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Finite Horizon LQR Control With Limited
Controller-System Communication

Ling Shi, Ye Yuan, and Jiming Chen

Abstract—We consider finite-horizon LQR control with limited con-
troller-system communication. Within a time-horizon , the controller
can only communicate with the system times. We present an
explicit expression on the optimal control data schedule for unstable
first-order systems and a class of higher-order systems. We also discuss
when such a control data schedule remains optimal (or is near optimal)
for general systems.

Index Terms—Control data scheduling, LQR control, optimization,
Ricatti equation.

I. INTRODUCTION

Networked control systems have gained much interest in the past
decade thanks to the recent advances in network infrastructure, com-
munication architecture and computer technology [1]. Control over
communication networks can reduce system wiring and hence reduce
the operational cost, and make efficient use of shared resources such as
network bandwidth, central control unit, etc. However, new issues arise
when the control loop is closed via a network. For example, network
induced delays and data packet drops may severely degrade system per-
formance and may even cause instability [2].
Sinopoli et al. [3] took a look at how packet loss affects state esti-

mation. They showed that there exists a certain threshold of the packet
arrival rate below which, , the expected value of the error covari-
ance matrix, becomes unbounded as time goes to infinity. They also
provided lower and upper bounds of the threshold value. The authors
extended their result from estimation to LQG control in [4] where sta-
bility region of packet arrival rates were provided. Gupta et al. [5]
considered LQG control over a packet-dropping network. By using
a separation principle, they decomposed the problem into a standard
LQR controller design, together with an optimal encoder-decoder de-
sign for propagating and using the information across the packet-drop-
ping network. Their proposed encoder-decoder was proved to be op-
timal among all encoder-decoders.
In many networked control applications, network resources such

as the available bandwidth and computational unit have to be shared
by many systems accessing the network at the same time, thus proper
scheduling schemes are often required to guarantee certain desired
properties of those systems. For example, Walsh et al. [6], [7] studied
the problem of when to schedule which process to access the network
so that all processes remain stable.
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Control/sensor data scheduling is in general a difficult and chal-
lenging task and most existing results rely heavily on relaxation tech-
niques and often only generate suboptimal schedules [8]. Limiting the
control actions often yields a different mathematical formulation than
limiting the available sensor observations, although in many cases,
control and estimation are dual concepts of each other, e.g., controlla-
bility/observability. For example, consider the problem of LQG control
over a packet-dropping network [4]. Assume there is no acknowledge-
ment on whether the control or the sensor data arrive successfully. Then
limiting the sensor measurements only affects the state estimation error
covariance, while limiting the control actions affects both the state es-
timation error and the system performance. In light of the difficulty
tackling scheduling both the control data and sensor measurements si-
multaneously, most existing works looked at either limited sensor ob-
servations or limited control actions.
The early work by Kushner [9] considered optimal timing of sensor

observations for a scalar discrete-time linear system with unknown ini-
tial state. By using the tools of optimal stochastic control theory, the
optimal timing of the available sensor measurements were determined
which minimizes the expected value of a cost function that is quadratic
in the control and the terminal position error. Following [9], Sano and
Terao [10] investigated optimal timing of sensor observations for a con-
tinuous-time linear system and obtained analytic solutions for a class
of special scalar systems. Skafidas and Nerode [11] also considered op-
timal timing of sensor observations for LQG control, and they showed
that the cost function is only a function of the measurement times rather
than the measurements themselves, which allows the optimization to
be performed offline. No closed-form solution, however, was given
but numerical examples were provided to demonstrate how such an
optimization can be carried out. Instead of taken the number of avail-
able sensor measurements as a hard constraint, Molin and Hirche [12]
looked at a cost function which consists of the classic LQG quadratic
cost and a weighting factor on each sensor measurement. The latter one
is treated as a penalty cost for communication between the sensor and
the remote controller. Optimal scheduling law can be obtained by using
dynamic programming algorithm. Gupta et al. [13] proposed a sto-
chastic sensor scheduling scheme and provided the optimal probability
distribution over the sensors to be selected. Sandberg et al. [14] con-
sidered estimation over a heterogeneous sensor network. Two types of
sensors were investigated: the first type has low-quality measurement
but small processing delay, while the second type has high-quality mea-
surement but large processing delay. Using a time-periodic Kalman
filter, they showed how to find an optimal schedule of the sensor com-
munication. Savage and La Scala [15] considered the problem of op-
timal measurement scheduling for scalar systems that minimizes the
terminal error. Yang and Shi [16] also considered optimal measurement
scheduling for remote state estimation of scalar systems, but focused
on minimizing the average estimation error over a finite time horizon.
Under some mild assumptions, the authors showed that under an op-
timal sensor data schedule, the sensor-to-estimator communication in-
stances should be separated as uniformly as possible.
Imer and Başar [17] considered optimal LQG control of a scalar

system with limited control actions. They showed that the optimal con-
trol is a threshold policy on the best estimate of the system state which
can be generated by a Kalman filter. Bommannavar and Başar [18] con-
sidered optimal LQG control of a class of higher-order systems with
limited control actions. The cost function does not penalize the control
actions and it was also shown that the optimal control is a threshold
policy, and the optimal thresholds can be obtained numerically. Similar
problems with limited control actions were investigated by Shemonski
[19]. More related topics and results can be found from the references
in the aforementioned existing work.

Fig. 1. Optimal scheduling of control data.

In this paper, we consider finite-horizon LQR control under limited
communication between the controller and the system. The main con-
tributions of this paper are summarized as follows.
1) For unstable first-order systems and a class of higher-order sys-
tems for which condition (8) holds, we provide a closed-form ex-
pression for an optimal control data schedule, which is in contrast
to most available works in literature where only numerical solu-
tions were provided or only scalar systems were considered.

2) For a general higher-order system, we discuss the cases when the
control data schedule in the first part remains (or is near) optimal.

The remainder of the paper is organized as follows. Section II gives
the mathematical problem setup. Section III presents the main result of
this paper. Some discussions are included in Section IV and concluding
remarks are provided in the end.
Notations: is the set of non-negative integers. is the time

index. is the set of natural numbers. is the -dimensional Eu-
clidean space. is the set of by positive definite matrices. When

, we simply write . means . For

functions , ,

and . denotes the expectation of a

random variable. denotes the trace of a matrix.

II. PROBLEM SETUP

Consider the following discrete linear time-invariant system in
Fig. 1. The system dynamics is given by

(1)

where is the system state at time , is the control
input at time , and is the decision variable at the controller
(actuator) whether it sends to the system or not. We assume is
unstable with being controllable. This decision-making at the
controller (actuator) whether to send or not arises for example in
the following application scenarios.
1) The controller is a shared computation unit and is not dedicated
to work for the system.

2) The communication bandwidth between the controller and the
system is finite.

3) The actuator is time-shared by a few other systems and can only
be used for system (1) for a limited number.

4) There is a critical cost (e.g., energy) associated with each use of
the actuator.

Consider any initial condition which is known to the con-
troller (hence all future state are known to the controller).
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The controller computes the optimal linear control law
such that the following cost function:

is minimized, where , , and is the time-horizon
of interest. We assume that is observable.
Assume the controller can communicate with the system for (
and ) times, which is equivalent to say that

(2)

A schedule at the controller consists of a sequence of binary-valued
variables . Apparently, , the set of all
such schedules, contains elements.
For a given schedule , define as

(3)

In this technical note, we are interested in the following problem.
Problem 2.1:

(4)

In other words, we wish to find a controller-system communication
schedule which satisfies (4) and minimizes the cost function .
For simplicity, we write and as and when the un-

derlying schedule is clear from the context. is feasible if it satisfies
(4) and is optimal if it is feasible and for any other feasible schedule ,

.

III. MAIN RESULT

In this section, we present the main result of this note. First we trans-
form Problem 2.1 into a different form that is easier to handle. We will
make use of the following proposition. The proof is simply based on
dynamic programming and is omitted.
Proposition 3.1: For a given schedule , the control law that

minimizes defined in (3) is given by

where is given recursively by

if and

if . The above recursion starts from . Furthermore, the
cost function is given by

To facilitate the analysis later, define the functions
as

(5)

(6)

Since is controllable and is observable, from the
analysis of standard algebraic Riccati equation (e.g., [20, Proposition
4.4.1]), the equation has a unique positive definite solution

, i.e.,

(7)

Furthermore for all initial condition , the recursion
converges to , i.e., . From Proposition 3.1,

Problem 2.1 is equivalent to the following:
Problem 3.2:

if
if .

Note that an optimal schedule to Problem 3.2 in general may depend
on the initial state . However, as we shall see from the followingmain
result of this note, if (8) or the conditions of Proposition 3.7 holds, then
the greedy, -independent schedule given by (9) is optimal.
Theorem 3.3: If satisfy

(8)

then an optimal schedule to Problem 3.2 is given in terms of
as follows:

(9)

We need the following tool to prove the theorem. From [3], for any
, and satisfy , and
. The following property on and is essential to prove

Theorem 3.3.
Lemma 3.4: If (8) holds, then for any and

(10)
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Proof: First note that (10) holds trivially when . When
, by (8), we have

...

Now assume (10) holds for any . Then

Therefore, by induction, (10) holds for any . Also note that if
or , (10) becomes an equality.

We are now ready to prove Theorem 3.3.
Proof to Theorem 3.3: We first prove defined by (9) is optimal

by showing that for any , . Notice that from this
we obtain

Since is given by

if
if

for any feasible schedule , can be written as

(11)

for some and some
which satisfy

Since , to show we need to
establish that

(12)

By (10) and the fact that both and are increasing functions, we have
that

By (10), again we have that

Iterating the same argument we arrive at (12).
Remark 3.5: A dual result (for scalar systems only) in the context

of state estimation is obtained in [15], where the sensor takes measure-
ment during the last time steps to minimize the terminal error co-
variance. Theorem 3.3 says that to minimize the LQR cost, the control
steps should be applied during the first time steps.
Remark 3.6: The schedule (9) is also the optimal open-loop sched-

uling policy in [17] (with ), where a scalar system is considered.
This is reflected in the first part of Proposition 3.7.
The next result characterizes a class of systems for which the

schedule presented in Theorem 3.3 is optimal.
Proposition 3.7: For the following two special systems, condition

(8) holds if:
1) and , i.e., unstable first-order systems;
2) and the matrices satisfy .
Proof: 1) Straightforward calculation shows that (8) holds when
and . 2) From the Matrix Inversion Lemma, for any
, can be written as

Thus, if , then

Proposition 3.7 presents two classes of systems in which the
schedule (9) is optimal. The first class consists of unstable first-order
systems. The second class consists of a special higher-order systems,
where the physical meaning of is that the control
input weighting is smaller than that of the state weighting. In this
case, since the control is relatively “cheaper”, it is “wise” to use large
control to bring down the state at the beginning.

IV. DISCUSSIONS

A. A General Constraint

The constraint (4) can have a general form as

i.e., the controller is allowed to communicate with the system for at
most times. The optimal schedule is, however, the same as that of
Problem 2.1. A quick proof to this runs as follows.
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Suppose is optimal with . Let be a time
such that under , . Let be identical to except that

. Notice that

thus is still feasible. Now

where if and otherwise. Since ,
there exists such that the above inequality becomes strict.
Hence we conclude that is better than . In other words, cannot
be optimal. Consequently, an optimal schedule has to satisfy (4).

B. General Systems

In Proposition 3.7, we see that if satisfy
, then the schedule constructed in Theorem 3.3 is optimal. In this

section, we consider the case when the aforementioned condition for
does not hold. Let be the controllability index for ,

i.e., is the smallest integer such that the matrix

(13)

has rank . One immediately obtains that since is
controllable. One also notices that if is invertible, then , and
if is a single column vector, then .
We focus on the case when . If , to the best of our

knowledge, very little can be said on the optimal schedule. One may
invoke computational tools such as enumerating and comparing all pos-
sible schedules to obtain the optimal schedule, since in this case is
small and consequently is even smaller.
When , instead of searching for the optimal schedule, which

is a challenging task, we provide an upper bound on the performance
difference between proposed in (9) with the true optimal schedule.
We also show that this upper bound decays to zero exponentially with
. First consider controlling system (1) over the time horizon 0 to
(assuming for all ) with the following cost:

The minimum cost, from Proposition 3.1, is given by

Let . Then we can write as

By letting , the terminal state
. This choice of is valid as has rank and consequently

is invertible. Notice that and can be written as
and for some constant matrices and . Therefore

where

(14)

Note that can be any arbitrary vector in , and as a result,
. We summarize the above observation in the following

lemma.
Lemma 4.1: Let be defined as in (14). Then for

any .
Let now denote the true optimal schedule to Problem 3.2. Notice

that such an optimal must exist since the number of all feasible
schedules is finite. Let be defined according to (9), i.e.,

and . Then we have the following
result.
Theorem 4.2: If , then

(15)

where is defined in (14).
Proof: From Lemma 4.1

On the other hand

(16)

where if and , otherwise. By the optimality
of , we have

which proves the theorem.
Remark 4.3: From Proposition 4.4.1 in [20] and its proof,

and the convergence of to
is exponential in . Furthermore, the convergence rate is given by ,
the spectral radius of the closed-loop stable matrix

In other words, there exists a constant such that
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From this fact, we obtain the following:

where and are two positive constants and are
independent of . Therefore, when , we have

i.e., the constructed is close to the real optimal . Notice that can
still be significantly less than as the following example shows.
Example 4.4: Consider the following third-order system:

and , , . For this system, . We
consider the following different values of .

: In this case, there must be at least 166 consecutive times
during which no control is applied. Under any feasible schedule, the
cost quickly diverges during these 166 time steps as the system
is unstable and is not controllable with less than three control inputs.

: Following the procedure of calculating and prior to
equation (18), we get

According to Theorem 4.2, we find that

and

i.e., differs from by at most 27%. One may notice that the controls
are only applied in the first five steps while the system is running open
loop during the remaining 495 time steps. This may seem to be even
worse than the case. The truth is that with , the optimal
control given by Proposition 3.1 drives arbitrarily close to the
origin at and remains close to the origin afterwards. On the
other hand, when , cannot be made arbitrarily close to the
origin in any with less than three controls, hence it diverges.

: This time

i.e., differs from by at most 0.13%.
: The difference is shown to be

i.e., the performance between and is negligible.
Therefore, even condition (8) may not hold in this example, the pro-

posed schedule (9) has almost the same performance as the true op-
timal schedule, provided that is slightly bigger than the controllability
index . Note that in all three cases, , and the controller-to-ac-
tuator communication rate equals to 1%, 2% and 3%, respectively. We
also notice that decays exponentially in , which agrees
with the previous analysis.

C. Two Special Cases

In this section we consider two special cases: 1) when is fixed but
and 2) when both and but the ratio .

For both cases, we assume . We have the following result.
Proposition 4.5:
1) When is fixed and ,

for some constant .
2) When both and with ,

Proof:
1) Taking the limit as on the right-hand-side of (15) and
using the fact that , one has

2) Clearly as , , thus

In the first case, one sees that as long as is sufficiently large, the
cost function under our proposed schedule will not deviate much from
the real optimal schedule. In the second case, when is also sufficiently
large (the duty cycle can be made at the same time arbitrarily close to
zero), one sees that our proposed schedule is arbitrarily close to the real
optimal schedule.

V. CONCLUSION

A finite horizon LQR control where the controller is allowed to com-
municate with the system times within a time horizon is
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considered in this paper. Optimal control data schedule is presented in
closed-form for a class of systems and some discussions on the optimal
schedule for general systems are presented.
Future work along the line of this work include finding the exact

optimal schedule for general higher-order systems and LQR control
with output feedback, and considering LQG control data scheduling.
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Realization of a Special Class of Admittances with One
Damper and One Inerter for Mechanical Control

Michael Z. Q. Chen, Kai Wang, Yun Zou, and James Lam

Abstract—In this note, we investigate the realization problem of a special
class of positive-real admittances, which is common in vehicle suspension
designs. The number of inerters and dampers is restricted to one in each
case and the number of the springs is arbitrary. To solve the problem, we
first convert a previous result by [6] to a more direct form. A necessary
and sufficient condition for realizability is then derived and explicit circuit
arrangements are provided by assuming that the three-port network con-
sisting of only springs after extracting the damper and the inerter has a
well-defined impedance. To remove the assumption on the existence of a
well-defined impedance, a condition is established on the topological prop-
erty of the -port network without a well-defined impedance to obtain
an equivalent class of such networks so that the realizability condition is
derived with realization. By combining the conditions with and without a
well-defined impedance, the final realization result is obtained.

Index Terms—Electric circuits, inerter, mechanical networks, network
synthesis, passivity.

I. INTRODUCTION

Passive network synthesis is a classical subject in electrical circuit
theory which experienced a “golden era” for the 1930s–1970s [1], [2],
[11], [16]. Despite the relative maturity of the field, certain aspects of
passive network synthesis are still incomplete. For example, the only
general method for transformerless electrical synthesis by Bott and
Duffin [2] appears to be highly non-minimal. However, interest in the
field has declined despite the relatively recent development in the de-
sign of positive real functions [8], [10], [15], [20].
Recently, a new network element, named inerter [4], [19], has been

introduced with the property that the (equal and opposite) force applied
at the terminals is proportional to the relative acceleration between
them. Applications of the inerter to vehicle suspension, motorcycle
steering control and vibration absorption have been identified with per-
formance advantages demonstrated (see [4] and references therein).
One of the main motivations for the inerter was the synthesis of passive
mechanical networks. The inerter completes the analogy between elec-
trical networks and mechanical ones (see [19, Fig. 4]), which makes
any passive mechanical network realizable with three kinds of passive
elements: inerters, dampers, and springs. However, the number of ele-
ments for mechanical networks is much more essential than electrical
ones. Therefore, given the existing and potential applications of the in-
erter, interest in passive network synthesis has been revived [5]–[7],
[12], [13]. The need for a renewed attempt on the same subject and its
fundamental connection to system theory has also been highlighted by
Kalman [14].
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