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Schedule Communication for Decentralized
State Estimation

Chao Yang, Junfeng Wu, Wei Zhang, and Ling Shi

Abstract—This paper considers decentralized state estimation
subject to communication constraints. A group of agents measure
the state of a process and obtain their state estimates by exchanging
data with each other. Due to the communication constraint, only a
few communication channels are available. The main objective of
this paper is to allocate these channels among the agents so as to
minimize their average estimation errors. We provide optimal al-
location strategies for agents having the homogeneous and hetero-
geneous sensing capabilities, respectively.

Index Terms—Channel allocation, decentralized Kalman fil-
tering, networked state estimation.

I. INTRODUCTION

T HE beginning of the new century saw the burst of in-
terest in the area of networked systems. In one networked

system, sensors and computation center communicate with each
other through shared communication networks. It has played an
increasingly important role in the fields such as unmanned ve-
hicle, surveillance, environment monitoring, and smart grid [1],
[2]. New issues arise, however, despite the many advantages
they offer. For example, the limited bandwidth of the shared
channels may prevent communication between the sensors, thus
leading to degraded estimation quality.
We consider in this paper a discrete linear time-invariant

process with multiple agents, which estimate the process state
based on their own measurement data and the received data
from the other agents (Fig. 1).
If there are sufficient communication channels, each agent is

able to receive the data from all the others, and the estimates
made by these agents are identical and have the least estimation
error. The HART (Highway Addressable Remote Transducer)
Protocol [3], for example, is one popular global standard for
sending and receiving digital information between devices and
monitoring system. However, in most applications, the commu-
nication channels are limited and only a subset of the agents can
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Fig. 1. Four agents observe a process with three available channels among
them.

communicate with another subset of the agents at each time, as
a result of which, the estimation errors at each agent will be
in general different and the overall estimation error depends on
the allocation of these communication channels. The main ob-
jective of this work is to look for a channel allocation strategy
which minimizes the average estimation error of these agents.
The idea is applicable but not limited to the following real-world
applications.
1) Military Wireless Sensor Networks: Wireless sensor net-
work are often used for military purposes such as mon-
itoring remote militant activities. The sensor network
enables detection of enemy movement, identification of
enemy forces and analysis of their movement and progress.
How to share the information among the sensors are impor-
tant to the overall performance of the military tasks. Due
to limited bandwidth, not all sensor can communicate with
each other at each time, thus it is important to schedule the
communication among the sensors so as to achieve adesired
performance (e.g., minimizing the tracking error, etc).

2) Indoor Environmental Monitoring: Consider one scenario
of measuring the temperature and humidity level inside an
office using a group of sensors. The sensors can get access
to the measurements of others via a few different wireless
channels to avoid potential signal interference (which may
be, for example, several time slots under a TDMAprotocol,
or several different frequencies under a FDMA protocol.),
and based on the measurements collected, each sensor can
compute the estimate of the temperature and humidity lo-
cally. Again, here it is important to schedule who talks to
whom at each time in order to minimize the estimation er-
rors at each sensor node.

Estimation under limited resource constraints have been
studied extensively in literature. We present a few that are
mostly related to our current work. More related works can be
found in the references therein.
Xu and Hespanha [4], [5] discussed the controlled communi-

cation problem over a network subject to bandwidth constraints
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and communication delays. Krishnamurthy and Djonin [6] con-
sidered a model in which only a finite number of sensors can
be selected to take measurements due to operational contraints,
aiming at minimizing a cost function consisting of estimation
errors and measurement costs. Chen et al. [7] addressed one
lifetimemaximization issue.Tomaximize the lifetimeof a sensor
network, they provided the schedule to choose the group of
sensors to communicate directly with the access point. Chhetri
et al. [8] proposed two sensor scheduling algorithms for a target
tracking problem.Mo et al. [9] considered the problem to select a
subset of sensors to communicate to a fusion center dynamically
at each time step,with thepurpose tominimize the asymptotic ex-
pected covariance matrix of the estimation error. They proposed
a stochastic sensor selection algorithm that randomly selects a
subset of sensors according to a certain probability distribution.
Due to the complexity of sensor scheduling problems, it is dif-

ficult to obtain an explicit solution in general, and most of the
literature proposed different algorithms to tackle the problem.
Explicit solutions, however, are always of special desire, attrac-
tion, and interest for scholars, driving them to explore all the
possibilities for a nice form of optimal solutions. In the area of
sensor scheduling, many researchers attempt to find an explicit
solution for different system models and different objective ob-
jective functions. Savage and La Scala [10] investigated a sensor
measurement scheduling problem, which aims at minimizing
the terminal estimation error covariance under the constraint
that only measurements could be taken with a finite
time horizon , and provided the optimal schedule in an explicit
form. Although it is a relatively simple result, it may be viewed
as a significant start. After that many other scholars moved on
and made their contributions. In [11], Shi and Zhang looked at
the periodic sensor scheduling problems involving two sensors
measuring the state of a discrete-time linear process with lim-
ited resources. Yang and Shi [12] considered finite time-horizon
sensor measurement scheduling using the average estimation
error covariance as the performance metric, and proposed a nec-
essary condition of the optimal schedules.
The work considered in this paper also follows this direction,

and manages to give an explicit solution for the channel alloca-
tion problem. The main contributions of this paper are summa-
rized as follows.
1) For a multi-dimensional system containing agents with
identical sensing capabilities, we provide a sufficient and
necessary condition for an channel allocation strategy to
be optimal (Theorem 3.5). Based on this condition, an
optimal allocation strategy is constructed.

2) For agents having different sensing capabilities, a first-
order system is mainly considered and an optimal alloca-
tion is proposed.

The remainder of the paper is organized as follows. Section II
presents the mathematical problem. Sections III and IV intro-
duces the main results. Conclusions and future work are given
in the end.
Notations: is the set of non-negative integers. is the

set of positive integers. is the time index. is the set
of real numbers. is the -dimensional Euclidean space.
(and ) is the set of by positive semi-definite matrices
(and positive definite matrices). When (and ),

it is written as (and ). if
. is the expectation of a random variable and is

the conditional expectation. is the trace of a matrix.
denotes the largest integer which is smaller or equal to . For
functions with appropriate domains, stands for
the function composition , and
with .

II. PROBLEM SETUP

A. System Model

Consider a discrete linear time-invariant process observed by
agents:

(1)

(2)

where is the process state vector at time
is the measurement taken by the th agent,

and are zero-mean Gaussian random vectors with

. The initial state is a zero-mean
Gaussian random vector that is uncorrelated with and for
all and and has covariance . The pair is as-
sumed to be observable and is controllable.

B. Channel Model

The agents can share their data via a few communication
channels, which are to be allocated. Define the allocation vari-
able as follows: when represents
that the th agent receives data from the th one, and in-
dicates that the th agent does not receive data from the th one.
Since an agent is always able to access its own measurements,
we have . Define as the channel allocation
matrix, which is to be designed.
We consider directed channels in this paper. A directed

channel from agent to agent only allows the information
from agent to be sent to agent .

C. Estimation Process

At each time , all the agents first locally predict the state .
After that they transmit their local measurements to and receive
those from their neighboring agents via the feasible channels.
After the data communication, they update their local estimates
by including their local measurement plus the newly received
ones.
For the th agent, denote as the a priori estimate of
, which is the predicted state estimate, and as the a poste-

riori estimate of after updating both the measurements taken
locally and sent by the other agents. Further denote and
as the estimation error covariance matrices of and
, respectively.
Computation of the aforementioned quantities is standard:
1) At time , agent first calculates and ac-
cording to the following:

(3)

(4)
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where the recursion starts from and .
2) After the local measurement is taken, agent transmit

through the assigned channels.
3) After the communication, the agents first do the fusion of
measurements. For agent , define

Agent computes and as follows:

(5)

(6)

(7)

From standard Kalman filtering analysis, converges to a
steady-state value exponentially fast. Define

(8)

The computation (3)–(7) shows that depends on the under-
lying channel allocation matrix .

D. Problem Statement

If the available channels are limited, it is critical to design
an allocation matrix such that a certain objective is met. In
this paper we consider the following cost function for a
channel allocation matrix :

(9)

i.e., we consider the average steady-state estimation errors of
the agents.
The main objective of this paper is to design an allocation

matrix that minimizes the cost function (9), i.e.,
Problem 2.1:

where is the number of available
channels.

III. HOMOGENEOUS AGENTS

Equation (5) suggests the information fusion in terms of the
estimated error covariance. To reveal this, for the th agent, de-
fine the sensing accuracy matrix as follows:

(10)

which serves as a whole in (5) and suggests the contribution to
estimation quality from the th agent.
Furthermore, define the assimilated sensing accuracy matrix

as

(11)

which indicates the total contribution to estimation quality of
the th agent.
In this section, we consider the scenario that all the agents

have identical sensing capabilities.

(12)

A. Preliminary

Define functions and as

(13)

(14)

To simplify the notation in the following discussion we also use
the notation to denote .
Define

(15)

and

(16)

for an arbitrary . is the recursive update equation of the
a postoriori estimated error covariance in standard Kalman filter
and is its limitation, i.e., the steady value of estimated
error covariance after long run. Note that is the fixed
point of the function , i.e.,

One has the following result.
Lemma 3.1: and are decreasing and convex

in with respect to .
Proof: See Appendix.

Remark 3.2: The recursive update equation for estimated
error covariance is usually viewed as the function of
only one independent variable . Here the influence of is
also taken into consideration and investigated.
In this section, further define

(17)

From Lemma 3.1, we have the following results on .
Corollary 3.3: Let with and

, then

Proof: See Appendix.
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Proposition 3.4: For two matrices , if and
, then

Proof: See Appendix.
For agent , from (4) and (5), one has

where is defined earlier in (11). Therefore,

and further one has

(18)

For a , to count the number of sensors sending information to
the th agent, define the connecting number as

In this homogeneous scenario, from (12) one has

As a result,

(19)

and

(20)

B. Channel Allocation

In this subsection, we present optimal solutions to Problem
2.1. Before proposing specific allocation solutions to it, first we
give a necessary and sufficient condition for those feasible op-
timal allocations.
Theorem 3.5: A necessary and sufficient condition for an al-

location to be optimal to Problem 2.1 is that

(21)

where .
Proof: For a feasible . If is optimal,

it is not difficult to show that

Intuitively, this means that all the feasible channels should be
fully used.
To prove the necessity, assume that there is an integer such

that and . If , there must exist
at least one such that . Since , agent
receives data from at least one agent which does

not send data to agent . Then and . Construct
a new allocation as

It is easy to show that , and
for . From Corollary 3.3 and Proposition 3.4, we have

Hence,

which contradicts the optimality of .
Now let us prove the sufficiency. Construct an optimal

under which or for all . Denote the number of
agents receiving and measurements as and ,
respectively. Then from

and can be determined. Therefore,

On the other hand, for any other allocation , if

then it has the same cost as , which indicates that is also
optimal.
Theorem 3.5 reveals the fact that the number of the channels

connected to each agent should be as uniform as possible under
an optimal allocation.
In the following part we present specific optimal allocation

solutions. Though giving the allocation matrix is sufficient, to
better understand the allocation topology among the agents, we
also introduce the channel allocation table (One can refer to
Table I). The row headings represent the agents receiving data
and the column headings indicate the agents providing data.
Each block of the numerical area indicates a feasible channel. If
one block, whose row and column heading titles are ‘Agent ’
and ‘Agent ’ respectively, is assigned with a tick or a number,
it means that agent receives data from agent .
The allocation strategy satisfying the sufficient and necessary

condition given in Theorem 3.5 is not unique. We propose one
optimal allocation strategy interpreted by Table I. The chan-
nels are determined by the order shown in the table, i.e., this pro-
posed optimal allocation consists of the channels marked with
number 1 to . We use an example to illustrate the proposed op-
timal allocation strategy.
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TABLE I
REPRESENTS AGENT

TABLE II
OPTIMAL CHANNEL ALLOCATION

Example 3.6: Consider a system with and .
The optimal allocation strategy proposed above in this case is
illustrated in Table II. The number gives the order to set chan-
nels. The last column counts of each agents, showing that
the largest differences among them is one, which has been elab-
orated in Theorem 3.5. Therefore, the optimal allocation matrix
is

IV. HETEROGENEOUS AGENTS

In this section we discuss the agents with heterogeneous
sensing capabilities. Since the sensing accuracy matrices are
not comparable for general multi-dimensional process, here we
only consider the first-order system.
We use lower case letters to denote the parameters and

variables, i.e., the notations are replaced by
, respectively.

In particular, the sensing accuracy matrix now becomes ,
which is renamed as the sensing accuracy index:

(22)

Without loss of generality, assume

(23)

Also is renamed as the assimilated sensing accuracy index:

(24)

The cost function (9) becomes

(25)

TABLE III
REPRESENTS AGENT

A. Preliminary

We re-define the scalar version of functions and defined
in (13) and (14) as

(26)

(27)

where . Denote as

hence is the solution to the equation

Similarly as the homogeneous scenario, one has

(28)

In this first-order setting, Lemma 3.1 can be strengthened as
the following lemma.
Lemma 4.1: is monotonically decreasing with and is

strictly convex.
Proof: See Appendix.

Moreover, one has the following property.
Lemma 4.2: For any , and

, if , then

Proof: See Appendix.

B. Channel Allocation

We propose an optimal allocation strategy , which
is obtained by a greedy algorithm. The procedure to allocate the
channels is shown in Table III. To facilitate the demonstration,
the form of the table is slightlymodified. The number in the table
is the order to allocate the channel resources. The following
example helps to illustrate it.
Example 4.3: Consider a system with . The

optimal allocation procedure in terms of the order for setting



2530 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 10, MAY 15, 2013

TABLE IV
5 AGENTS WITH 11 CHANNELS OFFERED. REPRESENTS AGENT

TABLE V
A DIFFERENT OPTIMAL CHANNEL ALLOCATION

TABLE VI
STAGE 1

channels is given in Table IV. The optimal allocation matrix
is

Note that homogeneous agents can be viewed as a special sce-
nario of heterogeneous ones. Therefore, Table III provides an al-
ternative schedule for homogeneous case in addition to Table I.
Remark 4.4: Some of the allocating orders given in Table III

are not unique. In Table V, the channels marked by stars are
equivalent as agent 1 and 2 have full information of each other.
The cost is exactly the same when agent 3 sends its data to either
of the two, i.e., the 9th channel can be set in either of the star
places.
Theorem 4.5: The schedule , which allocates the channels

according to the procedure shown in Table III, is optimal.
Proof: Take an arbitrary , under which the steady

state error variance of agent is denoted as and the assim-
ilated sensing accuracy index as . To prove the theorem, we
construct a series of intermediate matrices by
two types of operations on , and show that

The proof is divided into three stages as follows.
1) Operation 1 is to rearrange one agent, say, agent , to re-
ceive data from the most accurate neighboring agents if
feasible, which is illustrated in Table VI.
After applying operation 1 to every such agent, a new al-
location is constructed. Under , the steady
state error covariance of the agent is denoted as

TABLE VII
STAGE 2

and the assimilated sensing accuracy variable as . Since
, then

From (28) and that is decreasing with , one con-
cludes

which leads to .
2) In , define . If there are two row indices

and , such that , then apply operation 2:
first remove the channel providing the least accurate data
to agent , and then add a channel sending the available
most accurate information to agent . The operation is
interpreted in Table VII.
To show the improvement operation 2 brings, we only con-
sider the case and for simplicity.
According to the manner is constructed, for row and
, one knows

and

Then

By operation 2, is constructed as

Under , the steady state error covariance of the agent
is denoted as and the assimilated sensing accuracy
variable as . Then

Note that

and
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TABLE VIII
STAGE 3

Since . Therefore
, i.e.,

satisfies

and

Applying Lemma 4.2 one has

Therefore,

which proves is better than .
After obtaining , we continue to check whether there are
another two row indices and with . If
so we continue to apply operation 2 and construct . By
doing this iteratively, we obtain a , and for any and

.
3) In , if there are two row indices and

, and , then apply operation 2
and construct , illustrated in Table VIII. The verifica-
tion of is similar to that in stage 2.
Repeat doing this step and one obtains , which is
optimal.

The procedure of the proof is demonstrated by a simple ex-
ample in Table IX.
Remark 4.6: We can extend the first-order case to a particular

vector case, where

(29)

in which and . Then the optimal
allocation is the same as the first-order case.

TABLE IX
FROM AN ARBITRARY ALLOCATION TO THE OPTIMAL ONE

V. SIMULATION

Example 5.1: Consider the systemwith homogeneous agents.
Let , then the maximum channel number is

. Let , and

. Given available channels,

let vary from 1 to 90. We compare
1) the cost of the optimal schedule presented in Table I, and
2) the expected cost of a schedule whose channels are ran-
domly picked, computing by the Monte Carlo method.

Fig. 2 shows this comparison. From the figure one can see that
the optimal schedule has lower cost than that of the random one.
Note that when and , which is easy to understand.
Moreover, the curve of the optimal schedule is segmented by the
multiples of , and within each segment the curve is linear, due
to the homogeneity of the agents as well as the uniform property
of channel distributing.
Example 5.2: Consider a system with heterogeneous agents.

Still let . Also

. Similar

as what is done in Example 5.1, we compare the cost of the
optimal schedule given in Table III and the expected cost of a
random one. Fig. 3 shows the result. Note that when , the
cost of the two schedules is different. That is because the optimal
schedule under this scenario is unique, due to the heterogeneity
of the agents.

VI. CONCLUSION

In this paper, we consider communication channel allocation
for a group of agents which measure the state of an underlying
process. Optimal channel allocation strategies are provided for
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Fig. 2. The concrete curve represents the optimal schedule and the dotted one
indicates random schedules.

Fig. 3. The concrete curve represents the optimal schedule and the dotted one
indicates random schedules.

agents with homogeneous and heterogeneous sensing capabili-
ties respectively such that the average estimation error of these
agents is minimized.
There are many interesting future research directions along

the line of this work. In particular, we will consider the fol-
lowing aspects.
1) In this paper, the communication channels are set to be
reliable ones. Unreliable channels (e.g., which introduce
data packet drops or random delays) will be considered.

2) This paper does not consider the cost of using a partic-
ular communication channel. It is reasonable to consider
non-homogenous channel usage costs. For example, two
sensors that are closer typically spend less communication
energy than if they are far away from each other.

3) This paper also does not consider sensing cost at each
sensor. Variable sensing costs will result in a drastically
different channel allocation. For example, those sensors
with smaller sensing cost will be allocated with more com-
munication channels, and vice verse.

APPENDIX

Proposition 7.1: The matrix function is
convex in .

Proof: We need to verify that, given two matrices
and , and two real numbers and satisfying

, the following inequality holds:

Since , then .

Consider the matrix , where is the

identity matrix. Since , and the Schur complement of the
block of is . Similarly

. Thus the matrix . Now

and , then the Schur complement of
of is given by

which leads to

Lemma 7.2: (Matrix Inverse Lemma): Let . If
, then

Proposition 7.3: Define matrix function

(30)

It is concave in and is monotonically increasing with .
Proof: The monotonicity is easy to see. We only prove the

concavity.
If is invertible, then by Lemma 7.2,

For two arbitrary matrices , and two real numbers
,
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where the inequality follows from the convexity of verified
in Proposition 7.1. Hence, is concave.
When is not invertible, for an arbitrary , define

Since is invertible, is concave in . Note that

Further define

It can be easily verified that the function is concave by a
similar way for with invertible , and is monotonically
increasing with . Now

For two arbitrary matrices , and two positive num-
bers ,

where the first inequality holds because of the concavity of
and monotonic increasing of , and the second inequality
is the result of the concavity of . Therefore, the concavity
of is proved.
We are now ready to prove Lemma 3.1.
Proof to Lemma 3.1: Define

Note that

and

To prove the monotonicity, one needs to show

for and all . One can verify this by mathe-
matical induction. When ,

When , assume
holds. When ,

Therefore,

By letting one has

The monotonicity is proved of both and in .
For arbitrary two real numbers , and

two matrices , to show the convexity, it is needed to
verify

for all . First claim

(31)

We still verify this by mathematical induction. When ,

Suppose the argument holds when . When ,

where the first inequality holds because of the concavity of
and the second is due to the assumption of

and the monotonically increasing property of . Therefore,
from the mathematical induction, for all ,

Furthermore,

where the inequalities hold due to the monotonicity and con-
vexity of . Let approaches infinity, one has

By now it has both been proved that and are
convex with respect to in .
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Proof to Corollary 3.3: FromLemma 3.1, is convex.
Therefore, for arbitrary two real numbers ,
and two matrices , one has

Let , it becomes

i.e.,

Rearrange the above inequality, yielding

Therefore,

from which one has

As a result,

Proof to Proposition 3.4: Assume and
. Define as .
Since and and . Note that
is diagonalizable under a similarity transformation since it is

symmetric, i.e.,

where and are the
eigenvalues of . Since which implies that

. Assume , then .
Therefore, and , which contradicts
that . Therefore, .

Proof to Lemma 4.1: Themonotonicity and convexity have
been proved in Lemma 3.1. To show is strictly convex, one
can further calculate :

Direct calculation shows that . Further calculation re-
veals that . Since is strictly convex.
We state one property for the strictly convex real function as

follows.
Proposition 7.4: Given a strictly convex function , for

any , and , there is

(32)

Proposition 7.4 has a corollary as follows.
Corollary 7.5: Given a strictly convex function , for any

, and , there is

(33)

Proof: Given , from Proposition 7.4, (32)
holds.
To prove (33), consider the following three cases:
1) .
Let . Then (33) becomes

which is directly verified by (32).
2) .
Since , (32) shows

Since , by applying (32),

Combine the above two inequalities and obtain

which verifies (33).
3) .
Since , from (32) there is

Since , (32) verifies

The above two inequalities lead to

which proves (33).

Proof to Lemma 4.2: Since is strictly convex, from
Corollary 7.5, there is

Since and is decreasing with ,

Then

i.e.,
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From the condition , there is

i.e.,
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