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Optimal Periodic Transmission Power Schedules for
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Abstract—We consider periodic sensor transmission power al-
location with an average energy constraint. The sensor sends its
Kalman filter-based state estimate to the remote estimator through
an unreliable link. Dropout probabilities depend on the power level
used. To encompass applications where the estimator needs to at-
tend to multiple tasks, we allow for irregular sampling, following a
periodic pattern. Using properties of an underlying Markov chain
model, we derive an explicit expression for the estimation error co-
variance. The results are then used to study optimal sensor power
scheduling which minimizes the average error covariance.

Index Terms—Kalman filtering, multi-sampling, networked es-
timation, power scheduling.

I. INTRODUCTION

IRELESS sensor networks (WSNs) have been a hot
W research area in the last few years. Growing appli-
cations are found in various areas, for example, unmanned
aerial vehicles, mobile sensor networks, remote surgery, auto-
mated highway systems, environment monitoring, smart grid
and industrial automation. WSNs provide many advantages
when compared to traditional wired sensors, such as low cost,
easy installation, self-power and so on [1]. Not surprisingly,
both research and applications of WSNs have been increasing
tremendously. Despite the benefits the use of wireless sensors
offers, there are still many shortcomings when designing net-
worked sensing and control systems. In particular, wireless
channels are subject to channel fading and interference, which
may lead to data drops and performance degradation [2]. The
underpinning theory reveals that there is a tradeoff relationship
between transmission bit rate, bandwidth and transmission
power [3], [4]. If higher transmission powers are used, then
dropouts are less frequent. However, most wireless sensors use
on-board batteries, which are difficult to replace. Since in many
applications, wireless sensors are usually expected to work
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for several years without the replacement of batteries, energy
conservation is of utmost importance, thus, power control
becomes critical [5]-[9].

There are two important aspects in the study of WSNs,
namely, the estimation problem and the communication
problem. Traditionally, these two components have been
studied separately. However, an integrated approach which
takes into account communication constraints in the estimation
process will, in general, give better performance versus energy
use trade-offs. For the case of estimation of autoregressive
moving average (ARMA) stochastic processes, those problems
have gained much interest and have been studied extensively in
recent years [10]-[12]. Quevedo et al. [13] studied stochastic
stability of centralized Kalman filtering where data trans-
mission is over parallel fading channels using transmission
power control. Sinopoli et al. [14] investigated distributed
control applications within sensor networks. They presented
a hybrid model which consists of two components: contin-
uous time-trigger components at the low level and discrete
event-triggered components at the high level. Pantazis et al.
[15] studied various power control schemes using different
approaches in WSNs which focus on different performance
metrics. Aziz et al. [16] investigated the energy efficiency issue
and provided a comprehensive study extending the lifetime of
battery powered WSNs by topology control. Hohlt et al. [17]
presented a dynamic distributed time on-demand power-man-
agement protocol for data collection in sensor networks by
enabling sensors to turn off their communication during idle
time slots. More related works in the literature can be found
from the references therein.

Among most of literatures studying power control problem,
the sensor data are sampled following a regular schedule.
However, one specifically designed irregular sampling scheme
may yield better system performance or less energy consump-
tion [18]-[20]. Yu et al. [19] proposed a sampling scheme for
Gaussian hypothesis testing problems based on the class of
Ali-Silvey distance measures. Comparisons with other sample
schemes illustrate that the proposed sampling design leads a
better detection performance. Niu et al. [20] studied the tempo-
rally staggered sensors in multi-sensor target tracking system.
Based on the metric-average error variance, the comparison
between temporally staggered sensors and synchronous sensors
under different situations are provided to show the improved
performance of staggered sensing.

Another motivation for the current work is that most existing
literatures of sensor power scheduling considered finite-time
horizon. In the case of finite-time horizon, the optimal state
estimate and the corresponding error covariance can be com-
puted recursively, which leads to solving the sensor scheduling
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or power control problem straightforwardly. As a result, many
existing tools from optimization theory can be used. Compared
to the finite-time horizon case, the problem of infinite-time
horizon is much more difficult to handle [21]. Mcloughlin ez al.
[22] relaxed the general infinite-time horizon sensor scheduling
problem for state estimation in linear time-invariant systems.
Under the relaxation, they converted the original problem to a
mixed integer quadratic programming problem which can be
easily solved.

In the present work, we study infinite-time horizon periodic
sensor transmission power allocation for remote state estimation
under an average power constraint. The sampling is assumed to
be irregular in order to incorporate a larger class of applications.
When compared with previous literatures, the contribution of
this work lies in integrating various theories such Kalman fil-
tering, communication and Markov chain theories to provide a
tractable solution for the challenging problem of infinite-time
horizon power control for remote sensing, which are summa-
rized as follows.

1) Irregular sampling: We focus on a situation where
the sampling pattern is irregular, following a periodic
schedule. This model is motivated by WSN architectures
where the gateway, in addition to performing state es-
timation, needs to attend to other tasks. In other cases,
though the state estimations are provided at every time
step, the remote estimator may only sample and utilize
the estimates only in some specific time steps. The model
allows us to incorporate a large class of applications.

2) Infinite-time horizon: Under the infinite-time horizon,
the proposed problem is non-linear and non-convex,
which cannot be solved by the classic convex optimization
methods. Instead, we propose a novel Markov chain model
which can effectively deal with the infinite-time horizon
scenario. Through this model, we convey the difficult
problem into a relatively simple one which only relies
on finding the minimal value of a scalar multi-variable
function.

3) Closed-form solution: Using the Markov chain model,
we show that the estimation error covariance have a sta-
tionary distribution which enables us to derive a closed-
form solution of the estimation error covariance at each
time step. This closed-form solution allows us to readily
compare the performance of different power schedules.
As mentioned previously, the problem cannot be solved
via convex optimization techniques, but the optimal sensor
power schedule can be found, via the Markov chain model,
through the Lagrange multiplier method or any other nu-
merical methods which can find the minimal value of a
scalar multi-variable function.

The remainder of this manuscript is organized as follows.
Section II presents the estimation architecture. Section III states
the main problem of interest. Section IV develops a suitable
model. In Section V, we derive optimal sensor power sched-
ules. Numerical example are included in Section VI. Section VII
draws conclusions.

Notation: Z denotes the set of all integers. N are the positive
integers, n € N. R is the set of real numbers. R™ is the n-di-
mensional Euclidean space. $'} (and $7} ) is the set of n by n

6165

positive semi-definite matrices (and positive definite matrices).
When X € S% (and §% ), we write X > 0 (and X > 0).
X >YifX —-Y € 8. Tr(:) is the trace of a matrix. The su-
perscript ’ stands for transposition. For functions f, f1, f2 with
appropriate domains, f1 o fa(z) stands for the function compo-
sition f1(fo()), and f*(2) 2 F(f"~}(x)) with [O(a) 2 &,
0;; is Dirac delta function, i.e., §;,; equals to 1 when ¢ = j and
0 otherwise. The notation P[] refers to probability, E[-] to ex-
pectation. For a matrix M, M|j] denotes the j-th column of M
while M (k) denotes the k-th row of M.

II. ESTIMATION SETUP

We consider the problem of estimating the state of an ARMA
process at a remote estimator where the sensor communicates
with the estimator over a wireless channel. The process is de-
scribed in state-space form via:

Q)
2

Trt1 = Axy + wy,
yr = Crp + vy,

where £ € N, z;, € R™ is the process state vector at time
k, yr € R™ is the measurement taken by the sensor, wy €
R™ and v, € R™ are zero-mean i.i.d. Gaussian noises with
Elwew}] = 6;Q (@ > 0), E[vg(v;)'] = o R (R > 0),
Elwg(v;)] = 0Vj, k € N. The initial state ¢ is a zero-mean
Gaussian random vector with covariance Il > 0 and is un-
correlated with w;, and wg. The pair (A, C) is assumed to be
observable and (4, /@) is controllable.

A. Local State Estimate

In a networked estimation scenario, sensors are typically
equipped with on-board processors [23] and utilization of their
capabilities may improve the system performance significantly.
For the situation at hand, at each time %, the sensor first locally
runs a Kalman filter to estimate the state ;. based on all the
measurements it collects up to time & and then transmit its local
estimate to the remote estimator.!

In the sequel, we will denote & and P} as the sensor’s local
state estimate and the corresponding error covariance, thus,

3
“

ii :[E[:l;k'|y1:y27' . '7yk]7

These can be calculated by standard Kalman filter equations as
follows [24]:

Thp1 = AL 1, (%)

Pl =AP_ A+ Q, (6)
-1

K} =Py 1O [Py, + R ™

& =A%, + K (yp — CAE} ), ®)
P =(I-K;C) PJ?\k;Av ®
where the recursion starts from £3 = 0 and Fj = Il > 0.

IThroughout this work, we assume that the bit-rate is large enough so that
quantization effects can be ignored.
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For notational ease, we introduce the functions ., g : 7 —
ST as
+

1P

(10)
(11)

It is well known (see, e.g.,[25]) that the estimation error co-
variance P} in (9) will converge to a steady-state value expo-
nentially fast. Without loss of generality, we assume that the
Kalman filter at the sensor side has entered the steady state and
simplify our subsequent discussion by setting:

hX)=AXA +Q,
J(X)=X - XC'[CXC'+R'CX.

L

Pi=P, k=1, (12)
where P is the steady-state error covariance, which is the unique
positive semi-definite solution of g o (X ) = X. From [26], P
has the following property.

Lemma 1: For 0 < t; < i3, the following inequality holds:

R (P) < W™ (P). (13)
In addition, if #; < ¢5, then
Tv (h"(P)) < Tr (h™(P)) . (14)

B. Wireless Communication Model

The sensor’s local state estimate £ is communicated to
the remote estimator over an Additive White Gaussian Noise
(AWGN) channel using Quadrature Amplitude Modulation
(QAM).2 Specifically, £}, is quantized into R bits and mapped
to one of the 2% available QAM symbols. The symbol error
rate (SER) is given by

26M,,
SER = ,
o\ )
where My, is the transmit power for the QAM symbol at time %,

Ny is the AWGN noise power spectral density, W is the channel
bandwidth, 3 is a constant which depends on R, and

(15)

>

% / exp(—n?/2)dn

x

Vi

>

Q(x) (16)

is the Q-function. For sufficiently large SNR, we have (cf.,[8]),

My,

SER =2 exp (—/3—) .

ATE (17)

Based on the relationship in (15) and (17), it is clear that higher
transmission power M}, leads to lower SER.

Throughout this work, we shall assume that the communi-
cation channel is time-invariant, i.e., 3, Ny, W, are constants.
Furthermore, we assume the controller can detect symbol er-
rors.? Taking into account of the SER in the transmission of
QAM symbols, the equivalent communication channel for %7

2QAM is a common modulation scheme widely used in IEEE 802.11g/n as
well as 3G and LTE systems, due to its high bandwidth efficiency.

3In practice, symbol error can be detected via cyclic redundancy check
(CRC).
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between the sensor and the remote estimator can be charac-
terized by an independent binary random process (Bernoulli
process) {7}, k € N, where:

_ L
Yk = 0,

Let pr = P[vyi = 1] as the probability of successful trans-
mission of Z}. From (17), we have

if 7, arrives error-free at time k,
otherwise (regarded as dropout).

(18)

L= pr = (1= A, (19)

where A is given by:

A2 1 —exp(—B/(NgW)) € (0,1). (20)

To send the local state estimates to the remote estimator, the
sensor node chooses from a continuum of available power levels
M, = 0. Asnoted above, different power levels lead to different
dropout rates, and thereby affect estimation performance. From
(19), the probability of successful transmission py, will be higher
as M, increases. In the present work, we take into account en-
ergy constraints, and characterize optimal sensor power sched-
ules, which minimize the error covariance at the remote esti-
mator.

C. Remote State Estimation

We define I}, as the information available to the processor of
the remote estimator from time 1 to time &, thus,

(e2))

cf.,[12]. Denote %, and P as the remote estimator’s state esti-
mate and the corresponding error covariance based on /i, i.e.,

I, = {71%i772%§7 s KYk:U%Z} U {717727 s 77](’}7

.f?k :[E[-77k|Ik]7
Pk =E [(l‘k — :i“,k)(xk — i‘k)luk] -

(22)
(23)

At the estimator’s side, similar to [23], [27], at instances where
the sensor’s local estimate arrives, the estimator synchronizes its
own estimate with that of the sensor. Otherwise, the estimator
just predicts =, based on its previous estimate using the system
model (1). In view of (18), the state estimate &, thus obeys the
recursion

ify =1,

iy = 0. (24)

o :Ei:’
TR Ay,

As a result, the state estimation error covariance P, satisfies

= {f(’Pkl)

if v =1,

2
ika =0. ( 5)

In the sequel, we denote dj, € {0, 1} as the sample decision
of the remote estimator at the k-th time. The remote estimator
is only interested in the estimation performance at the sampling
instances, i.e., it samples and utilizes the estimate provided by
the processor at the %-th time when d;, = 1 and skips sampling
when dy = 0, see Fig. 1. We consider a pre-designed and given
periodic sampling pattern with period NV € N, i.e.,

(]/k+j\r =d;, VkeN.
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Yk =0or1l
R
os e 1
Xy Yie = Xk : Remote Estimator 1
1
W = —:l Processor}*’j —~l Sampler | :
1
1 dy=0o0r1l :
L ]
Wireless Channel
Fig. 1. System architecture.
T; T; Ty
Zy > Z, > Z3 > ZN

T LB}

Fig. 2. Markov chain model of the estimation error covariance.

From Lemma 1 and (25), it is straightforward that for a given
sampling instances dj’s, the trace of P, becomes larger if the
data packet is dropped. In other words, the estimation perfor-
mance is enhanced with a larger probability of successful trans-
mission pg, which in turn can be achieved by increasing the
transmission power M.

Remark 1: The present framework is motivated by applica-
tions where the remote estimator is in charge of multiple tasks,
e.g., in a setup with multiple sensors, it samples and deals with
the data from one sensor only at every time slot during a pre-
defined period. This mechanism is quite common in practice,
and reflects the fact that the collaborative nature of industrial
wireless sensor networks brings several advantages over tradi-
tional wired industrial monitoring. For example, WirelessHART
(Highway Addressable Remote Transducer Protocol) [28] net-
works utilize mesh networking, in which each device is able to
transmit its own data as well as relay information from other
devices in the network and control systems. Usually wireless
sensor networks are self-configurable, to meet the requirements
of wireless industrial applications. WirelessHART uses a central
network manager to provide routing and communication sched-
ules. The communication between devices is established by a
single central controller: the PAN coordinator. The latter takes
the role of the remote estimator in our current setting. O

III. PROBLEM STATEMENT

Based on the estimation setup, the system architecture is de-
scribed as in Fig. 1. At every time step &, the sensor measures
the process state x;, and sends its local state estimate 27, to the
remote estimator through an unreliable wireless channel using
power M. Then based on all the information it collects, i.e., /1,
the processor of the remote estimator updates the state estima-
tion x; and P%. The remote estimator samples and utilizes the
estimate when dy, = 1.

Our preceding discussion motivates us to consider periodic
sensor power schedules with period NV . Since we only care about
the estimation quality at the sample points, we choose the trace
of the average expected error covariance of all the estimator’s
sample points as the objective (loss) function, i.e.,

T
J(#) = limsup % > diTr {E[R]}, (26)

T—oc =1
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where d;, € {0,1} as defined in Section II-C is the given pe-
riodic sampling pattern with period /V (i.e., it is not a design
variable), and § = {M;, Ms,..., My} is the periodic sensor
power schedule with period V.

As discussed before, at each time step, higher transmission
power M, leads better estimation quality, i.e., lower E[P].4 In
practice, however, the total energy for the whole time horizon
is limited. Thus we are interested in finding an optimal sensor
power schedule, say §*, such that the system achieves the best
performance under the energy constraint. To be more specific,
we consider the following optimization problem:

Problem 1:

’](0)7

min
0

N
st > M, <M, (P1)
k=1

where M is the energy constraint within each period.

Intuitively since more energy is always beneficial for im-
proving the system performance, the optimal power schedule
remains the same if the constraint of Problem 1 is changed to
Zi\/:l My = M, which implies the necessary condition for the
optimal solution to Problem 1. Lemma 2 supports this intuition.

Lemma 2: Let 6 = {M{, M3, ..., M%} be an optimal so-
lution to Problem 1, then we have:

N

> My =M. (27)
k=1
Proof: See the Appendix. [ |

From Lemma 2, without loss of generality, we will focus on
the following problem in this paper.

Problem 2:
J(9),

min
0

N
st. » My=M, (P2)
k=1

IV. MARKOV CHAIN MODEL

As mentioned in the introduction, different from the case
of finite-time horizon where the optimal state estimate and
corresponding error covariance can be computed recursively,
the problem of infinite-time horizon is much more difficult to
handle as one typically cannot compute the objective function
J(8) easily.

In this section we will first derive a model for the periodic
remote state estimation system with random dropouts and using
a periodic power schedule. Then based on the Markov chain
model, we will drive a closed-form expression for J(6).

From the recursion of the error covariance Py in (25), it is
easy to see that at any time instant ko > %y, the error covariance
at the estimator side can be written as P, = h*2~*1(P), where
k1 is the latest time when it successfully received sensor data.

4In Section V, we will further elucidate the dependence of .J on A}
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Since P, only takes value in the set of { P, h(P), h*(P), ...},
we have the following definition describing the state of the re-
mote estimator.

Definition 1. Given the period N, if at the k-th time step, the
state estimation error covariance P, = h*(P), where i is a cer-
tain non-negative integer, then we say that the remote estimator
is at state S, 2 Zit1,, where k mod N = j,

For example, suppose that the period N = 3. Ifatk = 1,
we have P, = h?(P),ie,i = 2,and j = kmod N = 1,
then the state of the remote estimator, S1 = Z;11; = Z3.1.
As a comparison, if at k = 4, we have Py = P; = h?(P),
since 4 mod 3 = 1, we also have Sy = 73, i.e., the remote
estimator is in the same state at time steps £ = 1 and k = 4.
This is easy to understand because the period N = 3.

Thus for the estimator, the state space is given by

e

S Ziﬂ', teN, 1<jJ<N,
which includes all possible states at any time.5 Define the state
sets for every time index within one period as:

Z]' = {Z,]VL S N}

where j = 1,2, ..., N. Then, at any time step k%,

Sk €Z;, j=kmodN.
Due to (24) and the fact that dropouts are independent, at any
time & + 1, the state Si41 is only related to the previous state
S, the stochastic process {S;}, & € N constitutes a Markov
chain (with periodic state space) [29].

Consider the transition matrix from state set Z_; to Z, de-
noted as T; where j = k£ mod N, then the entries of T; can be
expressed as:

P[Zi2:1|Zi1,N]v ]:1,

—ﬂ—.f(lla 12) = { P [Z’ig:j|Zﬂi1,j—1] j> 1. (28)

3

Thus, the system is described by N transition matrices
{T;};_1 5, ~- Their entries can be easily computed as fol-
lows:

- If no dropout occurs, as discussed before, then we have Py, =
P. Based on (28), this gives:

T;(in, 1) =P [Z1 ;2 1]
P[P = P17, ;1]
:p]‘,V’Lnl e N.

On the other hand, if a dropout occurs, then P, = A{Py_1),
and we have:

Ti(iv, i+ 1) =P [Zi 41517, 1]
=P[Ly = WPy 1)|Zi, 1]
=4y, Vll c N,
where g; = 1 — p; is the corresponding dropout probability.

SNote that the number of consecutive dropouts is, in general, unbounded.
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Other entries of T; are 0, since the corresponding state tran-
sitions will never occur. This gives:

b 4
bj 4

Ti=|p U '

where the missing entries are 0.
To elucidate the situation further, we will next construct the
probability matrix
H:(ﬂ—i,j)ﬂ (ivj)ENX{1727"'alV}v
where 7; ; is the limiting probability of state Z; ;. More pre-
cisely,

m; = lim —

T—oo T ’ (30)

where ¢ is the number of times that Z; ; occurred from time 1
to T

It is easy to see that the limiting state probability of A* 1(P)
is given by 21\;1 m; 4 for all ¢ € N. Furthermore, since the
schedule is periodic with period N, we have

€2))

Based on the definition of T ; in (28), since T is the transition
matrix, the following relationship between T; and II can be
established:

)T = NPTy, I =1 - 1] T, (32)
where I1[], 7 = 1,..., N is the j-th column of IT as defined
before.

From (31) and (32), through some calculation, we can obtain
the exact form of II as:

b1 D2 Ps3 T PN
1 PNGQ1 P142 P243 PN—-14N
N | PN-19NQ1 PNQ1G2  P19243 PN—29N-14N

(33)
Example 1: Consider a simple case where N = 3. From (32),
we have II[1]T = TI[3]T T, thus

where T1[1] denotes the first column of T, i.e., [p1, p1, p1]7 .

Similarly, we have

T1,2 = 7DP2,

T3 = —P3.
N 1,3 P3

N
Next

1

mo1 =B T1[2] = 113 = NP
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and
1 1
22 = NPN]% 2,3 = qu:a-
Thus,
T 1 1
w31 = 1[3] T1[3] = quma3 = NP3
and
1 1
M3 2 = Npsthqz m33 = Nplth&

By repeating this procedure one obtains

P1 P2 p3
- 1 P3d1 P142 P243
T3 | P2@gn

P3qi1q2  P14293

as per (33).

The following properties will be used in Section V to find
optimal power schedules.

Proposition 1: 1. Suppose that the power schedule has period
N and power constraint M , as used in Problem 2. We then have

AT
[Ta=Mm M=(a-0)", (34)
k=1
where A is as defined in (20).
2. Consider II in (33). Then,
Vo=4iN+a, i€N, 1<a<N,

we have 7, ; = M'w, ; and II(b) = M*Il(a), where IL(k) is
the %-th row of 1I.
Proof: Expression (34) follows directly from the fact that
gr = 1 — pg and using (19).
To establish 2., similar to Example 1, and since

Nk

when ¢ > NN, we have:

= H[.] - 1]T—I]—j7

miy =15 — 17Tl
=q;jTi-1,5-1

=q;q;-1Ti—2,5-2

>

qrTi—N,j—N

Lo
2
=

= ALTi—N,j-

e
I
-

Since [Th_; qx = M, we have m; ; = M, x ;. Using this
property ¢ times, proves the result. [ |
From Proposition 1, we can see that there exists a simple re-
lationship between every N rows in II. This property simpli-
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fies our subsequent analysis significantly. When considering the
probability matrix IT, we just need to investigate its first NV rows.

V. OPTIMAL SENSOR SCHEDULING

In this section, we show how to design optimal power sched-
ules using the Markov chain model presented in Section IV.

A. Preliminaries

The following lemma is a modified matrix version of the clas-
sical Hardy-Littlewood-Polya rearrangement inequality.
Lemma 3: Consider a sequence of semi-definite matrices
0Ly <---<Y,

and a sequence of real numbers ai,as9,...,a,. Denote
b1,ba, ..., b, as another sequence of real numbers such that

n n
E a; = E b1
i=1 =1

Consider k € {1,2,...,n} such that b; < «a;,¥i < k, and
b; 2 a;,¥i > k. We then have

n n
Yo aYi <Y biYi
=1 =1

Proof: Direct calculations give

iaiY sz = Z — b)Y,
=1 i=1
= Z((LZ‘ - bl)Y; — i (bz — (LZ‘)YZ'
i=1 i=k+1
k n
< Z(Cbi — b)Yy — Z (bi — a;)Yy
i=1 i=k+1
k n
Vb Y )
=1 i=k+1

The following lemmas follow directly from well-known re-
sults of mathematical analysis.

Lemma 4: [30] For a continuous multi-variable scalar func-
tion defined on a closed set, there always exists the maximum
and minimum value of this function, and both of them can be
achieved within this closed set.

Lemma 5: [30], [31] Consider a multi-variate function
f(x1, @0, ..., x,) subject to the constraints

glwr, xa, ..., 2n) = ¢,
where f and g are functions with continuous first partial deriva-
tives. Lagrange multipliers can be used to find the critical point
(local extremum) of function f.
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B. Main Results

We first note that the objective function (26) can be written as

N
1
== > diPi (35)
N k=1
where
A 1 —
Pk:g&f;ﬂ{ﬂpﬂm}}. (36)

Now using (30) and Proposition 1, it is easy to see that:

Pk = Z 7Ti7kTI‘ {hiil(ﬁ)}
i=1

N
= A+M+M +

i=1

~)7i'i7kTI‘ {hzil(ﬁ)}

N

{hL 1 }

As a consequence of the above, in order to compare two power
schedules under the same energy constraint, one only needs to
compare:

N
1 -
=+ 2 hPr, (37)
k=1
where
~ I\] -
Pr= > ma T (WP} (38)
i=1

Consider the power schedule design Problem 2. Intuitively
we should not allocate any energy when it is not at the esti-
mator’s sample time. The following lemma supports this intu-
ition.

Lemma 6: Given the estimator’s sample scheme
{dy,ds,...,dny} and a sensor power schedule scheme
6 : {Mi,Ms,...,My}. If there exists a certain ¢ such
that d¢ = 0 and M; # 0, then the following new schedule
¢ = {Mj{,Mj, ..., My} withé

0, ifk =t,
M,’C:{Mtﬂ—i—Mt, ifk=t+1,
My, otherwise,

has the same energy cost as 8, however, achieves J(6') < J(6).
Proof: Since M; + M, 1 = M] + M{, ,, we have
Qa1 = Gd11-

Thus for any ¢ > ¢ such that d; = 1, considering the elements
of the ¢-th column of I, we have
Tii—t = (1 - Qt+1)Qt+QQt+3 <o i1,

and

(1 - Qt)Qt+1(Jt+1 e

6[ft = N, thensett + 1 = 1.

Tii—t+1 = qit+-14q;-
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It is straightforward to see that 7r“ ;. > mii—t, whereas
w;’zft +1 < Ti;—¢41 and other elements in this row remain
unchanged. Since P, = > oo, m; Tr{h*"*(P)}, Lemma 1
and Lemma 3 give P, < Pj. Consequently, J(#') < J(8),
which completes the proof. [ |

Lemma 6 gives a necessary condition on a sensor power
scheme to be optimal, namely, M = 0 if d;, = 0.

By using our preceding analysis, the following result charac-
terizes the optimal sensor power schedule.

Theorem 1 (Optimal Sensor Power Schedule): Consider the
sampling instants {k1, ka,..., km} C {1,2,..., N}. We then
have

(39)

N Z <1Z7Tk“k. Tr{hk }) .

The optimal solution to Problem 2 is given by the solution to
the following set of equations:

af (le s Qkoy v o3 ks, s /\L) /a(]k«l = Ov
af (le s Qkoy v o3 ks, s /\L) /a(]k«g = Ov
B (40)
af (le s Qkoy v o3 ks, s /\L) /a(]km = 07
af (levqk‘zv vy Gk, s /\L) /a/\L =0,
where
F (@ Qoo 0, ML) = (qu - ) (41)
Proof: Given the estimator’s sample scheme
{di,ds,...,d} withdy, = dp, = --- = d,, = 1, for any

d; = 0, Lemma 6 gives that M; = 0, ¢; = 1. Then from (33),
we have

Tik, = (1 — q)qiv1Giv2 - qe, =0, Vji=1,2,...,m
Thus
ZMTI {W=YP)} = Zwk ATr{pF (P},
and

N

N 1 N 1 . .
J0) =+ > dyPr = ~ > P,
k=1 J=1

Aot )

which establishes (39).
Since m; ; is function of ¢, ,¢qx,..-.,q%, , W€ can re-

gard J(#) as a multi-variable scalar function in terms of

Qs Qhen s+ - - 3 4k, » With constraints
@i, = (1= V)" € [M, 1]
and
m _
=1-M)"=M
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Now, J (#) is a continuous scalar function on a closed set. From
Lemma 4, there always exists a minimal value of J(#) under
these constraints.

From Lemma 5, the use of Lagrange multipliers can convey
our problem into solving a multi-variable equation series.
By solving (40), we can calculate the critical points of .J ().
Through comparison the critical points with the m boundary
points, i.e., gx, = M, qx, = 1,Vj # i, we can obtain the min-
imal point within the entire set, which is the optimal solution to
Problem 2. It minimizes .J(#), and thereby J(6). ]

The above result shows how to compute optimal periodic
power schedules for the remote estimation problem at hand.

C. Uniform Sampling

As a special case, the present framework can also be used
to investigate estimators which sample at all time instants
k € N. Such systems were studied in previous works, including
[32]-[34], where only two discrete power levels were taken
into account. In those works one of the critical assumptions is
that using high power will lead to error-free transmission. This
simplifies the analysis significantly, since perfect reception
amounts to a resetting of the estimator error covariance to the
stationary value P, see (12). In contrast, in the present work we
do not rely upon perfect transmissions. This allows us to study
more practical schemes, which are, however, more difficult to
analyze. A byproduct of our results in Sections IV and V is that,
when applied to uniform sampling, the optimal solution can be
obtained systematically. In addition, we are able to prove that,
when the period N < 3, the optimal sensor power schedule
follows the principle “as uniform as possible” [34], i.e., to
distribute the energy evenly during the entire time-horizon.

For N = 2, the first two rows of II are given as:

1 P P2
2 [ p2n P92

Thus, we have

j(ﬁ) =(p1 + po)Tr{P} + (p1go + poq1) Tr {h(?)} 7
pr+p=2— [(1 _ )\)Ml +(1- )\)Mz] 7
P1g2 +p2qa = 2(1 — )\)m + [(1 — )\)‘Vl + (1 _ )\)AMQ} )

Since M, + M, = M is constant, it is easy to see that

(1 _ )\)Zwl + (1 _ )\)A/lg

is minimal when M; = M,. Since

(p1 + p2) + (P12 + paqn) = 2(1 — )M

is constant, the result of Lemma 3, gives that .J is minimal when
M; = M, yielding I[he oPtimal sensor power scheduling for
M? M?
with sampling at all instants & € N, w1th N =3, the optimal
For the

case N > 3, simulations also support that the optimal solution is
to distribute the energy uniformly. The analysis of more general
cases, however, lies beyond the scope of the current work. The

case N = 2 as . Similarly, it can be shown that

sensor power scheduling is given by {]\/f M : JM? }
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optimal sensor power schedule can be computed, nevertheless,
from the procedure of Theorem 1.

VI. EXAMPLES

Consider a scalar system with parameters A = 1.2, (' = 0.7,
R = Q=08 X= 0.8. For this system, we have P = 0.9245,
h(P) = 2.1312, h?(P) = 3.8689, h*(P) = 6.3712.

A. Optimal Power Schedule

Suppose that the estimator’s sample scheme {d;} is {1, 0, 1,
0,0}, and M = 2. Because the sensor power schedule scheme
8 is in the form of {M7,0, M5, 0,0}, which implies that ¢; =
(=M g =1- X" gp=q=¢=01-1)"=1,we
can write the first N = 5 rows of II as follows:

P1 0 P3 0 0
0 P1 0 3 0

1
3 0 0 pgs 0O P3|
paqn 0 0 pgs O
0 P3q1 0 0 P193

where p1 =1 — ¢ andps = 1 — g3.
Thus we have

J(0) = (P1 +'Pz)
[p1P + paq1h* (P) + p3P + prgsh®(P)]

[(2—¢1— g3)P + (1 — g3)q1h*(P)
+(1 = qu)gsh*(P)] .

U(| HUH HC:H —

The constraints are given by

q1gs = (L=)M (1= 0)M = (1 -7 = (1-0.8)> = 0.04.
Based on Theorem 1, applying the Lagrange Multiplier
method, (40) yields M; = 1.1911, g1 = 0.1471, M3 = 0.8089,
g3 = 0.2720. It is easy to verify that the obtained solu-
tion is better than the boundary points. Thus the optimal
sensor power schedule uses a periodic power level sequence
{1.1911,0,0.8089,0,0,1.1911,0,0.8089,0,0, .. .}.

Remark 2: From the example we can see that the optimal
schedule does not amount to distributing the energy as uni-
formly as possible to the sample points, i.e., {1, 0, 1, 0, 0}. This
stands in contrast to the case where the estimator operates at all
instants k£ € N, as studied in [34].

B. Simulation Study

Consider the same system as in Section VI-A but with sample
period N = 7. Suppose that the estimator’s sample scheme
{dy}is {1,0,1,0,0,0,0},and M = 3.5. Based on Theorem
1, we can obtain the optimal power schedule:

* = {2.2389,0,1.2611,0,0,0, 0}.
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Fig. 3. Comparison of schedules 81, 82, #3, 84 and §5 when M = 3.5.

To compare the optimal design with others, we consider fol-
lowing 5 intuitive schemes:

61 :{2.2389,0,1.2611,0,0,0,0}.
6 :{3.5,0,0,0,0,0,0},

65 :{0,0,3.5,0,0,0,0},

6, :{0.5,0.5,0.5,0.5,0.5,0.5,0.5}

05 :{1.75,0,1.75,0,0,0,0}.

61 is the optimal scheme calculated based on our main the-
orem, f» and 3 represent the power scheme that distribute all
the energy on a single sample point, §,; denotes the uniform en-
ergy distribution on every point within a period and 5 corre-
sponds to the uniform energy distribution on every sample point
within a period.

Define

N

LS TR}
k=1

N 2 (42)

Ji(8) =

as the empirical approximation (via 10000 Monte Carlo simu-
lations) of .J(#) in (26), evaluated at the end of the i-th period.
Fig. 3 shows the comparison between 61, 62, 83, 84 and 5. The
simulations support that £, gives the best performance, which
is consistent with the results in Theorem 1.

One may note that the performance gap between 1 and 65
is close. It is because that an energy constraint M = 3.5 is
chosen in order to ensure the stability of the system under all five
schedules. Under this constraint, the average data packet arrival
rate becomes sufficiently high to provide an accurate estimation
for both #; and 65. When M becomes smaller, e.g., M = 2.5,
the performance gap between #; and 65 increases as shown in
Fig. 4.

C. Multi-Systems Sampling

In this example we consider the proposed situation in
Section I that the remote estimator samples the data from
two sensors, each measuring two different ARMA processes.
Suppose the parameters of the two systems are given by:

System A: Ay = 1.2, 04 = 0.7, Ry = Q4 = 0.8,
)\A = 0.8, MA = 2;
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Fig. 5. Comparison of estimation performance for two systems.

System B

System B: A = 0.9, Cp = 0.7, Rg = (p =
Ap =08, Mg =1.
System A is the unstable system we studied in Section VI-A.
System B is a stable system with same parameters as system A
except Ap = 0.9. Also since it is a stable system, we have less
energy for system B: Mp = 1.

Suppose that the remote estimator’s sample period is 5, i.e.,
N = 5, and the sample scheme for system A is {1, 0, 1, 0, 0}
while for system B is {0, 1, 0, 0, 1}, thus the optimal power
schedules for system A and B are {1.1911, 0, 0.8089, 0, 0} and
{0, 0.4040, 0, 0, 0.5960}, respectively.

Our simulation compares the estimation performance for the
two systems and Fig. 5 shows the error covariances of the state
estimates at the remote estimator for both systems including the
time slots which are not sampled.

As we can see from the Fig. 5, system B has smaller state es-
timate error of the sample points than system A since system B
is a stable system. This inspires us to investigate how to design
the sampling patterns when multiple processes are to be esti-
mated, which is an interesting problem but out of the scope of
this paper and we will leave it for the future work.

0.8,

VII. CONCLUSION

We have studied the problem of periodic sensor transmis-
sion power schedule with an energy constraint. We derived the
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explicit expression of the estimator’s error covariance at each
time slot and showed how to compute the optimal sensor power
scheduling to minimize the average error covariance. Future
work includes finding the optimal schedule when transmission
loss is governed by a Markov chain and investigating sensor
power scheduling in a multi-sensor architecture with possibly
time-varying system dynamics. It is also of interest to investi-
gate how to design the sampling patterns when multiple pro-
cesses are to be estimated.

APPENDIX

Proof of Lemma 2: We prove this lemma by contradiction.
Suppose that § = {M;, My, o , My} is an optimal power
schedule to Problem 1 with 35, My, < M. Note that

N
M- "M 26>0,
k=1

then we can construct a new power schedule
8 = {MMs,,...,My} based on # according to the
follow step:

M. = M, +6, ifk=1,
T My, otherwise.

From (19) we have p; > p; and g1 < gi. Thus from (33)
and (38), the definition of m; ; and Py, it is straightforward to

show P}, < Py. Consequently, J(A) < J(#), i.c., § cannot be
optimal. Therefore, any optimal solution to Problem 1 needs to
satisfy (27). [ |
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