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a b s t r a c t

We consider the discrete-time dynamics of a network of agents that exchange information according to
a nearest-neighbour protocol under which all agents are guaranteed to reach consensus asymptotically.
We present a fully decentralised algorithm that allows any agent to compute the final consensus value of
the whole network in finite time using theminimumnumber of successive values of its own state history.
We show that the minimum number of steps is related to a Jordan block decomposition of the network
dynamics, and present an algorithm to compute the final consensus value in the minimum number of
steps by checking a rank condition of a Hankel matrix of local observations. Furthermore, we prove that
the minimum number of steps is related to graph theoretical notions that can be directly computed from
the Laplacian matrix of the graph and from the minimum external equitable partition.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Fuelled by applications in a variety of fields, there has been
a recent surge of interest in consensus dynamics (Cao, Ren, &
Chen, 2012). In its most basic formulation, the consensus problem
studies the linear discrete-time dynamics of a network of agents
that exchange information according to the nearest-neighbour
averaging rule. The consensus problem has broad implications
beyond the analysis and design of collective behaviour in
multi-agent systems. Various applications can be cast in this
framework, including swarming and flocking (Tanner, Jadbabaie,
& Pappas, 2003), distributed computing (Bertsekas & Tsitsiklis,
1989), agreement in social networks (Olfati-Saber, 2005; Watts &
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Strogatz, 1998) or synchronisation of coupled oscillators (Barahona
& Pecora, 2002; Jadbabaie, Motee, & Barahona, 2004; Pecora &
Barahona, 2005; Stan & Sepulchre, 2007).

The design of efficient distributed consensus algorithms is a
current focus of active research in the Control literature. Under
broad assumptions, well-known results (Jadbabaie, Lin, & Morse,
2003; Olfati-Saber & Murray, 2004; Ren & Beard, 2007) give
conditions to ensure that the state of each agent reaches the
consensus value asymptotically. From a practical point of view,
however, requiring an ‘infinite’ or arbitrarily long time to obtain
the final consensus value of the system is unsatisfactory. The
principles for the computation of the asymptotic final value of
the network in finite time were introduced in Sundaram and
Hadjicostis (2007). Other work related to finite time consensus in
continuous-time systems can be found in Wang and Xiao (2010)
and Hui, Haddad, and Bhat (2008).

In Yuan (2012), Yuan, Liu, Murray, and Goncalves (2012) and
Yuan, Stan, Shi, and Goncalves (2009), we extended the results
in Sundaram and Hadjicostis (2007) and studied the minimum
number of discrete-time steps required by an arbitrarily chosen
agent to compute the asymptotic final value of the network
without any prior knowledge of the systemdynamics. Importantly,
the information used for that purpose was solely based on the
accumulation of the successive state values of the agent under
consideration and, consequently, the corresponding algorithmwas
truly decentralised. Of related interest is Ref. (Bauso, Giarre, &
Pesenti, 2009), which considers a game-theoretical approach to

http://dx.doi.org/10.1016/j.automatica.2013.02.015
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.automatica.2013.02.015&domain=pdf
mailto:yy311@cam.ac.uk
mailto:g.stan@imperial.ac.uk
mailto:eesling@ust.hk
mailto:m.barahona@imperial.ac.uk
mailto:jmg77@cam.ac.uk
http://dx.doi.org/10.1016/j.automatica.2013.02.015


1228 Y. Yuan et al. / Automatica 49 (2013) 1227–1235
consensus when agents have prediction capabilities. The approach
in Bauso et al. (2009) relies on the use of characteristic polynomials
to obtain an upper bound on the number of steps required by any
node to compute the consensus value.

The structure of this paper is as follows. Firstly, we introduce
an algorithm that allows any agent in a consensus-guaranteed
network to compute the consensus value using one step fewer
than in Yuan et al. (2009) (provided that every node assumes
consensus will be reached). This algorithm relies on the analysis
of the rank of a Hankel matrix constructed from local observations
at any chosen node. Furthermore, we show that the minimum
number of steps is linked to a global property of the network: the
degree of a specific matrix polynomial. This provides us with an
algebraic characterisation of the local convergence to consensus in
terms of properties of the Laplacian matrix of the graph. Finally,
we show that the minimum number of steps required to compute
the consensus value from local observations of any chosen node
can be bounded in terms of two combinatorial graph theoretical
properties: the minimum external equitable partition of the graph
with respect to that node and the longest distance for that node.
Throughout the paper we illustrate our results with examples
that highlight how our framework can establish a link between
the spectral and graph theoretical properties of a network of
interacting agents and the minimum-time solution of distributed
decision-making problems.

Notation. The notation in this paper is standard. For a matrix A ∈

RM×N , A[i, j] ∈ R denotes the element in the ith row and jth col-
umn, A[i, :] ∈ R1×N denotes its ith row, A[:, j] ∈ RM×1 denotes
its jth column, and A[i1 : i2, j1 : j2] denotes the submatrix of A
defined by the rows i1 to i2 and the columns j1 to j2. For a col-
umn vector α ∈ RN×1, α[i] denotes its ith element. We denote by
eTr = [0, . . . , 0, 1rth, 0, . . . , 0] ∈ R1×N . Furthermore, IN denotes
the identity matrix of dimension N .

2. Consensus dynamics: formulation and previous results

2.1. Formulation of the problem

Consider a directed unweighted graph denoted by G = (V, E),
where V = {ν1, . . . , νn} is the set of n nodes and E ⊂ V × V
is the set of edges. Wn×n is the corresponding adjacency matrix,
with W [i, j] = 1 when there is a directed edge from j to i, and
W [i, j] = 0 when there is no edge from j to i.

Let x[i] ∈ R denote the state of node i. The classical consensus
problem for a network of continuous-time integrator individuals is
defined by the following dynamics (Olfati-Saber & Murray, 2004):

ẋ(t) = −Lx(t),

where L ∈ Rn×n is the Laplacian matrix induced by the topology G.
L is defined as L[i, j] = −W [i, j]∀i ≠ j, and L[i, i] =


l≠i W [i, l].

In this paper we consider the associated discrete-time consen-
sus dynamics on a network:

xk+1 = (In − ϵL) xk , A xk

yk = eTr xk = xk[r], (1)

where xk ∈ Rn×1 and ϵ is the sampling time. Without loss of
generality, we concentrate on the case where the measurable
output yk ∈ R corresponds to the local state of an arbitrarily chosen
individual node labelled r .

2.2. Global asymptotic convergence to distributed consensus (Jad-
babaie et al., 2003); (Olfati-Saber & Murray, 2004)

Let dmax = maxi L[i, i] denote the maximal node in-degree of
the graphG. If the network has a rooted directed spanning tree over
time (Jadbabaie et al., 2003; Ren&Beard, 2007) (or if it is connected
in the case of an undirected graph) and the sampling time ϵ is such
that 0 < ϵ < 1/dmax, then the discrete-time version of the classical
consensus protocol (1) ensures global asymptotic convergence to
consensus in the sense that

lim
k→∞

xk =

cT x0


1n×1

where 1n×1 is a vector with all components equal to 1, and cT
is a constant row vector. In other words, the states of all nodes
converge asymptotically to the same value given by a linear
combination of the initial states of the nodes, x0.
Algebraic characterisation of distributed asymptotic consensus (Xiao
& Boyd, 2004)

When cT1 = 1, the iteration given by (1) achieves distributed
consensus if and only if:
A.1. A has a simple eigenvalue at 1 and all other eigenvalues have

a magnitude strictly less than 1.
A.2. The left and right eigenvectors of A corresponding to the

eigenvalue 1 are cT and 1, respectively.

2.3. Finite-time computation of the final consensus value (Sundaram
& Hadjicostis, 2007)

Recent work by Sundaram and Hadjicostis (Sundaram &
Hadjicostis, 2007) has shown that it is possible to obtain the final
value of the consensus dynamics in a finite number of steps. Their
result hinges on the use of theminimal polynomial associatedwith
the consensus dynamics (1) in conjunction with the final value
theorem.

Definition 1 (Minimal Polynomial of a Matrix). The minimal
polynomial of matrix A ∈ Rn×n is the monic polynomial q(t) ,

tD+1
+

D
i=0 αit i with minimum degree D + 1 that satisfies

q(A) = 0.

Given the explicit solution of (1) with initial state x0, it follows
from the definition of the minimal polynomial that the dynamics
(1) satisfies the linear regression equation:

xk+D+1 + αDxk+D + · · · + α1xk+1 + α0xk = 0, ∀k ∈ N. (2)

Similarly, the regression equation for yk = xk[r], the
measurable output at node r , is determined by the minimal
polynomial of the corresponding matrix observability pair [A, eTr ].

Definition 2 (Minimal Polynomial of a Matrix Pair). The minimal
polynomial associated with the matrix pair [A, eTr ] denoted by
qr(t) , tDr+1

+
Dr

i=0 α
(r)
i t i is the monic polynomial of minimum

degree Dr + 1 ≤ D + 1 that satisfies eTr qr(A) = 0.

Remark 1. The minimal polynomial of a matrix and the minimal
polynomial of a matrix pair are unique due to the monic property.

Again, it is straightforward to show that:

Dr+1
i=0

α
(r)
i yk+i = 0, ∀k ∈ N, (3)

whereα
(r)
Dr+1 = 1. Hence each node r is associatedwith a particular

length (Dr + 1) of the regression in (3) which is upper bounded by
(D + 1), the degree of the minimal polynomial of the dynamical
matrix A.

Consider now the z-transform Y (z) , Z(yk). From (3) and the
time-shift property of the z-transform, it follows that:

Y (z) =

Dr+1
i=1

α
(r)
i

i−1
ℓ=0

yℓz i−ℓ

qr(z)
,

H(z)
qr(z)

. (4)
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Under the assumptions specified in Section 2.2, the minimal
polynomial qr(t)does not possess any unstable root apart fromone
at 1. We can then define the following polynomial:

pr(z) ,
qr(z)
z − 1

,

Dr
i=0

βiz i. (5)

The application of the final value theorem (Gluskin, 2003) and
some simple algebra then gives the consensus value as:

φ = lim
z→1

(z − 1)Y (z) =
H(1)
pr(1)

=
yTDr

β

1Tβ
(6)

where yTDr
=


y0 y1 · · · yDr


and β(Dr+1)×1 is the vector of

coefficients of the polynomial pr(z) defined in (5).
Based on these results, an algorithm to obtain the consensus

value was proposed in Sundaram and Hadjicostis (2007). The
algorithm in Sundaram and Hadjicostis (2007) is distributed but
not entirely local, in the sense that a local calculation is repeated
over n independent iterations (where n is the number of nodes of
the network) and at each iteration each node needs to store its own
values for the past n+ 1 steps. Hence a total of n(n+ 1) successive
values of x[r] are required for the calculation of the consensus
valueφ using theprocedure described in SundaramandHadjicostis
(2007).

2.4. Minimum-time, decentralised computation of the final consensus
value

The purpose of this paper is to characterise the computation of
the final consensus value φ using only the output observations of
node r in minimum time. We formalise and improve our previous
results (Yuan et al., 2009) and show that, for a general arbitrary
initial condition (i.e., except for a set of initial conditions with
Lebesgue measure zero (Blondel, Hendrickx, & Tsitsiklis, 2010)),
the consensus value can be obtained from local observations in a
minimum number of steps that does not depend explicitly on the
total size of the graph. In our framework, the minimum number of
steps is computed in a truly decentralised manner by checking a
rank condition for a Hankel matrix constructed exclusively from
local output observations. We also provide a graph theoretical
characterisation of this local property in terms of properties of the
graph Laplacian and itsminimumexternal equitable partition. This
characterisation can be used to provide further understanding into
which graph properties contribute to the disparity in the ability of
different nodes to compute the global consensus value from local
information.

3. Minimum time consensus and the Jordan block decomposi-
tion of the consensus dynamics

Given the linear system (1) and an initial state x0, it follows
from above that there always exist scalars d , d(r, x0) ∈ N and
a0, . . . , ad ∈ R such that the following linear regression equation
is satisfied ∀k ∈ N

yk+d+1 + adyk+d + · · · + a1yk+1 + a0yk = 0. (7)

From the definitions above, it is clear that Dr + 1 is the minimum
length of recursion:

Dr + 1 = min
d∈N

max
x0∈Rn

{d(r, x0) + 1 : Eq. (7) holds∀k} .

Remark 2. Among the many recursions of length d that are not
necessarily minimum, (Dr + 1) appears as a min–max over the
space of (d, x0). When d + 1 = Dr + 1, the coefficients ai in (7)
correspond to α

(r)
i , the coefficients of the minimal polynomial of

the matrix pair [A, eTr ] in (3).
In this section, we give an algebraic characterisation of the
minimum number of steps Dr + 1 based on the projection of the
Jordan block decomposition of Ak on eTr . Our aim is to obtain the
coefficients α

(r)
i in (3) from stored data so that we can compute

future outputs recursively.
Consider the standard Jordan decomposition of A:

A = SJS−1 (8)

S =

s1 s2 · · · sn


(9)

J = diag {J1(λ1), J2(λ2), . . . , Jl(λl)} (10)

where

Ji(λi) =


λi 1

λi 1
. . .

. . .

λi 1
λi


ni×ni

, (11)

and si, the columns of the non singularmatrix S, are the generalised
eigenvectors of A (Zhou, Doyle, & Glover, 1996). The matrix A has
l (not necessarily distinct) eigenvalues λi, each of them associated
with a Jordan block of size ni, such that

l
i=1 ni = n. Without loss

of generality, we assume that the blocks are ordered by decreasing
size: n1 ≥ n2 ≥ · · · ≥ nl.

Using Eq. (8), the linear dynamics (1) can be rewritten as
follows:

xk[r] = eTr A
kx0 =


eTr S


Jk


S−1x0


, σ T Jkχ, (12)

where the vectors

σ T
=


σ T
1 σ T

2 · · · σ T
l


1×n (13)

χ T
=


χ T
1 χ T

2 · · · χ T
l


1×n (14)

are partitioned according to the Jordan blocks in (8), e.g., σ T
1 =

σ11 · · · σ1ni


and χ T

1 =

χ11 · · · χ1n1


. Here,

Jk = diag

Jk1(λ1), Jk2(λ2), . . . , Jkl (λl)


has the well-known structure (Horn & Johnson, 1999):

Jki (λi) =

k−1
m=0


k
m


λk−m
i Jmi (0), (15)

where Jmi (0) follows from the definition of the Jordan block in (11).
The output dynamics (12) then becomes:

xk[r] =

l
i=1

k−1
m=0


k
m


λk−m
i


σ T
i Jmi (0) χi


. (16)

Note that because of its Jordan block structure, the matrix Jmi (0)
induces a strict m-shift on the vector χi for m ≤ ni. Therefore if
k ≥ maxi{ni}, we have:

xk[r] =

l
i=1

ni−1
m=0


k
m


λk−m
i


ni−m
j=1

σijχij+m



,

l
i=1

ni−1
m=0


k
m


λk−m
i gim. (17)

However, some of the gim might be zero (we might even have
situations in which all the coefficients associated with a particular
eigenvalue are zero) so that the dynamics of node r can be written
as:

xk[r] =

lr
i=1

nri −1
m=0


k
m


λk−m
i gim (18)
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where nr
i ≤ ni and lr ≤ l. Eq. (18) can be rewritten as a dot product:

xk[r] = vr(k)T gr ,

vT
1 (k) vT

2 (k) · · · vT
lr (k)

 
g1
g2
...
glr


where

vT
i (k) ,


k
0


λk
i


k
1


λk−1
i · · ·


k

nr
i − 1


λ
k−nri +1
i


1×nri

gT
i ,


gi0 · · · gi(nri −1)


.

Here, {λ1, . . . , λlr } is an ordered subset of distinct eigenvalues
from the original Jordan block decomposition and gi are the
coefficients in Eq. (17). The degree of the characteristic polynomial
that underlies the length of the recursion for node r is then:
lr
i=1

nr
i = Dr + 1.

Remark 3. Note from Eq. (12) that nr
i depends on er , A, and x0.

Based upon the decomposition of confluent Vandermonde
matrices introduced in Boley, Luk, and Vandevoorde (1998), it is
easy to see that
vT
i (k) = ēTi Jk

i (λi)

where Ji(λi) is a Jordan block of size nr
i as defined in (11) and

ēTi =

1 0 · · · 0


1×nri

is the unit vector of the same length.
The dynamics (12) can thus be rewritten in terms of a Jordan
decomposition of reduced dimensionality as follows:

xk[r] = ET
r J

k
r gr , ∀k, (19)

where
ET
r ,


ēT1 · · · ēTlr


1×(Dr+1) and

Jr , diag

J1(λ1), J2(λ2), . . . , Jlr (λlr )


(20)

are partitioned according to the lr blocks.
From the above analysis we have the following lemma.

Lemma 1. Consider the discrete-time LTI system (1). The minimal
polynomial associated with x[r], as given in Definition 2, is the
characteristic polynomial of the matrix Jr in Eq. (19) which has order
Dr +1 =

lr
i=1 n

r
i . The final consensus value φ can be computed from

Eq. (6) based on the coefficients of the minimal polynomial of the pair
[A, eTr ] and the successive values of x[r].
Proof. The Jordan matrix Jr in Eq. (19) has the property that each
of its Jordan blocks has distinct eigenvalues. It then follows (see
Horn and Johnson (1999)) that theminimal polynomial of [A, eTr ] is
the same as the characteristic polynomial of [Jr , eTr ], i.e., e

T
r qr(A) =

eTr qr(Jr). Therefore the minimal polynomial possesses the follow-
ing explicit form: det(Jr − tI) =

lr
i=1(t −λi)

nri = tDr+1
+αDr t

Dr +

· · · + α1t + α0, and has degree Dr + 1. This latter relationship also
shows that Dr + 1 =

lr
i=1 n

r
i . �

Remark 4. Lemma 1 states that, instead of being written in terms
of an n-dimensional Jordan block decomposition of J , as in Eq. (12),
the general expression of xk[r] can be equivalentlywritten in terms
of a smaller Dr + 1-dimensional Jordan matrix Jr , as in Eq. (19).

Remark 5. The minimum integer value Dr + 1 necessary for the
recursion (7) to hold for a generic initial condition x0 is given by the
degree of the minimal polynomial of the observability pair [A, eTr ]
(see Yuan et al. (2009)). In otherwords, Eq. (7) holds for a randomly
chosen initial state x0, except for a set of initial conditions of
Lebesgue measure zero (Blondel et al., 2010).
4. Decentralised minimum-time consensus computation algo-
rithm

In the decentralised problem we assume that node r does not
have access to any external information, such as the total number
of individuals n in the network, the number of its neighbours, its
local communication links with its neighbours, or the state values
of its neighbours. In Yuan et al. (2009),we showed that for a general
discrete-time LTI system (1), 2Dr + 3 successive discrete-time
steps are needed by an individual r to compute the final value in
a fully decentralised manner. If the network is well-designed for
consensus (i.e., if the assumptions in Section 2.2 are satisfied and
asymptotic convergence to consensus is guaranteed), we hereby
propose an algorithm (Algorithm 1) that computes the final value
using 2Dr + 2 successive discrete-time steps.

Problem 1 (Decentralised Problem). Consider the discrete-time
LTI dynamics in Eq. (1) where an arbitrarily chosen state x[r]
is observed and assume that the conditions for consensus
(Assumptions A.1 and A.2) are satisfied. The decentralised problem
is to compute in finite time the asymptotic value of this state φ =

limk→∞ xk[r] using only its own successive state values yk = xk[r],
observed over a range of time-steps which is minimum.

Consider the vector of 2k+1 successive discrete-time values at
node r , X0,1,...,2k[r] = (x0[r], x1[r], . . . , x2k[r]), and its associated
Hankel matrix:

Γ {X0,1,...,2k[r]} ,


x0[r] x1[r] · · · xk[r]
x1[r] x2[r] · · · xk+1[r]

...
...

. . .
...

xk[r] xk+1[r] · · · x2k[r]


k ∈ N. (21)
Consider also the vector of differences between successive values
of x[r]:
X0,1,...,2k[r] = {x1[r] − x0[r], . . . , x2k+1[r] − x2k[r]}.

Notice that under the assumption that the network will reach
consensus, the final value of all nodes will eventually be the same
and, as result, the computed final value is the consensus value.
Under this assumption, the z-transform of Eq. (3) has a root at 1, as
discussed in Eq. (5).We use this fact in Algorithm1below to reduce
the number of steps required to compute the final consensus value
to 2Dr + 2 steps.

Algorithm 1 Decentralised minimum-time consensus value com-
putation

Data: Successive observations of xi[r], i = 0, 1, . . ..
Result: Final consensus value: φ.
Step 1 Compute the vector of differences X0,1,...,2k. Increase the
dimension k of the square Hankel matrix Γ {X0,1,...,2k[r]} until it
loses rank and store the first defective Hankel matrix.
Step 2 The normalised kernelβ =


β0 . . . βDr−1 1

T of the
first defective Hankel matrix gives the coefficients of Eq. (6).
Step 3 Compute the final consensus value φ using Eq. (6).

To understand Algorithm 1, consider a Vandermonde factorisa-
tion (Boley et al., 1998) of the Hankel matrix (21):

Γ {X0,1,...,2k[r]} = V (0, k)TrV T (0, k), (22)
in which we have defined the confluent Vandermonde matrix

V (0, k)(k+1)×(Dr+1) =


ET
r

ET
r Jr
...

ET
r J

k
r

 , (23)
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6

Fig. 1. Underlying topology for Example 1 with sampling time ϵ = 1/6.

in terms of the elements defined in Eq. (20). As shown in Boley et al.
(1998), the (Dr + 1) × (Dr + 1) block diagonal matrix

Tr = diag{Tr,1, . . . , Tr,lr }, Tr,i ∈ Rnri ×nri ,

has the following symmetric upper anti-diagonal form:

Tr,i =


∗ ∗ ∗ ∗ ti
∗ ∗ ∗ ti

∗ ∗
. . .

∗ ti 0
ti

 ,

where ti and ∗ are determined from the values of xk[r].
Without loss of generality, consider λ1 = 1 so that Tr,1 ∈ R. We

then have

Γ {X0,1,...,2k[r]} = Γ {X1,2,...,2k+1[r]} − Γ {X0,1,...,2k[r]}

= VTrdiag{λ1, . . . , λlr }V
T

− VTrV T

= VTrdiag{0, λ2 − 1, . . . , λlr − 1}V T

= Vdiag{0, (λ2 − 1)Tr,2, . . . , (λlr − 1)Tr,lr }V
T

= V ′diag{(λ2 − 1)Tr,2, . . . , (λlr − 1)Tr,lr }V
′T ,

where V ′
= V [2 : k + 1, 2 : Dr + 1]. From the last equation, it is

easy to see that k ≥ Dr + 1 is a necessary and sufficient condition
for Γ {X0,1,...,2k[r]} to be defective.

Theorem 1. Consider the system in (1) and assume that the
conditions for consensus (Assumptions A.1 and A.2) are satisfied.
Then the minimum number of successive discrete-time steps, starting
from step i, for the arbitrarily chosen node x[r] to compute its final
consensus value is 2(Dr +1)−δr −min{i, δr}, where δr is the number
of zero roots in qr(t) = 0.

Proof. The proof follows from the above derivations and Corollary
1 of Ref. (Yuan et al., 2009) by taking zk , xk+1[r] − xk[r] as yk in
that Corollary. �

For simplicity of exposition, wemake the following assumption
in the rest of this section:
A.3. The matrix A in (1) does not possess any eigenvalue at 0.

Remark 6. Under Assumption A.3, Theorem 1 establishes that
the minimum number of steps for node r to compute the final
consensus value is 2Dr + 2.

Example 1. Consider the network topology in Fig. 1 under dynam-
ics (1) with A , In − ϵL and a sampling time ϵ = 1/6. The
topology is undirected and connected and A satisfies Assumptions
A.1–A.3. Therefore the final value of each node is the average of
the initial state values. For the randomly chosen initial state x0 =
1.3389 2.0227 1.9872 6.0379 2.7219 1.9881

T , the fi-
nal consensus value is thus 2.6828. We now apply Algorithm 1 to
node r = 1.
Table 1
Comparison of the minimum number of successive values needed by each node to
compute the final consensus value of the network in Fig. 1 with n = 6 nodes.

Ref. (Sundaram & Hadjicostis, 2007) Our result

Node 1 6 × 7 = 42 2 × 4 = 8
Node 2 6 × 7 = 42 2 × 4 = 8
Node 3 6 × 7 = 42 2 × 4 = 8
Node 4 6 × 7 = 42 2 × 5 = 10
Node 5 6 × 7 = 42 2 × 6 = 12
Node 6 6 × 7 = 42 2 × 6 = 12

step 1. We increase the dimension k of the square Hankel matrix
Γ {X0,1,...,2k[1]} until it loses rank. This happens for k = 3. We then
store the first defective Hankel matrix:

Γ {X0,1,...,8[1]}

=

1.2358 0.2050 0.0367 0.0047
0.2050 0.0367 0.0047 −0.0037
0.0367 0.0047 −0.0037 −0.0067
0.0047 −0.0037 −0.0067 −0.0079

 .

step 2. The normalised kernel of the first defective Hankel matrix is

β =

−0.0833 0.7778 −1.6667 1

T
.

This gives the coefficients of Eq. (6).

step 3. We compute the final consensus value φ = 2.6828 using Eq.
(6).

The value of φ obtained in a decentralised manner is equal to the
consensus value given by the average of the initial state. Repeating the
procedure for each of the six nodes gives the same value φ. However,
the number of steps required by each node to compute the final con-
sensus value φ differs. This is summarised in Table 1.

While the method proposed in Sundaram and Hadjicostis
(2007) requires a total of n(n + 1) successive values of x[r],
our algorithm shows that the minimum number of successive
values of x[r] needed is node specific and is just 2(Dr + 1)
for almost all initial conditions. Furthermore, our algorithm is
completely decentralised, i.e., it does not require any knowledge
of the total number of nodes in the network, n, or of any other
global (centralised) information about the network (contrary to
Sundaram and Hadjicostis (2007, Section V)).

As can be noted in Table 1, some nodes need fewer successive
observations of their own state to compute the final consensus
value of the network. We call such nodes dominant nodes.
A question arises at this point: given a consensus-guaranteed
network, can we identify the dominant nodes? We address this
question in the following section using graph-theoretical concepts.

5. Graph-theoretical characterisation of theminimumnumber
of steps

We now provide answers to the question raised at the end
of the last section. We do this from two different perspectives.
In Section 5.1, we provide an algebraic characterisation of the
minimum recursion length Dr + 1 based on the (grounded) graph
Laplacian. In Section 5.2, we link Dr + 1 to the number of cells in a
special partition of the graph called theminimum external equitable
partition with respect to node r .

For simplicity of exposition,weonly consider undirected graphs
in the following sections, i.e., hereafter we assume:

A.4. The matrices L and A in Eq. (1) are symmetric.
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5.1. Algebraic graph-theoretical characterisation

We start by stating the connection between the minimum
recursion length at node r and the rank of the observability matrix.

Proposition 1. Consider the observability matrices

Ωr =


eTr
eTr A
. . .

eTr A
n−1

 and Θr =


eTr
eTr L
. . .

eTr L
n−1

 . (24)

Then Dr + 1 = rank (Ωr) = rank (Θr).

Proof. The first equality follows directly from the definition of
the minimal polynomial (Definition 2) and the Cayley–Hamilton
theorem (Zhou et al., 1996):

eTr qr(A) =

Dr+1
i=0

α
(r)
i eTr A

i
= 0.

Hence the number of independent rows of the matrix Ωr is
precisely Dr + 1. The second equality follows from the definition
A = I − ϵL and Gaussian elimination (Horn & Johnson, 1999). �

These results imply that Dr + 1 is related to the number of
(distinct) eigenvalues of the Laplacian matrix whose eigenvectors
have non-zero components for node r .

Proposition 2. Consider the system in Eq. (1) satisfying Assump-
tions A.1–A.4. Additionally, assume that the Laplacian matrix L has
no repeated eigenvalues. Then

Dr + 1 = n − ηr ,

where ηr is the number of eigenvectors of L with a 0 at the rth
component.

Proof. Without loss of generality, assume we observe node 1,
i.e., let r = 1 and η1 be the number of eigenvectors of L with a
zero in their first component:

Lvi = λivi, vT
i = [0, uT

i ], i = 1, . . . , η1.

It then follows that

eT1L
kvi = 0, ∀k, and Θ1vi = 0 for i = 1, . . . , η1.

Since L = LT and the eigenvectors form an orthogonal basis, then
dim(ker(Θ1)) ≥ η1. Conversely, it is easy to see that a necessary
condition for a vector to belong to the kernel of Θ1 is that its first
component is zero: Θ1v = 0 ⇒ eT1v = v[1] = 0. Since the
eigenvectors are all orthogonal and non-degenerate, this implies
that dim(ker(Θ1)) = η1 and therefore rank(Θ1) = n − η1. This
result also follows from the PBH test (Zhou et al., 1996). �

Remark 7. If there are repeated eigenvalues, the above result just
provides an upper bound:

Dr + 1 = rank(Θ1) ≤ n − η1,

since it is possible to generate independent vectors with a zero
rth component through linear combinations of the eigenvectors
within each degenerate subspace. Hence, the number of repeated
eigenvalues has to be further discounted from the nullity of
the observability matrix, as well as any block of degenerate
eigenvectors with a zero overall component in the rth position.
This statement is linked to results on the dimensionality of the
observable subspace. Belowwe provide a characterisation in terms
of the grounded Laplacian that discounts the effect of eigenvalue
multiplicity.
Our further algebraic characterisation relates Dr + 1 to the
number of eigenvalues shared by the Laplacian matrix and the r-
grounded Laplacian matrix.

Definition 3 (Grounded Laplacian Matrix). Let L ∈ Rn×n be the
Laplacian matrix of graph G. The r-grounded Laplacian matrix,
denoted Lr , is the symmetric submatrix of L obtained by deleting
the rth row and the rth column.

Remark 8. It is easy to show that any Laplacian matrix L can be
written in terms of L1 as

L =


1T L11 −1T L1
−L11 L1


. (25)

Theorem 2. Consider the system in Eq. (1) satisfying Assump-
tions A.1–A.4. Then

Dr + 1 = n − µr ,

where µr is the number of eigenvalues shared between L and Lr .

Proof. Again, without loss of generality, let r = 1. Let λi(L) be an
eigenvalue of Lwith eigenvector vi:
1T L11 −1T L1
−L11 L1

 
vi[1]

vi[2 : n]


= λi


vi[1]

vi[2 : n]


. (26)

If vi[1] = 0, then ui = vi[2 : n] is an eigenvector of L1:

L1ui = λiui and 1Tui = 0.

Conversely, consider a shared eigenvalue of L1 and L: λi(L1) =

λi(L) ≠ 0 with eigenvectors ui ∈ R(n−1)×1 and vi ∈ Rn×1,
respectively:

(1T L11) vi[1] − 1T L1vi[2 : n] = λi vi[1] (27)
−vi[1] L11 + L1vi[2 : n] = λi vi[2 : n] (28)
L1ui = λiui. (29)

Due to the symmetry of L, multiplying Eq. (28) from the left with
uT
i , leads to:

vi[1] uT
i L11 = 0 ⇒


(i) vi[1] = 0
(ii) uT

i L11 = 0.

In both cases, there is an eigenvector of L with eigenvalue λi and a
zero first component: for (i), this eigenvector is vi with vi[1] = 0;
for (ii), this eigenvector is [0, uT

i ]
T . Hence, an eigenvalue of Lwith a

zero rth component will be shared with the grounded Laplacian
and, conversely, a shared eigenvalue implies the existence of
an eigenvector of L with a zero rth component (which could
potentially correspond to a linear combination of degenerate
eigenvectors of L that did not have this property).

It then follows from the proof of Proposition 2 that dim(ker
(Θ1)) = µ1, i.e., the dimension of the observable subspace from
node r is equal to the number of shared eigenvalues between
the Laplacian and r-grounded Laplacian, which is itself equal to
Dr + 1. �

As shown above, the coincidence of eigenvalues between L and
Lr discounts the effect of the degeneracy in the spectrum of L,
as can also be seen from the following bound obtained from the
interlacing theorem (Horn & Johnson, 1999):

Lemma 2. Consider the system in Eq. (1) satisfying Assump-
tions A.1–A.4. If L has ℓ distinct eigenvalues λi with multiplicities mi
(i = 1, . . . , ℓ), then

Dr + 1 ≤ n −

ℓ
i=1

(mi − 1) = ℓ.
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2

1

3

Fig. 2. Example graph used to illustrate the algebraic interpretation of the
minimum number of steps.

Proof. From the interlacing theorem, if λi(L) has multiplicity mi,
then λi is also an eigenvalue of Lr withmultiplicity at least (mi−1).
Therefore, the number of shared eigenvalues between L and Lr is
bounded by µr ≥

ℓ
i=1(mi − 1) = n − ℓ. �

This result confirms our Remark 7 and shows that eigenvalue
multiplicity needs to be discounted, i.e., the number of distinct
eigenvalues of L provides an upper bound for Dr + 1.

Example 2. Consider the network in Fig. 2 with

L =

 2 −1 −1
−1 1 0
−1 0 1


.

The observability pair relative to node r = 1 based on Eq. (1) with
A = I −

1
3 L is [A, [1 0 0]] with minimal polynomial q1(t) = t2 − t .

Hence, D1 + 1 = 2 since the order of this polynomial is 2.
The observability matrix in this case is

Θ1 =


1 0 0
1
3

1
3

1
3

1
3

1
3

1
3

 .

From Proposition 1, it follows that D1 + 1 = rank(Θ1) = 2, as
expected.

From Theorem 2, note also that L and L1 share the eigenvalue 1,
hence D1 + 1 = 3 − 1 = 2.

5.2. A non-algebraic, graph-theoretical characterisation

In this section, we consider the following question: given an
undirected network, can we identify the dominant node(s) from
the graph without any algebraic computation?

We adopt definitions and notations from Egerstedt (2010). A
partition of a graph G = (V, E) is defined as a mapping from
vertices to subsets of vertices called cells: π : V → {C1, . . . , CK }

where Ci ⊆ V, ∀i. Let Im(π) = {C1, . . . , CK } denote the image ofπ ,
and degπ (i, Cj) denote the node-to-cell degree, i.e., the number of
nodes in cell Cj that share an edge with node vi under partition π :

degπ (i, Cj) = card

k ∈ V|π(k) = Cj and (i, k) ∈ E


.

We define π−1(Ci) = {j ∈ V|π(j) = Ci}, i.e., the set of nodes that
are mapped to cell Ci.2

In what follows, we use the concept of external equitable
partition (EEP) (Egerstedt, 2010). As we show below, EEPs
correspond to partitions of the graph that disregard the internal
interconnection structure inside a cell. We shall show that the EEP
with respect to a node is directly related to the minimum number
of steps necessary for this node to calculate the final consensus
value.

2 Note thatπ is not a one-to-onemapping but amany-to-onemapping. However,
we can still define a new function to map back from Cj to V (Egerstedt, 2010).
Fig. 3. An example to illustrate the external equitable partition (EEP). In this case,
the partition is EEP with respect to node 1 in C1 .

Definition 4 (External Equitable Partition (EEP) (Egerstedt, 2010)).A
partition π∗ of the set of nodes V consisting of s > 1 cells
{C1, . . . , Cs} is external equitable if the number of neighbours in
Cj of a vertex v ∈ Ci depends only on the choice of Ci and Cj (i ≠ j),
i.e.,

degπ∗(l, Cj) = degπ∗(k, Cj), ∀k, l ∈ π∗−1
(Ci).

Definition 5 (Minimum EEP with Respect to a Node). A partition πr
of V with cells {C1, . . . , Cs} is external equitable with respect to
node r if the partition is external equitable and the node r is in
a cell alone, i.e., π(vr) = vr . The minimum EEP of a graph with
respect to node r , π∗

r , is such that card{Im(π∗
r )} is minimal.

Example 3. We illustrate the above definitions in Fig. 3. The
partition shown is external equitable since different nodes in the
same cell have the same degree to other cells, and is also external
with respect to the node in C1.

Theorem 3. Consider the system in (1). Solely based on observations
of node r, the minimum length of recursion necessary to obtain the
final consensus value is less than the number of cells sr in π∗

r , the
minimum external equitable partition with respect to node r,

dr + 1 ≤ Dr + 1 ≤ card

Im


π∗

r


, sr , (30)

where dr + 1 is the longest distance from node r to any other node in
the graph G.

Proof. The proof that dr + 1 ≤ Dr + 1 is provided in Yuan (2009).
We now prove Dr + 1 ≤ sr . Without loss of generality, let

r = 1. We use a Breadth-First-Search (BFS) algorithm to label the
cells, as follows. We start from node 1 (i.e., cell 1) and explore all
the neighbouring cells. For each of those nearest cells, we consider
their own neighbouring cells and so on, until we have labelled all
the cells in the minimum EEP with respect to node 1.

Consider now the block matrix obtained by permuting and
partitioning A according to π∗

1 :

Aπ∗
1

=


A11 A12 · · · A1s1
A21 A22 · · · A2s1
...

...
. . .

...
As11 As12 · · · As1s1

 .

Here, Aii ∈ Rli×li contains the interconnections between any two
nodes in cell C∗

i , and li denotes the number of nodes in cell C∗

i .
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Hence, l1 = 1 and
s1

i=1 li = n. The off-diagonal submatrices
Aij ∈ Rli×lj contain the interconnections between nodes in C∗

i and
C∗

j . In particular, we shall consider the following submatrices:

A1 , Aπ∗
1
[2 : n, 2 : n]

f T1 , Aπ∗
1
[1, 2 : n] =


A12 · · · A1j 0 · · · 0


.

Note that there are only j neighbouring cells to cell 1: A1(j+1), . . . ,

A1s1 = 0 for some j > 1.
The observability matrix (24) associated with the pair [Aπ∗

1
, eT1]

is:

Ω1 =


1 0 · · · 0
A11 A12 · · · A1s1
...

...
. . .

...
∗ ∗ · · · ∗

 , (31)

where ∗ is a placeholder representing a real value. Applying
Gaussian elimination to Ω1, one can show that

rank(Ω1) = rank



1 0 · · · 0
0
... Ξ

0


 = rank(Ξ) + 1,

where Ξ is the observability matrix associated with the pair
[A1, f T1 ]. According to Camlibel, Zhang, and Cao (2012), Egerstedt
(2010) and Martini, Egerstedt, and Bicchi (2010); Martini, Egerst-
edt, Cao, Camlibel, and Bicchi (in press), the rank of this observabil-
ity matrix fulfills the following inequality:

rank(Ξ) ≤ dim-span




1r2
0
0
...
0

 ,


0
1r3
0
...
0

 , . . . ,


0
0
0
...

1rs1


 , (32)

with ri = card

C∗

i


. Hence, rank(Ξ) ≤ s1 − 1, from where it

follows that

D1 + 1 = rank(Ω1) ≤ s1 = card

Im


π∗

1


. �

Remark 9. Theorem 3 provides a link between local observations
(i.e., the minimum number of successive values that a node r
needs to accumulate to compute the final consensus value of the
network) and a global property (i.e., the underlying minimum EEP
of the network with respect to node r). Using this theorem, one
can directly bound the minimum number of steps for particular
nodes in the network without resorting to algebraic numerical
manipulations.

Remark 10. Empirical numerical results indicate that the upper
bound in Theorem 3 is tight for a wide variety of graphs with the
equality holding in most cases (Martini et al., in press). We are
currently investigating underwhat conditions these twoquantities
are equal.

Example 4. As shown through numerical computations in Exam-
ple 1, theminimumnumber of steps for nodes 1, 2 and 3 is 8, while
nodes 5 and 6 require 12 steps. Fig. 4 shows that themEEPwith re-
spect to node 1 has 4 cells while the mEEP for node 5 has 6 cells. In
this case, the number of cells in the corresponding minimum EEPs
coincides with the numerical results in Example 1.
a

b

Fig. 4. Minimum EEP of the graph in Fig. 1 and Example 1 with respect to: (a) node
1 (4 cells) and (b) node 5 (6 cells). Different colours correspond to different cells
(colour online).

6. Conclusion

This paper formulates and analyses the decentralisedminimum
time consensus problem. In contrast to other tools in the literature,
our algorithm computes the final consensus value from the history
of any node in a completely decentralised manner. The necessary
information for any node is its own history and is therefore
exclusively local, as the algorithm does not require any global
knowledge about the network, such as the total number of
nodes in the system, information about the neighbourhood of the
node, or specific edge weights. After characterising the minimum
number of steps required for any given node to compute the
final consensus value, we provided algebraic, graph-theoretical
and locally informative interpretations of the minimum number
of steps.

There are a number of interesting directions for future research
in terms of network design. For instance, we are currently working
on the problem of computing a minimum EEP with respect to
a node in polynomial time. Also it is important to mention that
the EEP-based results provided here for undirected graphs can
be extended to directed graphs at the price of a more elaborate
exposition using graph automorphisms. We plan to extend this
work to address the following questions: (a) Given a constraint
on the number of edges in the network, what are the network
structures that maximise the number of shared eigenvalues
between Laplacian and grounded Laplacian? (b) Given a specific
network topology, how canwe choose theweights of the Laplacian
matrix to minimise the minimum number of steps that a chosen
node requires to compute the final consensus value? (c) How
do robustness aspects such as node or edge failures affect the
minimum number of steps in a consensus network?

In terms of applying the proposed minimum-time consensus
algorithm to real systems, numerical issues (typically related to
the computation of the rank) arise when applying the proposed
algorithms to large-scale systems. We are currently investigating
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the use of state-of-the-art methods to compute the rank and are
also studying the use of graph theoreticalmeans to characterise the
minimum number of steps so as to avoid such pervasive numerical
issues.
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