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Optimal Periodic Sensor Schedule for Steady-State
Estimation Under Average Transmission

Energy Constraint

Zhu Ren, Peng Cheng, Jiming Chen, Ling Shi, and Youxian Sun

Abstract—We consider periodic sensor scheduling for remote state
estimation under average transmission energy constraint. The sensor
decides whether or not to send its data to a remote estimator in order to
meet the transmission energy constraint. The transmitted data are likely
to be dropped due to the imperfect communication. An optimal periodic
schedule is found via the tools from the Markov chain. Furthermore, a
sufficient condition of the system dynamics, energy budget, and packet
drop rate, under which the remote estimator is guaranteed to be stable, is
derived. Examples are provided to show the effectiveness of results.

Index Terms—Energy constraint, Markov chain, sensor scheduling,
stability.

I. INTRODUCTION

Networked control systems (NCSs) have attracted great research
interest in the past decade. Typical applications can be found in au-
tonomous vehicles, environmental monitoring, industrial automation,
smart grids, etc. [1].
The sensors in wireless sensor networks (WSN) are usually pow-

ered by batteries, which can only provide limited energy for sensing,
computation, and transmission, among which, the transmission energy
dominates the total energy cost. Consequently, a sensor has to decide
whether or not to send its current data. To save energy, the sensor may
choose not to transmit. However, the estimation error of the underlying
parameters, which depends on the raw sensor measurement data, may
grow undesirably. Thus, it is of great interest to construct appropriate
schedules of sensor data transmission so that the estimation error can
be minimized under the energy constraint. Moreover, it is highly de-
sirable that the proposed schedule can be implemented easily without
much requirements of sensors.
Significant efforts have been devoted for sensor scheduling prob-

lems. For nonlinear state estimation, Baras and Bensoussan [2] con-
sidered how to schedule a set of sensors for estimating a function
of an underlying parameter. For a number of processes, Walsh et
al. [3] investigated when to schedule different processes to access
the the network so that each process remains stable. Gupta et al.
[4] considered stochastic sensor scheduling in which they defined
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a sensor selection distribution (i.e., at each time, sensor will
be selected with probability to observe the system) and gave the
optimal values of ’s which minimizes the upper bound of the ex-
pected steady-state estimation error covariance. Sandberg et al. [5]
considered a heterogeneous sensor network and propose an optimal
schedule by using a time-periodic Kalman filter. Similar problems
were also considered by Arai et al. [6], [7]. In [5], the objective
is to minimize the sum of the average energy and the trace of the
estimation error covariance simultaneously, while in [6], [7], the
objective is a quadratic cost function. Savage and Scala [8] consid-
ered the optimal sensor scheduling for scalar systems which aims to
minimize the terminal estimation error covariance.
Due to the nature of wireless communication, the transmitted data

packets are likely to be dropped; thus it is natural to investigate the re-
lationship between the packet drop pattern and the estimation stability.
In Sinopoli et al. [9], the sensor directly sends its raw measurement to
the remote estimator. They proved the existence of a critical value for
the packet loss rate below which the expected estimation error covari-
ance diverges. The packet dropping was modeled as an i.i.d. Bernoulli
process. Shi et al. [10] considered the same problem with a different
performance index, the probability that the error covariance is less than
an arbitrary bound. Huang and Dey [11] considered remote state esti-
mation subject to Markovian packet drops. They defined the th error
covariance just before each successful packet reception as the the peak
covariance . A sufficient condition for the stability of peak covari-
ance in the mean sense (i.e., ) was provided. You
et al. [12] extended the results to the mean square stability scenario.
In this technical note, we consider the problem of scheduling

sensor data in order to provide the optimal estimation quality with the
transmission energy constraint. We focus on the periodic scheduling
schemes which are robust and practical to implement. Note that
Hovareshti et al. [13] has considered a special case (the channel is
perfect), while here we assume the channel introduces data packet
drops which is modeled as a Bernoulli process. Shi et al. [14] has
considered a problem with two transmission power levels, i.e., high
level corresponds to perfect communication while low level results in
random packet drops. Different from existing works in [13], [14], here,
when the sensor decides to transmit, the packet is still possible to be
dropped due to the imperfect communication. Such a problem is much
more difficult as the transmitted data is never guaranteed to arrive.
Moreover, such a setting is also more practical as high transmission
power does not necessarily promise perfect communication.
The main contributions of this technical note are as follows.
1) For any arbitrary periodic schedule, we derive the expected av-
erage error covariance as a function of the steady-state error co-
variance by constructing a corresponding Markov chain.

2) We then construct an optimal periodic schedule which minimizes
the estimation error at the estimator and satisfies the energy con-
straint simultaneously.

3) We present a sufficient condition under which the stability of
the estimator is guaranteed with the proposed optimal periodic
schedule.

The remainder of the technical note is organized as follows. In
Section II, we introduce the system models and problem setup along
with some preliminaries on Kalman filter. In Section III, we derive the
expected error covariance for any given periodic schedule. Section IV
provides an optimal periodic schedule under any energy constraint. In
Section V, the estimation stability condition is investigated. Examples
are provided to demonstrate the results. Section VI concludes the note.
Notations. is the set of integers. is the set of positive integers;
is the set of nonnegative integers; is the time index. Given

, if , , , we use
to denote . is the -dimensional Euclidian space. is the set of

positive semidefinite matrices. We simply write , when
; write , when is positive definite, and , when

. For a vector , we always mean a row vector;
denotes its dimension. For matrix , denotes its transpose.
is an row vector ( may be equal to ).

is an row vector . is an identity matrix.
( ) denotes the largest integer that is not larger than , e.g.,

, . For functions : ,

is defined as , and is defined as
with .

II. PROBLEM FORMULATION

A. System Model

We consider a discrete linear time-invariant system

where is the state of system, is the measure-
ment obtained by the sensor, and are both zero-
mean Gaussian random noises with covariances satisfying

, , , , and , ,
where if and otherwise. The initial state is
also a zero-mean Gaussian random vector which is uncorrelated with
or and has covariance . The pair is controllable

and is observable.
Assume that the sensor communicates its data packet with the remote

estimator via a wireless channel. Denote

as all the measurement data collected by the sensor from time to time
. The sensor is able to estimate the state as according to the Kalman
filter1 which results in

We assume that the sensor is able to decide whether to transmit its
or not at each time step. When the sensor transmits at time (we
call, this time, the sensor’s decision variable is ), it will cost an
energy . We assume the communication channel from the sensor to
the remote estimator follows a Bernoulli process : for any
, and , where “1”
denotes that a packet can be successfully received by the estimator if
a packet is transmitted by the sensor and “0” means otherwise. On the
other hand, the sensor is also allowed not to transmit (we call, this
time, the sensor’s decision variable is ) for saving the energy.
Typically, wireless sensor nodes always has a limited energy budget.
Since the transmission power occupies a significant part of the total
energy consumption (e.g., [16] shows that the transmission power is
15 mW while the CPU power is less than 2.5 mW), it is necessary to
schedule the transmission of sensor data so that the performance will
not degrade much while the total energy constraint is satisfied.

B. Problem of Interest

Let denote a schedule for the sensor’s decisions ’s at each time.
We can see the complete scheduling space is exponentially large: from
time 1 to , it consists of different policies, so it will be very difficult
to analyze within the complete space when the time horizon is infinite.
Moreover, in many applications, it is desirable to propose simple but

1Different types of sensors in the market have such computational capability,
e.g., MicaZ [15].
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effective scheduling schemes which will be easy to implement in sen-
sors with limited resources. Thus, throughout this technical note, we
only focus on periodic scheduling policies. A notational convenient
way of expressing a periodic schedule is to use a binary vector,2:

, where and or 1 for all .
Since the sensor’s decisions under one periodic schedule can be defined
by , we call the vector the sensor’s periodic schedule.
Under a given , the estimator will also calculate a state estimate

and its associated error covariance , which will be defined
in the next subsection.We use instead of , etc., for short, when
the underlying schedule is clear. Let be the time horizon.
The average energy cost on the sensor side is defined as

(1)

And the average estimation error covariance on the estimator side in
the infinite horizon is3

(2)

Consider an energy budget . Assume that and are ra-
tional numbers. In this technical note, we are interested in the following
problem
Problem Optimal periodic schedule (OPS)

Since (see Section II-C), we wish to find a periodic
schedule , whose average energy cost on the sensor side is not greater
than and at the estimator side for any with

. In addition, since for symmetric semidefinite matrices,
implies , the solution of our problem

is also an optimal schedule for problem .
Note that since the transmitted data is never guaranteed to arrive, we
have to examine over the entire infinite time horizon instead of
focusing on one period as in [14]. In our case, the state estimation at
the estimator side may diverge if we schedule improperly or have no
sufficient energy, which is also thoroughly different from the problem
considered in [14]. Later in this technical note, in Section III and IV,
we assume that and derive an optimal schedule . In
Section V, we present a condition under which .

C. Kalman Filter Preliminaries

We define the functions and as ,
. It can be proved that if ,

then , and , e.g., see [10].
At the sensor’s side, and are calculated by a Kalman filter

(KF). Denote as the steady-state error covariance, i.e.,
with and ([17]). Then has the following property [14]:
Property 1: If , then and
. Since converges to exponentially fast, we assume that the

2Here we require that . This is because, given arbitrary , if we
redefine as the new schedule, where

, we have not changed the values of and
given later.
3Note that the average estimation error covariance is a function of both

and the Bernoulli process . To simplify the expressions, we will use
wherever no confusion will arise.

Kalman filter enters steady-state at the sensor side. Then at
the estimator side is simply given as

if is received,
otherwise.

Hence, at time , if the latest time that the estimator has received
a packet is at time , then the estimator’s error covariance

(note that ).

III. AVERAGE ERROR COVARIANCE UNDER
ANY PERIODIC SCHEME

Given a schedule , we use to denote ’s period
and to denote the number of 1’s in the . Let

denote a row vector with positive integer
entries such that . Then every can be defined precisely
as a function of :

(3)

where denotes the number of 0’s after the th 1 in the vector . For
example, given , we have .
Later, we write as if no confusion arises. We introduce some
notations that will be used throughout the rest of this technical note.
• ;
• : an optimal periodic schedule of
Problem OPS;

• 4: the set of periodic
schedules with number of 1’s over a period ;

• .
Then Problem OPS becomes to find the optimal vector such that

. Note that in order to construct an optimal periodic schedule,
it is highly desirable that we can calculate an expression of for
any . However, such calculation becomes much more
difficult in our problem setting since the transmitted data is never guar-
anteed to arrive at the estimator.

A. Markov Chain

Now, we will show how to construct a recursive Markov chain by
properly defining and clustering the possible state of the packet sending
and receiving process. Define a state , where the
first entry represents the estimator’s error covariance, and the second
entry is an index which represents that is caused by the sensor’s
decision . Since at next time, the sensor’s decision is

, we get a stochastic dynamic system:

(4)

where

state of the stochastic system at time and
.

decision variable to be selected at time and
where .

channel’s state at time which follows the Bernoulli
process given in Section II-A.

4We always assume that and are coprime, which is for simplicity
of analysis. In fact, in Algorithm OPS which generates an optimal periodic
schedule, we can see the optimal schedule is independent of ’s common
divider.
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Note that (4) is a Markov chain, which represents the evolution of the
error covariance estimation and is the state space for this stochastic
system. If , will evolve to caused by decision

as follows.
If (transmit the packet), then

(5)

where . If (drop the packet)

(6)

Note that in the stochastic system above, when ,
the decision . Let

be a subset of , and be
the transition probability matrix from to
caused by decision . That is the th entry in the matrix is

. From (5) and (6),
we obtain that only has two types. When [see (5)],

; when [see (6)], . We can see
follow a Markov chain with state space , and its

transition probability matrix is given as follows:

...
. . .

where is defined according to the underlying .

B. Average Error Covariance

In this part, we show how to calculate based on the
constructed Markov chain. Write as for short.
Without loss of generality, we assume the sensor’s initial decision is

. This implies that the initial state . Note that
,

where , (see [18, Sec. 4.3]).
Define as the long-run proportion of time that the chain is in state

, i.e.,

Then . Let
. From the matrix , we can

calculate all the values of ’s and find that, in every row vector ,
only entries are nonzero (see Appendix A). Define an row
vector whose entries are equal to the nonzero entries in the
with their original order. With the definition of , we have

Thus , provided (2) converges abso-
lutely. We now give in an explicit form.
Theorem 1: For , define two variables:

where is a constant row vector with matrix as its entries, and
denotes the vectorization of formed by stacking all of them into

a single row vector. Then, .

IV. STRUCTURE OF OPTIMAL PERIODIC SCHEDULES

In this section, we will first prove that, if is an optimal schedule
for Problem OPS, then , i.e., an optimal schedule must
consume all the available energy.
Note that for any , from (1),

In turn, if we have a periodic schedule such that , then
the coprime integers , for can be obtained from the equation:

, i.e., .

Algorithm Optimal periodic schedule (OPS)

Require rational numbers ,

1: get coprime , such that

2: ,

3: If , then , , ,
; else , , , .

4: , ,

5: if then goto 9 endif

6: , . If
, then , ,

, ; else , ,
, .

7: ,

8: if then , goto 6 endif

9: ,

A. Necessary Condition for Optimal Periodic Schedule

We now present a necessary condition for a schedule to be op-
timal. Since this proof is not difficult, for saving space, we omit the
details.
Theorem 2: Problem OPS is equivalent to

. Thus , where .

Therefore, when and are given, the original problem becomes
to find the schedule in , where . This
reduces the search region.

B. Optimal Periodic Schedule

Lemma 1: Given one positive semidefinite matrix sequence
and real sequences

( ). If is an arbitrary permutation of
, let . Then

is least when and are monotonic in opposite order, i.e.,

This lemma is a matrix version of the classical Hardy–Little-
wood–Pòlya rearrangement inequality [19]. It says that the lower
bound of is attained only for the permutation which reverses
the order of . Since the entries in the vector are increasing,

is like the in Lemma 1. Thus, if we can prove that the
vector for each is a permutation of a const vector, and
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find a schedule such that the corresponding entries in
are decreasing, then . Based on this intuition, we give a

condition which guarantees a schedule is optimal.
Lemma 2: If the underlying vector in

satisfies that for any and
(when , let )

(7)

then is an optimal schedule in .
Proof: See Appendix B.

Now we are ready to present an optimal periodic schedule for
Problem OPS.
Theorem 3: For any , , the schedule generated by Algorithm

OPS is an optimal periodic schedule.
Proof: See Appendix C.

In the 1–5 steps, we have ’s and ’s. Steps 6–8 aim to di-
vide the ’s by ’s as “uniform” as possible. Since the algorithmwill
stop when and , at most
iterations are needed for the calculation. What’s more, the input of

every iteration (i.e., steps 6–8) consists two integers and
two set of numbers . Only two times of addition, two times
of subtraction and one time of multiplication (division) are involved
in each iteration. Thus Algorithm OPS has a low computational com-
plexity. On the other hand, we can see in the last step is the greatest
common divider of and . This reflects that , i.e.,
we need not consider the common divider of and .
Example 1: If , then from ,

we have . The algorithm returns the optimal schedule
in 3 steps as follows. We have .

It is interesting to note that in our problem, “as uniform as possible” is
not sufficient to guarantee the optimality. In fact, the sequence order
will also directly affect the estimation performance. From the algo-
rithm, it is clear that the solution constructed by our method is an op-
timal solution for [14], but the solution provided there may not be op-
timal here, which will also be shown in later sections.

V. CONVERGENCE CONDITIONS

As mentioned above, the result of Section IV is based on the con-
vergence of . In this section, we provide conditions under which
the expected error covariance converges.
Lemma 3: If , where and is the th

eigenvalue of matrix , series ( is an matrix)
converges absolutely. The condition is also necessary if
is positive definite.
Now, one sufficient condition for the convergence of can

be derived as follows, which considers a special class of the energy
budget.
Theorem 4: Assume . When the system is control-

lable and observable, if , then converges
absolutely. If or , the condition is also
necessary.

Proof: FromAlgorithm OPS, an optimal schedule is
. Then, using , we get

(8)

where . Since

where , when ,
i.e., , from Lemma 3, the first term of (8) converges
absolutely. In addition, when , the other terms of
(8) will also converge. And if (indicates ) or ,

is a necessary condition.
For the general case , we have the following

statement.
Theorem 5: Assume ( and are coprime).

Let when , and let when .
When the system is controllable and observable, if ,
then will converge.

Proof: From the definition of in the theorem, we have
, then (since the schedule con-

sumes more energy than ). From Theorem 4, when
, , which indicates

. This proves the theorem.
Example 2: Assume the system’s parameters are

and . Let . We obtain an optimal
periodic scheduling . From
Theorem 5, we get . Therefore when the arrival probability

, will converge. Fig. 1 depicts the trace
of under two different arrival probabilities. It can be observed
that, when , converges rapidly, while if , indeed
diverges. In Fig. 2, we show the performance (with ) of
against two other policies: ,

. The trace of outper-
forms the others. In addition, and are both optimal for the
scenario in [14], but, for the scenario considered in this technical note,
only is the optimal one.
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Fig. 1. Performance of under two arrival probabilities.

Fig. 2. Performance of different policies .

VI. CONCLUSION AND FUTURE WORK

In this technical note, we investigate the sensor data scheduling
problem where the sensor decides whether to send its data to a
remote estimator so that the estimation error is minimized while the
energy constraint is satisfied. Different from previous results, the
data transmission is still prone to be dropped due to the unreliable
communication. We construct an optimal periodic schedule that
minimizes the estimation error at the estimator side while satisfying
the energy constraint. Furthermore, we are able to provide a sufficient
condition under which the estimation is guaranteed to be stable. Future
works along the line of this work include using the estimate value
in the schedule calculation, comparing periodic schedules with other
nonperiodic ones and finding the necessary and sufficient condition
for the stability of the remote estimator.

APPENDIX A

Property 2: For a given periodic schedule ,
1) .
2) If ,

;
.

3) For all ( and ), ,
i.e., . In every row vector , only entries are
nonzero.
Proof: 1) Assume . Since at time , state must go

to set , we have ,
. Thus when

. From , , we will
find, for any ,

when . Thus
when .

When , since state will never go to
(0, ), we have . Hence,

when .
2) For any state , when .

It follows that

. Since
, taking limit on

, we have

The proof is completed by noting that when
and when .
3) Combining by 1) and 2), we can calculate all the values of ’s.

Then for any , assume , . We can get
by using property 2) times.

What’s more, since has nonzero entries, from property 2), it
can be derived that, in every ( ), only entries are nonzero
by mathematical induction. This completes the proof.

APPENDIX B

Assume are the nonzero en-
tries in the . Define matrix

, where the th column
, ,

. We have the next property.
Property 3: Given , we obtain

(9)

and when ( ), where is
the th row of . contains all the nonzero entries in ’s, and
is transformed from .

Proof: We will first prove it for the first column
. Consider

and use the Property 2.2) repeatedly by times. We get
, since for

. Then .
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Now consider and use the Property 2.2) by
times. We have

. Repeat this procedure until the first column is
calculated. Other columns can be calculated in a similar way with the
only difference being their start entries.
Since all the nonzero entries in ’s are calculated from
, from the preceding steps, we can see that contains all the

nonzero entries in ’s, and is transformed from , i.e.,
.

The entries in the first rows of (9) are

if ,

if
(10)

where we set that, when , . And ,
so
Let denote the row vectorization of the

first rows of .
Lemma 4: For every schedule , the vector is

decreasing if and only if is decreasing.
Proof: By the definition of , we observe that, for any ,

and . Thus
vector is decreasing. Then is also de-
creasing, if is decreasing. Using this procedure repeatedly and since

, the statement holds.
Based on these results, we get the proof of Lemma 2.
Proof: We first prove that, if

for every , then is optimal. From (9), we can see, for
any , is a permutation of the const vector

. We rearrange every row of in the
decreasing order: , and expand them to
a new row vector . By such rearrangement, we have not changed
the value . Since is decreasing, using Lemma 1, the schedule

is optimal.
Next, we prove that, when a schedule satisfies condition (7), its

matrix will satisfy for all . We prove
it by contradiction. If the statement does not hold, from Lemma 4, we
can find two entries: , . Without loss of
generality, assume , , then
and . From (10), we have

It contradicts with (7). Thus the proof is completed.

APPENDIX C

Proof: First, let and .
Then replace every in the by and by

from to 1, iteratively. We get a series of vectors

. Note tat .
Since , from the property of periodic

schedule, we can only focus on schedule . Then if we can prove that
the vectors defined above satisfy the condition (7), then
is indeed an optimal periodic schedule.

Clearly, and obtained in the Algorithm OPS satisfy the
condition (7). Assume satisfies condition (7), i.e.,

. We will show also holds by contradic-
tion.
If not, without loss of generality, assume we have , ,
such that . Let

and .
Since is a vector constructed by and , we
have 2 more in than , and .
Assume and are the first and last in the

, respectively; and are the first

before and the first after in the , re-

spectively. Let and

.
We can see and have the same number of (assume the
number is ). Then is a sum of successive
elements in , and is another sum.
Since , it contradicts with the assumption of .
Therefore, all satisfy the condition (7).
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