjusting parameters , such that

(5)

where is a common clock, which is given by

(6)

Thus, the goal of traditional time synchronization protocol is
to find the adjusting parameters and for such that
(5) holds, i.e., all nodes’ logical clocks are equal to the common
clock and hence achieve synchronization. However, in this
paper, aside from that all the safe nodes still aim to synchro-
nize their logical clocks, we will also have to take into account
that the attack nodes aim to destroy the time synchronization as
much as possible. Therefore, our goal is to design a clock syn-
chronization protocol to update the local adjusting parameters

for node , where is the local updating
times, such that

(7)

(8)

IV. UNDERSTANDING ATS UNDER ATTACKS

A. ATS Protocol

ATS is a typical average consensus-based time synchroniza-
tion protocol, which is proposed in [9]. The key idea of ATS is
to let each node update its adjusting parameters and ac-
cording to the messages received from its neighbor nodes. The
updates of and are respectively used to compensate the log-
ical clock skew and offset of node . Due to the space limitation,
we only present the detailed description of skew compensation,
and the offset compensation can be implemented in a similar
way.
For ATS, each node periodically broadcasts its clock infor-

mation, including the hardware clock reading and two ad-
justing parameters and , to its neighbor nodes with
a common period , where . As soon as node re-
ceives a packet from node at time , it will update as follows

(9)

where is a given constant and is the relative
skew estimation of node with regard to node at time , and
estimating the relative skew is given as

(10)
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where and are two pairs of hard-
ware clock readings of node and at time instances . It
follows from (10) that is a constant and satisfies .
In summary, once node receives time message from
node , its current clock is recorded and temporally stored as

. Clearly, if node receives the time message
from node for the second time, the relative skew

is obtained from (10) directly. After obtaining the relative skew
, the relative hardware clock offset is obtained from (3),

i.e., .

B. ATS Performance Under Attacks

Let node be an attack node which broadcasts fake messages
, and , where the values of these fake messages

can be arbitrarily chosen (e.g., constant data injection or random
data injection) by node . Following the standard procedures of
ATS, if a safe node receives such fake messages from node ,
it will still estimate the relative skew as

(11)

where is the relative skew in (10). Since node can
freely set and send out its hardware clock , it can control

without any constraint, e.g., if node chooses ran-
domly, then is also a random number. Therefore, based
on the fake messages, note will update its adjusting parameter
for logical clock skew as

(12)

Let denote the logical clock skew of each safe
node , and , which denotes the logical
clock skews of the entire network. By multiplying both sides
of (9) and (12) by , the updating process of the logical clock
skew for node can be expressed as

(13)

where

with . Thus, the updating process of all
safe nodes can be described as

(14)

where denotes the iterations, is a stochastic
matrix with , , and all
the other elements equal to 0 if node is updated at iteration
, and for each safe node and can be an
arbitrary real number for attack node which depends on its
attack strategy at time . Clearly, the skew compensation can be
finished if and only if satisfies the convergence conditions
of the discrete-time system (14). Then, a necessary condition
is provided to guarantee the convergence of the discrete-time
system (14), which is given by the following theorem.

Theorem 1: Consider the discrete-time system (14), if

where is a constant and , then it is necessary
that must satisfy

(15)

Proof: Taking limitation on both sides of (14), it yields

(16)

Since each is a stochastic matrix, thematrix
is still a stochastic matrix, whichmeans that
. Substituting the above equation into (16) leads to (15). The

proof is thus completed.
It is inferred from Theorem 1 that if there exist attack nodes

which are able to make (15) violated, the time synchroniza-
tion cannot be achieved by ATS protocol. Note that without
any secure add-on process for ATS, each attack node can vi-
olate (15) easily. For example, each attack node can send out
a manipulated logical clock skew ,
where can be freely determined by node . Specifically,
if , it is a constant data injection attack; if
is a random number, it is a random data injection attack. Then,
it easily makes or even makes this limitation
not exist.
In order to show the performance of ATS under message

manipulations, the following simulation is conducted on a ring
network with 30 nodes. Node 10 is assumed to be an attack node
in this network, whose attack strategy is that ,
where is decided by the attack strategy. Let be the
maximum difference between the logical skews of any two safe
nodes, i.e., . Obviously,
if tends to 0, skew compensation is finished.Fig. 1(a)
shows the trajectories of for the case that node 10 does not
make any attack and makes random data injection at-
tack ( is randomly chosen from ). It can be observed
that cannot converge to 0 anymore under the attack, and will
increase with the increasing number of attacks. Note that such
a deviation of clock skew would further seriously increase the
clock error among the sensor nodes when the time increases.
Based on the results of Theorem 1, we further simulate the time
synchronization performance of ATS under two different kinds
of attack patterns, which is plotted in Fig. 1(b). Specifically,
for strategy 1, the attack node randomly choose so that
its logical clock skew always keeps between the logical clock
skews of its two neighboring nodes, although it is still not a
legal updating process. For strategy 2, the attack node remains
to randomly select from . It is understood that
for strategy 2, still diverges. However, for strategy 1, it is
interesting to observe that the time synchronization is finally
achieved when the node’s attack is bounded by its neighboring
nodes’ values consecutively, although the converging time is
longer than that under no attacks.
Such an observation shows that it may not need to totally

identify and cancel all illegal updating for time synchronization.
Instead, we may be able to design certain protocols to constrain
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Fig. 1. The performance of ATS. (a) With and without attack. (b) Different
attacks.

the attack pattern of malicious nodes so that the time synchro-
nization can still be guaranteed.

C. Design Challenges

Based on the previous analysis and discussion, we summarize
the major design challenges for a secure consensus-based time
synchronization protocol as follows.
• More interchanging parameters: besides hardware clock
reading , more parameters, e,g., and are required for
ATS to compensate both clock skews and offsets. Hence,
an attacker can freely choose one of them to attack, and the
attackers have more opportunities to attack, which makes
the problem more challenging.

• No synchronized time information: even if there is no
concern about the limited resources, it is not an easy
problem. For example, if the protocol requires, node
records all its neighbors’ clock information in previous
updating period and also sends them together to node ,
then node may not be able to check whether node ’s
updating is exactly legal as node has no true information
about the order by which node received all neighboring
information.

• Limited resources: each wireless sensor node usually has
very limited resources, e.g., communication bandwidth,
storage and energy, which makes the design even more
challenging.

Despite the design challenges, we also observe the intuitions
for designing a secure consensus-based time synchronization
protocols from our previous analysis. Specifically, from The-
orem 1 and the simulation results shown in Fig. 1(b), we find
that it may be unnecessary to keep all parameters’ updating ex-
actly the same as the average consensus algorithm. Instead, if we
can control the attack patterns, which corresponds to the in
(15), we may still be able to guarantee the convergence of time
synchronization throughout the network. In the following sec-
tion, we will explicitly present our lightweight design based on
such intuitions, and prove the convergence.

V. MAIN DESIGN OF SATS

Since the updating process of ATS mainly includes two kinds
of parameters, the hardware clock reading and the adjusting
parameters for logical clock, i.e., for skew and for offset,
our SATS will basically consist of two checking processes
which aim to guarantee that the provided parameters from the
neighboring nodes are informative enough for the convergence
of ATS algorithm.

A. Pseudo-Periodic Broadcast

To simplify the statements, we assume that each node pe-
riodically transmits a packet to all of its neighbor nodes under
a common period based on its own hardware clock, i.e., the
broadcast instants are defined as or equiv-
alently . Note that the real broad-
casting period for node is , which will be usually dif-
ferent for each node due to the difference of . Therefore, such
a broadcasting mechanism is also referred as pseudo-periodic
broadcast.
Since satisfies (2), we have , which is

valid for any node. Hence, if node has received the message
from its neighbor node at its hardware time , it can be
guaranteed that node will receive the next message from node
within . Such a bounded time period, makes it

possible for each node to collect the information from all its
neighboring nodes within a constant duration based on its own
hardware clock. It should be pointed out that the bounded time
is important for later logical clock checking, as it is used for

preventing the attack nodes using out-of-date receiving infor-
mation to cheat.

B. Hardware Clock Checking Process

Since the hardware clock is linear, it is not difficult to check
whether the neighboring node has sent a legal local hardware
clock reading based on the historical messages. Specifically, let

be the one-step relative skew estimation of node for
node at the -th receiving round, where can be
calculated by

(17)
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Then, by comparing the two consecutive estimated relative
hardware skews and , node can determine
whether the hardware clock reading from node is legal or not,
i.e., the hardware clock reading is legal if and only if

(18)

and therefore drop the illegal messages. Based on such hardware
clock checking process, it can be guaranteed that all accepted
hardware clock readings of each node (even the attack nodes)
will remain as a linear function of the real time. Such mecha-
nism guarantees that the estimated relative skews, , remain
constant, which means the attack nodes will have no chance to
inject corrupted hardware clock readings into the messages.

C. Logical Clock Checking Process

Different from the hardware clock readings, there is no simple
changing pattern for the adjusting parameters for the logical
clock, which makes it intrinsically difficult to prevent manipula-
tion completely. However, as shown in Section IV, we may still
be able to achieve time synchronization as long as the received
adjusting parameters are informative enough which means they
are properly restrained.
In this part, we first propose a checking process for the log-

ical clock updating so that the attack node can only send out
its own adjusting parameters with dynamic upper and lower
bounds, where the dynamic upper and lower bounds depend
on the larger and smaller logical clocks among its neighboring
nodes, respectively. Otherwise the parameters will never be ac-
cepted by any safe node. And, it will be easy for the safe nodes
to satisfy such a checking process due to the characteristic of
average consensus. With such properties, in later part, we prove
that the overall SATS guarantees the convergence of all logical
clocks throughout the network.
Let be the information set of node that it needs to send

to its neighbor node , which is given by

where is the ID number, is the hardware clock reading,
and are adjusting parameters, is the relative skews, and

is one historical pair of hardware clock reading
which is stored in node . Furthermore, let be the common
information set of an arbitrary node , which consists of all

for , i.e.,

After the hardware clock checking process isfinished, each node
has obtained for each creditable neighbor node , and the
associated is also stored in the node , where
is the time at which the node receives the latest message from
node . Clearly, once successfully accepting credible messages
from its neighboring nodes, node will instantly update its own
local information set.
Now, we introduce the message content that each node

will broadcast, which mainly consists of three parts. For each
node , except its own common information set , the
message content also includes and , which are
selected from the received common information sets

and . Note that different from traditional ATS pro-
tocol, besides its own clock information, it further requires the
clock information of its two neighboring nodes. Specifically,

is the clock information of the neighbor node with
the smaller logical clock skew than node while is
the clock information of the one with the larger logical clock
skew than node (If all the logical skews are the same then
we compare the logical offsets). For statement clarification,
for the receiving node , we simply denote as the node with
the smallest logical clock skew, and as the node with the
largest one1. Therefore, once successfully accepting credible
message from a neighbor node , node will update
and based on , such that is always the node
with the smallest logical clock skew, and is always the node
with the largest one. For example, if node successfully accepts
credible messages and the logical clock skew of node
is less than its current ’s logical clock skew, then the node
will replace current , and then is changed as .
It follows from the above discussion that the information for

each node broadcasting includes , and .
Hence, one can infer that the information stored at each node
includes the relative skew , one historical pair of hardware
clock reading for each neighbor ,
and the information sets and for neighbor
nodes and , respectively.
Then, for the adjusting parameter checking process, each safe

node will directly check whether the received message contains
such three parts of information. For example, if node receives a
message from node , then in such message, node must provide
the original information of its two neighboring nodes, which
have larger and smaller logical skews than node itself. Oth-
erwise, node will not accept the message from node . The
detailed logical clock checking process is given as follows.

Logical clock checking process: suppose that node re-
ceives and , from node , then node
checks the following four conditions,

. .

. and , where
.
. .
. , where is defined as

(19)

where .
If conditions , and hold, then the logical clock up-

dating parameter is credible for node ; if conditions ,
and hold, the logical clock offset updating parameter

is credible for the node .
Lemma 1: If the conditions and hold, then and

for node broadcast are received from two different
nodes and , and both of them are received in the time in-
terval , i.e.,

(20)

Proof: The proof is provided in the Appendix A.

1Node is allowed to select another pair of nodes with larger and lower logical
skew, respectively, which will not affect our convergence proof.
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In light of this result, this process guarantees that node ’s
logical clock is bounded by its two neighbor nodes. Specifically,
1) The is credible for the node if it guarantees that the
logical clock skew of at time is bounded by the logical
clock skews of two different neighbor nodes nodes and
, i.e., , where , and

satisfy (20).
2) If holds for , then the parameter

is credible for the node when it guarantees that the
logical clock offset of at time is bounded by the logical
clock offsets of two different neighbor nodes nodes and
, i.e., , where , and

satisfy (20).
There are two key points within the logical clock checking

process. One is that node uses the information sets
and of two different nodes and which cannot be
manipulated by node , to check the information set cre-
ated by node . The other is that the information and

transmitted by node should be lately created by

and in the time interval , respectively, which is
guaranteed by Lemma 1.
Note that Yan et al. in [38] considered the security problem of

consensus-based spectrum sensing in cognitive ratio networks.
The authors proposed a promising distributed hash-based veri-
fication mechanism to ensure that each neighbor node performs
trustworthy state update. The proposedmechanism uses the con-
vergence property of the consensus algorithm to bound the ma-
licious data and utilizes two-hop neighbor nodes date to make
the verification, which is the same as SATS. However, it could
not be used to solve the secure time synchronization problem
considered in this paper directly for the following two reasons.
First, the mechanism proposed in [38] is based on synchronous
average consensus, while ATS is based on an asynchronous con-
sensus where nodes have no access to synchronized time infor-
mation. Second, since different nodes are with different hard-
ware clocks, each safe node needs to verify whether the infor-
mation of two-hop neighbors are created in the latest time to
avoid being attacked by the attackers using earlier neighbors’
information.

D. SATS Protocol

We describe the detailed SATS protocol in Algorithm 1,
which is based on the average consensus concept with the
combination of our proposed hardware clock checking and
logical clock checking processes.

Algorithm 1 Secure Average Time Synchronization (SATS)

Initialization:
1) Let the initial adjusting parameters of each node be

and for , and give the common
broadcast period to each node.
Iteration:

2) If the current hardware clock reading of node
satisfies , then go to next step.

3) Compute and , if ,

(21)

and if ,

(22)

4) Compute and by(19), if ,

and if ,

5) Create the common information set , and then
broadcast a packet, including , and

, to the neighbor nodes.
Checking after Receiving a Packet:

6) If node receives a packet from node at time , it records
its local hardware clock reading and builds a pair of
hardware clock readings .

7) Do hardware clock reading checking process: if the
hardware clock reading is legal, delete earlier stored
message for and go to the next step.

8) Do logical clock checking process: if , and hold,
then is legal; If , and hold, then is legal.
Average Consensus:

9) If is legal, then

(23)

If is legal, then

10) Update and based on the received
.

In step 3 and step 4, before node intends to broadcast, it will
update its logical clock (include logical skew and offset) when
it has the largest or smallest logical clock larger among all the
neighbor nodes, such that it has the same logical clock as
or . These two steps guarantee that the logical clocks of safe
nodes are always bounded by two neighbor nodes, and thus can
pass the logical clock checking process.

E. Convergence Analysis of SATS

In this part, we analyze the convergence of SATS. The de-
tailed proofs will be provided in the Appendix B.
Theorem 2: Through the SATS protocol depicted in Algo-

rithm 1, the logical clock skew through the network will con-
verge to a constant value exponentially, i.e.,

exponentially fast, where .
Similarly, for the logical clock offset compensation, we have

the similar result. Therefore, the convergence of SATS is imme-
diately obtained.
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Theorem 3: Through the SATS protocol depicted in Algo-
rithm 1, the difference between any two safe nodes will con-
verge to 0 exponentially, i.e.,

exponentially fast for .
From the above theorem, it follows that by SATS the logical

clocks of safe nodes will exponentially converge, which has the
same convergence speed as the traditional ATS proposed in [9].
It also note that in order to guarantee all the received messages
are informative even under malicious message manipulation at-
tacks, each safe node will have to maintain a larger local infor-
mation sets , and , and broadcast them
to the neighbor nodes, which increases the storing and commu-
nication costs. In other words, security does come with a price.

F. Communication Delay and Attack Cooperation

In this subsection, we will discuss the performance of SATS
with the consideration of the communication delay and attack
cooperation, respectively. Taking communication delay into
consideration, the hardware clock readings ,
for each node received from neighbor node will satisfy

where denotes the communication delay which satisfies
, and is the upper bound of the communica-

tion delay. Then, each one-step relative skew estimation
based on (17) will fluctuate and not equal to a constant. Hence

(24)

holds for . It will render (18) false, i.e., none of
hardware clock readings can pass the hardware clock checking
process. Therefore, (18) is replaced by

(25)

According to (25), it guarantees that the hardware clock read-
ings of all the safe nodes can still pass the hardware clock
checking process when communication delay is considered.
Meanwhile, under the constraint of (25), each one-step rela-
tive skew estimation fluctuates with a constant ,
and the fluctuation is bounded by . It follows that the
hardware clock readings received from neighbor nodes are
approximately linear functions, which can restrain the attack
nodes from freely modifying hardware clock reading to attack.
Moreover, by setting such that the fluctuation bound

is small enough, we can further counteract the effect of

communication delay and can restrain the attack nodes better2.
Similarly, for the logical clock checking process, to ensure
that the safe nodes can pass this process, we need to revise the
condition as follows

where .
By similar analysis of condition in Lemma 1, we can infer

that condition also ensures that the information and
are latest received by node from and in the time

interval , respectively. After the above revi-
sions for hardware and logical clock checking processes, none
of the safe nodes will be viewed as attack nodes and isolated
by their neighbor nodes, while to avoid being detected by the
safe nodes, the hardware clock readings for attacker broadcast
should still be approximately linear functions of real time .
Hence, by SATS, the time synchronization can also be achieved
when communication delay exists. However, the synchroniza-
tion accuracy is affected by the communication delay, and the
detailed analysis will be given in the simulation section.
Note that for SATS, each node can pass the logical checking

process only when its logical clock is not less than the smallest
logical clock or greater than the largest logical clock among its
neighbor nodes (not include its own logical clock). That is, by
utilizing the logical checking process, each attack node should
maintain its logical clock between its neighbor nodes’ logical
clocks to avoid being detected and isolated by safe neighbor
nodes. If the attack nodes cannot collude with each other, i.e.,
each attack node cannot utilize the attack information of any
other attacker to attack, every attack node should ensure that
the message of itself for broadcast can pass both the hardware
and logical clock process. Otherwise, the attack node which is
neighboring with the safe node will be detected and isolated
by the safe neighbor nodes, i.e., all the safe nodes will not use
the attack nodes’ information for clock updating. And, if the
clock information of every node can pass the hardware checking
process and logical checking process, the time synchronization
of all safe nodes can be achieved. Thus, the assumption that two
attack nodes are never neighboring with each other can be re-
laxed to that the attackers cannot collude with each other to at-
tack. Many existing works on secure time synchronization, e.g.,
[21]–[26], assumed that attackers are not able to collude. If the
attackers can cooperate with each other, one attack node can
always broadcast incorrect clock information, i.e., or

), to its neighboring attack node , and help node with
illegal adjust parameters to pass the logical checking process,
so that the convergence of SATS cannot be guaranteed. Since
each attack node does not know the identity (attack or safe) of
the other nodes, it should inform its neighboring attack nodes
of its attack identity before cooperation. For SATS, each attack
node can inform its attack neighbor nodes of its attack identity
by broadcasting incorrect clock information such that this in-
formation cannot pass the checking processes of these neighbor

2A larger will decrease the convergence speed of the algorithm, which ren-
ders a tradeoff. This is another interesting problem, and will be left as our future
work.
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Fig. 2. The performance of SATS in a ring network under cooperation attacks.

nodes. However, it is difficult to be realized without being de-
tected by the neighboring safe nodes, except all its neighboring
nodes are attack nodes. If there are attack nodes not neighboring
with any safe nodes, the problem will become much more chal-
lenging as the attack nodes can realize cooperation attack and
disrupt time synchronization (see the following example as il-
lustration), which is beyond the scope of the current paper and
will be pursued in our future research.
Example 1: Consider the same network scenario as in Fig. 1.

Assume that attack node 10’s neighbor nodes 9 and 11 are also
attackers and , i.e., attack node 10 is not neigh-
boring with any safe nodes and with maximum hardware clock
skew (i.e., with maximum initial logical clock skew). The at-
tack strategy for node 10 is that , where is
randomly selected from . According to SATS, although
nodes 9 and 11 can easily obtain the attack identity of node 10 as
its logical clock under the attack strategy cannot pass the logical
clock checking process of them, they still use node 10’s infor-
mation for their clock updating and use as ( )
for them, i.e., nodes 9 and 11 cooperate with 10 to attack. Then,
as shown in Fig. 2, SATS cannot converge and the time synchro-
nization cannot be achieved.

VI. PERFORMANCE EVALUATION

This section conducts extensive simulations to evaluate our
design under different network settings as well as attack pat-
terns, and some insights of the performance are revealed.

A. Simulation Setup

Throughout the simulation examples, we assume the wire-
less sensor nodes are deployed over a two-dimen-
sional square area. Except where otherwise specified, the default
number of sensor nodes is 50 where the communication range
of each node is set to be 30 meters. We set
and , and for each node , let the hardware clock skew
be randomly selected from the interval and the hard-
ware clock offset from the interval . For the average
consensus process in SATS, let as in [9]. Let each
attack node follow to manipulate its clock

compensation parameters for . We mainly con-
sider two typical kinds of manipulations, i.e., random data injec-
tion with randomly selected in , and constant data
injection with . Since the clock offset compensation
is implemented in a similar way as the skew compensation, we
will mainly show the evaluation of the skew compensation. In
order to show the synchronization accuracy, we define the max-
imum skew error among all safe nodes, i.e.,

Note that even a small skew error can lead to an increas-
ingly larger logical clock difference as the time increases.

B. Sats vs Traditional ATS Under Attacks

In this part, we compare our SATS protocol with traditional
ATS protocol [9] for various system settings.
First, consider the ring network with 30 nodes. If all nodes are

safe nodes, i.e., there is no attack within the ring network, we
compare the performance of SATS and ATS, which is shown in
Fig. 3(a). It is observed that SATS converges at the same speed
as ATS in the safe environment which is also supported by The-
orem 2. Then, we consider the situation where node 10 initiates
the random data injection attack from the very beginning, and
compare the time synchronization performance of SATS and
ATS in Fig. 3(b). It can be seen that the skew error does increase
for ATS, making the unbounded logical clock error within the
network, which has also been proved by the necessary condition
provided in Theorem 1. On the other hand, our proposed SATS
protocol still ensures the exponential convergence of clock skew
error as proved by Theorem 2.
Furthermore, consider a random graph with and
, which means that there are 50 safe nodes and 4 malicious
nodes in the network. Fig. 4(a) shows the performance of SATS
and ATS when the attackers do not manipulate messages. Also
note that SATS converges almost the same fast as ATS in this
safe environment. The performance of SATS and ATS under
random data injection attack is shown in Fig. 4(b), which again
indicates that SATS is resilient under the message manipulation
attacks.

C. Performance of Sats Under Different Attack Parameters

In this part, we show the performance of SATS under var-
ious number of attack numbers, attack strategies, and attack
frequencies.
We first vary the number of attack nodes, and show the per-

formance of SATS for both ring and random topologies, which
are depicted in Fig. 5. Note that for comparison, we also add
the performance under no attacks as the reference line. It can
be observed that for both kinds of topologies with various at-
tacker numbers, SATS guarantees that the network clock skew
error converges exponentially. Another interesting observation
is that with the increasing number of attack nodes, the con-
verging speed appears to be even faster. The reason is that, in-
stead of rejecting all messages from attack nodes, our SATS al-
lows the safe nodes to accept the informative clock messages
from attack nodes. Such a novel mechanism in fact utilizes the
attack nodes to help increase the network connectivity and de-
liver informative clock information, therefore improving the
convergence speed of the whole network. Moreover, when the
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Fig. 3. The performance of ATS and SATS in a ring network (a)Without attacks
(b) Random data injection attack.

percentage of attackers is increasing, the convergence speed
of SATS will not change notably. For example, based on 50
tests, in the random network, when the percentage of attackers
are 0%, 10%, and 20%, the average number of broadcast of
all safe nodes are respectively more than 853, 628 and 665 to
ensure , and 1493, 1311 and 1230 to ensure

.
We also compare the performance of SATS under different at-

tack strategies, i.e., constant data injection and random data in-
jection. As shown in Fig. 6(a), for both attack strategies, SATS
achieves network time synchronization rapidly. Meanwhile, it
can be seen that the convergence speed under random data in-
jection attack is slightly faster than that under constant data in-
jection attack. The underlying reason is that: with a higher prob-
ability the random data injection will providemore helpful clock
information to accelerate the convergence. The performance of
SATS under different attack frequencies is plotted in Fig. 6(b),
where the attack strategy is random data injection. It is observed
that SATS can defend different attack strategies as well as dif-
ferent attack frequencies.

D. System Insights

In order to further investigate how SATS utilizes the mes-
sages from attack nodes, we consider the random graph with

and , where the attack nodes conduct random
data injection attack. We compare the performance of SATS for
two scenarios. For the first scenario, we normally conduct SATS

Fig. 4. The performance of ATS and SATS in a random network (a) Without
attacks (b) Random data injection attack.

over the network without advanced knowledge about the attack
nodes. However, for the second scenario, we assume all attack
nodes have been identified, and we ignore any message from
those attack nodes. From Fig. 7(a), it can be observed that the
converging speed with the messages from attack nodes is in-
deed faster than that without utilizing any message from attack
nodes. We also plot the accumulative number of accepted mes-
sages that are omitted from attack nodes in Fig. 7(b). It can be
seen that SATS does utilize the corrupted messages from the at-
tack nodes at the first stage to accelerate the converging speed.
And once the time synchronization has been achieved, almost
no more corrupted message will be accepted by the safe nodes.
Then, we further investigate how the communication delay

affects the synchronization accuracy of SATS, and we also con-
sider the random graph with and , where the
attack nodes conduct random data injection attack. We assume
that both the hardware and logical clock checking processes
have been revised as described in Section V-F, and the initial
clock parameters setting are the same as the above simulations.
The performance of SATS under communication delay with dif-
ferent upper bounds (parameter in (25)) is given in Fig. 8. It is
observed that under communication delay with different upper
bounds setting, SATS can still converge with exponentially fast
speed, and the convergence speed is affected slightly by the
delay upper bounds. However, as pointed out in Section V-F,
the synchronization cannot be achieved completely by SATS
when there are communication delays. As shown in Fig. 8(b),
the synchronization accuracy will increase with the upper bound
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Fig. 5. The performance of SATS with different number of attacks (a) In ring
network (b) In random network.

of communication delay , e.g., the maximum skew error
is about when , and is about when

. Thus, SATS is robust against the communication
delay, and the synchronization error can achieve the same order
as the upper bound of communication delay. Additionally, there
exist some communication delay compensation techniques pro-
posed in, e.g., [1], [3], [33], [36], [37], which can be utilized to
handle the communication delay for SATS, such that SATS ob-
tains a better performance.

VII. CONCLUSIONS

In this paper, we have studied how to defend the average con-
sensus-based time synchronization protocol in wireless sensor
networks under message manipulation attacks. Through both
theoretical analysis and simulations, we show that traditional
ATS is highly vulnerable to the message manipulation attacks.
Then, we propose the hardware clock checking process for
avoiding the hardware clock reading corruption of attackers,
and the logical checking process for dynamically constraining
the attacker’s logical clock corruption. We incorporate such
checking processes into the traditional ATS to establish the
SATS protocol, under which, both the skew and offset com-
pensation converge exponentially. Our analysis and simulation
results show that with SATS the attackers may unconsciously
help to increase the time synchronization speed of the network.

Fig. 6. The performance of SATS (a) Different attack strategies (b) Different
attack frequencies.

APPENDIX A
THE PROOF OF LEMMA 1

Proof: Note that the information sets and
are created and authenticated respectively by nodes and ,
which can not be modified by the node . Hence, condition
ensures that nodes , and are different from each other.
Node will indeed think that the hardware clock reading
in the information set has passed the hardware clock
checking process of node for , thus it will use
as a linear function of , i.e., . Hence, from

, where , and are in
, we have . It follows from the defini-

tions of that Since ,
. Meanwhile, should pass the

hardware clock checking process, which leads to that is a
linear function, thus (20) holds from condition . Hence,
and ensure that and are received by node
from two different neighbor nodes and in time interval

.

APPENDIX B

The Proof of Theorem 2: Two Lyapunov functions are pro-
vided to prove the convergence of SATS. The first one is a gen-
eral Lyapunov function which is given by

(26)
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Fig. 7. The insights of SATS (a) Performance of SATS (b) Credible attackers’
messages.

where , and
. The second one is a new Lyapunov function,

which is defined as

(27)

where when and otherwise . In-

tuitively, denotes the maximum difference among all
safe nodes’ logical clock skews within time interval .
Consider that the logical clock skew vector is updated

by SATS. Two important lemmas of and are
given as follows. The following lemma is given to guarantee
that is a decreasing function and is bounded
by .

Lemma B.1: By SATS, is a non-increasing func-
tion and

(28)

Proof: Let node be an attack node. In SATS, a safe node
will use the information received from node to update its clock
only when the following inequality holds

. Meanwhile, there are not any two attack nodes neigh-
boring with each other, thus and should be the safe nodes. It
follows that . Note that the clock update

Fig. 8. The performance of SATS under different communication delay bounds
(a) 0 to 3000 (b) 2000 to 3000.

of each node in SATS is an averaging process when the node
receives information from neighbor nodes. Thus, we have

(29)

for the safe node after each update at time . Clearly, (29)
also holds when node is a safe node. Hence, (29) holds for any
safe node after each update, which means that is a
non-increasing function and (28) holds.
In the next lemma, it is guaranteed that a strictly de-

creasing function within a certain time interval.
Lemma B.2: By SATS, there exists such that

(30)

Let be a function of variables and , which
satisfies , where

, andwhere and is a constant which
is the most updating times among safe nodes in time interval

. This function is provided to depict the average updating
process of SATS, and used as an auxiliary function which helps
to prove the monotonicity of the function .
Divide time interval into ,

. We first prove that after nodes
and have comunicated with each other, the values of both
and can be expressed as the function defined above. For
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, assume that safe node has received mes-
sage from its safe neighbor node at time before its broad-
casting at time . It follows that

(31)

and

(32)

Note that node receives information from any other neighbor
node at time for , it has

(33)

Since in (33) satisfies , combining
(31) and (33), it yields that there exists
such that

(34)
for , where and is the times of
update of node in time interval . From (32) and (35),
after broadcast of node at time , we have

where and . Mean-
while, node will update its clock based on the information re-
ceived from node , and then

where and , and

Then, we prove that the logical clock skews of all safe nodes
can be expressed as the function at time for . As the
communication is reliable, nodes and can communicate with
each other successfully in any time , where .
It follows that

(35)

and

(36)

for and (where , and in
may be different for different nodes but should satisfy

and ). It means that
for both nodes and , we always have (35) and (36) for

. Thus, after time , there are at least two safe nodes
with (35) and (36). Note that every node can receive informa-
tion successfully from safe neighbor nodes in any time interval

, and the updating of each safe node is an aver-
aging process. Hence, for or ’s safe neighbor node , if it
updates based on received message from node or at time

for , then it has (35) and (36) for when .
Note that node can receive information successfully from the
node or in time interval , which means that
there are at least three safe nodes with (35) and (36) after time

. Similarly, it can follow that there are at least safe

nodes with (35) and (36) after time , namely, (35)
and (36) hold for all safe nodes.
Therefore, for and ,

where . It follows that

which completes the proof.
Combining Lemma B.1 with Lemma B.2, it yields that

will exponentially converge to 0, thus Theorem 2 is proved.
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