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a b s t r a c t

We consider periodic sensor scheduling in this paper. A system is observed by two sensors. The two sen-
sors communicate their datawith a remote state estimator via a bandwidth-limited networkwhich allows
only one sensor to send its data at each time. We derive the optimal duty cycle pair and a corresponding
sensor data schedule to minimize the trace of the average estimation error covariance. Simulations are
provided to demonstrate the results.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Wireless sensor networks (WSNs) have found awealth of appli-
cations and have attracted attention from both industrial and aca-
demic communities [1]. In real applications, network bandwidth
and sensor energy are often limited, whichmakes it difficult to col-
lect data at every time step. Thus, one should properly choose a
subset of sensors to use at each time step, which gives rise to the
sensor scheduling problem.

Generally speaking, sensor scheduling is often non-convex and
has integer constraints and thus is a difficult problem.Many strate-
gies have been proposed recently. A single-step sensor scheduling
problem was studied in [2] using the convex relaxation method.
The corresponding multiple-step correlated problem was solved
in [3] using reweighed L1 approximation to relax the non-convex
problem to a convex one. The stochastic sensor selection problem
for a network with the star topology was considered in [4]. The
work [5] introduced a time-varying opportunistic protocol tomax-
imize the sensor network lifetime which depends on the channel-
state information and the residual energy information. Similar
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problem has been considered in [6], where the sensor scheduling
problem was formulated as a stochastic shortest path Markov de-
cision process. More related works can be obtained from the refer-
ences therein.

This work is mostly based on [7] where the authors considered
sensor scheduling under the constraints of limited sensor energy
and network bandwidth. Under some mild assumptions, they pre-
sented an optimal periodic sensor schedule which minimizes the
average estimation error. There is great practical and theoretical
utility in considering a periodic scheme. The theoretical utility rests
in the fact that it explicitly reveals the optimal scheduling scheme.
The practical utility is that it allows an efficient implementation.
Though simple and easy to implement, their result requires that
the sum of the upper bounds of the sensor duty cycles equals 100%
exactly, which is quite restrictive. Bound of a duty cycle can be con-
sidered as the energy constraint for each sensor or can reflect the
cost associated with each use of the sensor. For example, consider
estimating the state of a process (e.g., temperature, humidity, etc.)
using two sensors. The first one is an expensive device and it can
only be used for no more than 30% of the whole time horizon. The
second one is cheap and it can be used whenever needed. There-
fore the upper bounds of the two sensors add up to 130%. Since
different duty cycle pairs may lead to different optimal estimation
performances, it is then important to seek the optimal duty cycle
pair.

In this paper we extend the periodic scheme in [7] to the case
when the sum of the upper bounds of the sensor duty cycles is
greater than one. The main contributions of our work consist of
the following.
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Fig. 1. System block diagram.

(1) We derive the optimal sensor duty cycle pair for a general
higher-order system, which enables us to use the scheme pro-
posed in [7] to construct the optimal periodic sensor schedule.

(2) We establish the relationship between the scheduling rule and
the system parameters, which is novel and not shown in [7] as
their optimal schedule only depends on the upper bounds of
the sensor duty cycle.
The remainder of the paper is organized as follows. In Section 2,

the problem is formulated. Section 3 presents some preliminaries.
Section 4 introduces the main result. Section 5 provides two illus-
trative examples. Some concluding remarks are drawn in Section 6.

Notations. E is themathematical expectation.Z+ is the set of pos-
itive integers. Sn

+
is the set of positive semi-definite matrices with

dimension n by n. Let X, Y ∈ Sn
+
, we say X ≤ Y if Y − X ≥ 0.

Tr(X) is the trace of X . Surely Y − X ≥ 0 implies Tr(Y − X) ≥ 0.
(S1)p(S2)q means S1 is scheduled p times followed by S2 that is
scheduled q times. For functions f , g : Sn

+
→ Sn

+
and∀t ∈ Z, define

f ◦ g(X) , f (g(X)), g [0](X) , X and g [t](X) , g ◦ · · · ◦ g  
t

(X).

2. Problem setup

2.1. System models

Consider the following system (Fig. 1):
xk+1 = Axk + wk,

y1k = C1xk + v1
k , (1)

y2k = C2xk + v2
k ,

where xk ∈ Rn is the state vector, noise ωk ∈ Rn, vi
k ∈ Rmi , (i =

1, 2) and initial state x0 are zero-mean, Gaussian vectors with co-
variances Q ≥ 0, Ri > 0 and Π0 > 0, respectively. We assume
x0, {ωk}, {v

i
k} are uncorrelated, the pair (A,

√
Q ) is stabilizable and

(A, [C1; C2]) is detectable.
Following [7], denote yik1:k2 , {yik1 , . . . , y

i
k2

} as the measure-
ments collected by sensor i (abbreviated as Si) from time k1 to k2.
Suppose at time k, Si is scheduled to communicate with the remote
estimator and it sends z ik(D) , yik−D+1:k, whereD is a given number
(to be specified later). In other words, Si sends the most recent D
measurements in a single packet to the remote estimator.1 Based
on the received measurements, the estimator calculates the min-
imum mean-squared error estimate x̂k(D) and the corresponding
error covariance Pk(D) as follows:
x̂k(D) , E[xk|all measurements received up to k],
Pk(D) , E[(xk − x̂k(D))(xk − x̂k(D))′].

At each time step, due to the limited network bandwidth, at
most one sensor is able to communicatewith the remote estimator.
Let γ i

k = 1 indicate that Si is used at time k and γ i
k = 0 otherwise.

1 In the WSNs used nowadays, sensors are equipped with some capability of
memory. Specifically, as mentioned in [8], the minimum size of an Ethernet packet
is 72 bytes, while a typical data point will only consume 2 bytes.
2.2. Problem of interest

As illustrated in the introduction, in this paper we consider a
periodic schedule θ ∈ Θ with period N(θ). Define the duty cycle
of each sensor under θ as

Ji(θ) ,
1

N(θ)

N(θ)
k=1

γ i
k(θ), (i = 1, 2). (2)

We assume each sensor is scheduled at least once in each period;
thus Ji(θ) > 0, i = 1, 2. The trace of the average estimation error
covariance at the estimator side is defined as

Pave(D, θ) , Tr


lim
T→∞

1
T

T
k=1

Pk(D, θ)


. (3)

In this paper,we are interested in the following problem in the case
of Ψ1 + Ψ2 ≥ 1.

Problem 2.1.

min
D,θ∈Θ

Pave(D, θ)

s.t. γ 1
k (θ) + γ 2

k (θ) ≤ 1,

J1(θ) ≤ Ψ1, (4)
J2(θ) ≤ Ψ2,

where Ψi is the upper bound of the duty cycle of Si, which can be
imposed by, for example, the energy constraint or the operation
cost for Si. We assumeΨi is a rational number in this paper for sim-
plicity.2 The problemwhen Ψ1 +Ψ2 = 1 and D is sufficiently large
has been fully solved in [7]. In this paper we consider a more gen-
eral case when Ψ1 + Ψ2 ≥ 1. The case Ψ1 + Ψ2 < 1 is also inter-
esting, but is much more challenging to solve and will be pursued
in our future work.

Intuitively, there are numerous combinations of (J1, J2) that
meet the constraint. The task is to find the optimal pair (J⋆1 , J

⋆
2) for

minimizing Pave(D, θ). It will be shown in Section 4 that the opti-
mal duty cycle pair and hence the optimal scheduling rule depend
on the system parameters. This relationship is not shown in [7] for
the case of Ψ1 + Ψ2 = 1.

Before proceeding, we introduce the recursive estimation algo-
rithm, based on which is our periodic scheduling scheme.

3. Preliminaries

Calculating x̂k(D, θ) and Pk(D, θ) is standard using the Kalman
filter and canbe found in [7]. In the sequel,wewill focus on Pk(D, θ)
and the average cost Pave(D, θ). Let

h(X) , AXA′
+ Q ,

g̃i(X) , X − XC ′

i (CiXC ′

i + Ri)
−1CiX, (i = 1, 2),

g̃(X) , X − XC ′(CXC ′
+ R)−1CX,

where C = [C1; C2] and R = diag(R1, R2). Denote

g1 , g̃1 ◦ h, g2 , g̃2 ◦ h, g , g̃ ◦ h.

Then h(X) corresponds to the time update of estimation error co-
variance and gi(X) stands for the measurement update when the
data of Si are used. Similarly, g(X) is adopted when the informa-
tion of both sensors is available.

2 When Ψi is irrational, one can easily obtain an approximate solution that is
arbitrarily close to the true optimal one by replacingΨi with a rational number that
is sufficiently close to Ψi .
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Since (A,
√
Q ) is stabilizable and (A, C) is detectable, the

steady-state estimation error covariance when both sensors are
used is given by the unique solution of the equation X = g(X), i.e.,
P = g(P), (P ≥ 0) [9]. For any 0 ≤ X ≤ Y and 1 ≤ t1 ≤ t2, we
have the following inequalities whose proofs are direct and thus
omitted:

h(X) ≤ h(Y ), g(X) ≤ gi(X), (i = 1, 2),

g(X) ≤ h(X), g [t1]
i (P) ≤ g [t2]

i (P), (i = 1, 2).

As in [7], we begin by considering infinite D and simplify Pave
(∞, θ) as Pave(θ). In other words, once Si is used at time k, yi1:k will
be sent to the estimator.3

Recall that at most one sensor is allowed to send its data over
the network at every time instant, i.e., either γ 1

k = 1 or γ 2
k = 1.

When γ 1
k = 1 or γ 2

k = 1, we define τ 1
k and τ 2

k as follows:

τ 1
k , k − max{s : s < k, γ 2

s = 1, γ 1
k = 1},

τ 2
k , k − max{s : s < k, γ 1

s = 1, γ 2
k = 1}.

Here, τ 1
k represents the time gap between the timewhen S1 is used

(which is assumed to be k) and the most recent time when S2 is
used. τ 2

k is defined similarly. Then, if γ i
k = 1, we have

Pk = g
[τ i

k]

i


g [k−τ i

k](P0)


, (i = 1, 2). (5)

As each sensor is used at least once during a period with length
N(θ), one immediately has τ i

k ≤ N(θ), (i = 1, 2). Since Pk+1 =

g(Pk) converges to P exponentially fast for any P0 ≥ 0 and we
consider infinite time-horizon, without loss of generality, we have
g [k−τ i

k](P0) = P, (i = 1, 2). Thus, the error covariance at the esti-
mator side is simply obtained as

Pk =


g

[τ1
k ]

1 (P), if γ 1
k = 1,

g
[τ2

k ]

2 (P), if γ 2
k = 1,

h(Pk−1), otherwise.

(6)

Assume in one periodN , S1 is used p times and S2 is used q times,
r times are left for open-loop prediction, i.e., p + q + r = N . In the
special case Ψ1 + Ψ2 = 1, one necessary condition for the optimal
solution of Problem 2.1 is r = 0. Then an optimal periodic schedule
proposed in [7] is as follows.

Lemma 3.1 ([7]). Assume p ≤
1
2N and there exists an integer s such

that sp < q ≤ (s + 1)p, (s = 0, 1, . . .), then an optimal periodic
schedule θ ⋆ (over one period) can be constructed as

θ ⋆
: {S1(S2)s+1

}
q−sp

{S1(S2)s}(s+1)p−q.

When q = (s+ 1)p, θ ⋆ reduces to S1(S2)s+1. Moreover the optimality
holds true for a finite D as long as D ≥ s + 2.

Lemma 3.1 reveals that when Ψ1 + Ψ2 = 1, the duty cycle of each
sensor is required to be fully used and the two sensors are sched-
uled ‘‘as uniformly as possible’’. The constraint Ψ1 + Ψ2 = 1, how-
ever, is clearly quite restrictive. In thenext section,wewill consider
a much more general case when Ψ1 + Ψ2 > 1.

4. Optimal periodic sensor schedule

In this section we derive the optimal schedule for Tr[g1(P)]
> Tr[g2(P)] and Tr[g1(P)] = Tr[g2(P)], respectively. The case
Tr[g1(P)] < Tr[g2(P)] is similar. Consider two classes of periodic

3 As we will see later in Lemma 3.1, finite D is enough which benefits from the
periodic scheduling.
schedules θ a
m : S1(S2)m and θ b

n : S2(S1)n with period m + 1 and
n + 1, respectively. Then it is straightforward to verify that

Pave(θ a
m) =

1
m + 1

Tr


g1(P) +

m
t=1

g [t]
2 (P)


, (7)

Pave(θ b
n ) =

1
n + 1

Tr


g2(P) +

n
t=1

g [t]
1 (P)


. (8)

Using the increasing property of Tr[g [t]
1 (P)] with respect to t , we

obtain the following result.

Lemma 4.1. If Tr[g1(P)] > Tr[g2(P)], then Pave(θ a
1 ) ≤ Pave(θ b

n ),
n = 1, 2, . . . , with equality iff n = 1.

This lemma tells us that when S2 is more accurate than S1, among
all the schedules in the form of {θ a

m} and {θ b
n }, the optimal onemust

fall into the class of θ a
m. Then one question is naturally raised: what

is the optimalm?
Let us denote

Ga(s) , sg [s]
2 (P) −

s−1
t=1

g [t]
2 (P). (9)

The superscript ‘‘a’’ indicates that the expression above applies to
the schedule θ a

m. Then we have Tr[Ga(s)] ≥ 0. Moreover,

Tr[Ga(s + 1)] − Tr[Ga(s)] = (s + 1){Tr[g [s+1]
2 (P)] − Tr[g [s]

2 (P)]}

≥ 0,

which means Tr[Ga(s)] is an increasing function with respect to s
and Tr[Ga(1)] = Tr[g2(P)].

Now consider the following two cases.

(1) There existsm0 ∈ Z+ such that

Tr[Ga(m0)] < Tr[g1(P)] ≤ Tr[Ga(m0 + 1)]. (10)

(2) There does not exist m0 ∈ Z+ such that (10) holds. In other
words,

lim
s→∞

Tr[Ga(s)] = Tr[Ga(∞)] < Tr[g1(P)]. (11)

Let us first consider case one and we have the following result.

Theorem 4.2. Assume there exists m0 ∈ Z+ such that (10) holds.
Then among all the schemes in {θ a

m}, the optimal one which minimizes
Pave(θ) is θ a

m0
.

Proof. For two schemes θ a
l and θ a

l+1 (∀l ≥ 1), direct computation
shows that

Pave(θ a
l+1) − Pave(θ a

l ) =
1

(l + 1)(l + 2)
Tr


(l + 1)

l+1
t=1

g [t]
2 (P)

− (l + 2)
l

t=1

g [t]
2 (P) − g1(P)



=
Tr[Ga(l + 1)] − Tr[g1(P)]

(l + 1)(l + 2)
.

Using the bounds of Tr[g1(P)] given in Theorem 4.2, together with
the increasing property of Tr[Ga(s)], we can verify that

(1) Pave(θ a
l ) < Pave(θ a

l+1), (∀l = m0 + 1,m0 + 2, . . .),
(2) Pave(θ a

l ) > Pave(θ a
l+1), (∀l = m0 − 1,m0 − 2, . . .),

(3) Pave(θ a
m0

) ≤ Pave(θ a
m0+1),

with equality iff Tr[g1(P)] = Tr[Ga(m0 + 1)]. The proof is thus
completed. �
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Fig. 2. State and estimate for each component when (Ψ1, Ψ2) = (1, 2
5 ).
Based upon Theorem 4.2, we have the following main result.

Theorem 4.3. Assume there exists m0 ∈ Z+ such that (10) holds.
Then the optimal duty cycle pair (J⋆1 , J

⋆
2) for the two sensors which

minimizes Pave(θ) is given by

(J⋆1 , J
⋆
2) =




1

m0 + 1
,

m0

m0 + 1


,

if
1

m0 + 1
≤ Ψ1,

m0

m0 + 1
≤ Ψ2,

(1 − Ψ2, Ψ2), if
1

m0 + 1
< Ψ1,

m0

m0 + 1
> Ψ2,

(Ψ1, 1 − Ψ1), if
1

m0 + 1
> Ψ1,

m0

m0 + 1
< Ψ2.

Proof. Consider the following three sets of schedules (∀x, y =

1, 2, . . .):

θA : {S1(S2)l+1
}
x
{S1(S2)l}y+1,

θB : {S1(S2)l+1
}
x
{S1(S2)l}y, (12)

θC : {S1(S2)l+1
}
x+1

{S1(S2)l}y.

From Lemma 3.1, θB gives an optimal periodic schedule in which
the duty cycle of S1 is

x+y
(l+2)x+(l+1)y . Similar assertion holds for θA and

θC for different duty cycles. Moreover, direct computation leads to

Pave(θA) − Pave(θB)

=
x{Tr[g1(P)] − Tr[Ga(l + 1)]}

[(l + 2)x + (l + 1)y][(l + 2)(x + 1) + (l + 1)(y + 1)]
, (13)

Pave(θB) − Pave(θC )

=
y{Tr[g1(P)] − Tr[Ga(l + 1)]}

[(l + 2)x + (l + 1)y][(l + 2)(x + 1) + (l + 1)y]
. (14)

Following the same line of the proof of Theorem 4.2, we can verify
the following:
(1) when l = m0 + 1,m0 + 2, . . .

Pave(θ a
l ) < Pave(θA) < Pave(θB) < Pave(θC ) < Pave(θ a

l+1).
(2) when l = m0 − 1,m0 − 2, . . .

Pave(θ a
l ) > Pave(θA) > Pave(θB) > Pave(θC ) > Pave(θ a

l+1).
(3) when l = m0

• if Tr[g1(P)] = Tr[Ga(m0 + 1)]
Pave(θ a

m0
) = Pave(θA) = Pave(θB) = Pave(θC ) = Pave(θ a

m0+1).
• otherwise

Pave(θ a
m0

) < Pave(θA) < Pave(θB) < Pave(θC ) < Pave(θ a
m0+1).
For the special case when y = 0, θB is equivalent to θ a
l+1; when

x = 1 and y → ∞, θB approaches to θ a
l . In other words, any opti-

mal periodic schedule under which J1, the duty cycle of S1 satisfies
1

l+2 ≤ J1 < 1
l+1 , can be represented by one schedule in θB (the

equality holds when y = 0).
Let us first consider Tr[g1(P)] ≠ Tr[Ga(m0 + 1)]. From Theo-

rem 4.2, among {θ a
m}, the optimal choice is θ a

m0
; thus when 1

m0+1 ≤

Ψ1,
m0

m0+1 ≤ Ψ2, the result is clearly seen. When 1
m0+1 > Ψ1, for

any optimal periodic schedule θ , due to themonotonicity of Pave(θ)
with respect to the ratio of S1, the optimal duty cycles which min-
imize Pave(θ) are given by J⋆1 = Ψ1 and J⋆2 = 1 − Ψ1.

In the special case when Tr[g1(P)] = Tr[Ga(m0 + 1)] and Ψ1 ∈

[
1

m0+2 ,
1

m0+1 ], the costs of any optimal periodic schedule in this
case are equal; thus without loss of generality, we choose J⋆1
= Ψ1. �

Now let us consider case two, i.e., when (11) holds. In this case,
for θA, θB, θC given by (12), we always have (∀x, y = 1, 2 . . .):

Pave(θ a
l ) > Pave(θA) > Pave(θB) > Pave(θC ) > Pave(θ a

l+1).

Hence we have the following result.

Proposition 4.4. Assume (11) holds. Then the optimal duty cycle pair
(J⋆1 , J

⋆
2) for the two sensors which minimizes Pave(θ) is given by

(J⋆1 , J
⋆
2) = (1 − Ψ2, Ψ2).

In the particular case when Tr[g1(P)] = Tr[g2(P)], the optimal
pair (J⋆1 , J

⋆
2) for the two sensors which minimizes Pave(θ) is the

same as those in Theorem 4.3 withm0 = 1.
Once we have obtained the optimal duty cycle pair (J⋆1 , J

⋆
2) for

the two sensors,we canuse Lemma3.1 to construct the optimal pe-
riodic schedule. For example, consider Theorem4.3. In the first case
(J⋆1 , J

⋆
2) = ( 1

m0+1 ,
m0

m0+1 ), one can simply choose p = 1, q = m0,

r = 0, which implies q = m0p and the length of the period N =

m0 + 1. Then from Lemma 3.1, an optimal periodic schedule (over
one period) can be constructed as θ ⋆

: S1(S2)m0 . In the second case
(J⋆1 , J

⋆
2) = (1 − Ψ2, Ψ2). Write the rational number Ψ2 as Ψ2 =

m
n ,

(m, n ∈ Z+). Then by letting N = n, q = m and p = n − m, an
optimal periodic schedule can be obtained from Lemma 3.1. Sim-
ilar procedure applies to the third case of Theorem 4.3 as well as
Proposition 4.4.

Our work shows that when Ψ1 + Ψ2 > 1, the optimal schedul-
ing rule relies on system dynamics. While [7] showed that, when
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Ψ1 + Ψ2 = 1, the optimal schedule only relies on Ψ1. Further-
more, Lemma 3.1 ensures the optimality of the periodic schedule
for Ψ1 + Ψ2 > 1 as long as D ≥ s + 2.

5. Examples

Consider system (1) with A = [0.55 0.1; 0 0.95], C1 = [1 0],
C2 = [0 1], Q = diag(1, 1), R1 = 1.7, R2 = 1. It means that
S2 is more accurate than S1 and hence Tr[g1(P)] > Tr[g2(P)]. The
steady-state error covariance P = [0.7106 0.0150; 0.0150 0.6073]
andm0 = 2 from Theorem 4.2, i.e., ( 1

m0+1 ,
m0

m0+1 ) = ( 1
3 ,

2
3 ).

Consider the second case of Theorem 4.3, for example, the
bounds of duty cycles (Ψ1, Ψ2) = (1, 2

5 ). The optimal duty cycle
pair (J⋆1 , J

⋆
2) = ( 3

5 ,
2
5 ) using Theorem 4.3 and corresponding opti-

mal periodic schedule θ ⋆ is given by S2S1S1S2S1 using Lemma 3.1.
Consider another duty cycle pair (J ′1, J

′

2) = ( 4
5 ,

1
5 ). Using Lemma3.1

again, we have θ ′
: S2S1S1S1S1. The state xk and its estimate x̂k for

each component under the two schemes are shown in Fig. 2. Note
that θ ′ performs better than θ ⋆ in terms of the first component of
the state, i.e., xk(1). The reason is that S1 just accounts for 60% in θ ⋆,
while 80% in θ ′. The advantage of θ ⋆ is shown in the second compo-
nent of the state, i.e., xk(2). Moreover, Tr[Pk(θ ⋆)] versus Tr[Pk(θ ′)]
is given in Fig. 3, which shows that the former performs better than
the latter.

To verify the first case of Theorem 4.3, let us take (Ψ1, Ψ2) =

(1, 4
5 ) as an example. Note that (J⋆1 , J

⋆
2) = ( 1

3 ,
2
3 ) using Theorem 4.3

and θ ⋆ is given by S1S2S2 using Lemma 3.1. Consider another pair
(J ′1, J

′

2) = ( 2
3 ,

1
3 ). Using Lemma 3.1 again, we have θ ′

: S2S1S1.
When choosing (J ′′1 , J ′′2 ) = ( 1

5 ,
4
5 ), we have θ ′′

: S1S2S2S2S2. The
performance comparison is shown in Fig. 4. Note that from Fig. 4,
Pave(θ ⋆) is very close to Pave(θ ′′). Using (7) as well as some direct
computation, however, one has

Pave(θ ⋆) − Pave(θ ′′)

=
1
15

Tr


2g1(P) + 2

2
t=1

g [t]
2 (P) − 3[g [3]

2 (P) + g [4]
2 (P)]



<
1
15

Tr


2g1(P) + 2

2
t=1

g [t]
2 (P) − 6g [3]

2 (P)



=
2
15

Tr[g1(P) − Ga(3)] ≤ 0.

The last inequality is due tom0 = 2. The illustrative examples thus
verify the theory we developed.

6. Conclusion

In this paper, we consider sensor scheduling over a bandwidth-
limited network. We explicitly establish the relationship between
the optimal duty cycle pair for the two sensors and the system
parameters and obtain the optimal periodic sensor schedule. Fu-
ture work includes extending the results to multi-sensor scenario
Fig. 3. Trace of error covariance of the two schemes when (Ψ1, Ψ2) = (1, 2
5 ).

Fig. 4. Trace of error covariance of the three schemes when (Ψ1, Ψ2) = (1, 4
5 ).

and relaxing some of the constraints (e.g., sending Dmeasurement
data) considered in the paper.
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