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How Can Online Schedules Improve
Communication and Estimation Tradeoff?

Junfeng Wu, Ye Yuan, Huanshui Zhang, and Ling Shi

Abstract—We consider remote state estimation and investigate
the tradeoff between the sensor-to-estimator communication rate
and the remote estimation quality. It is well known that if the com-
munication rate is one, e.g., the sensor communicates with the re-
mote estimator at each time, then the remote estimation quality
is the best. It degrades when the communication rate drops. We
present one optimal offline schedule and two online schedules and
show that the two online schedules provide better tradeoff between
the communication rate and the estimation quality than the op-
timal offline schedule. Simulation examples demonstrate that sig-
nificant communication savings can be achieved under the two on-
line schedules which only introduce small increment of the estima-
tion errors.

Index Terms—Communication-estimation tradeoff, Kalman
filter, online sensor schedules, remote state estimation.

I. INTRODUCTION

T HE past decade has seen a growing interest in the area
of networked sensing and state estimation, which has a

broad spectrum of applications in environmental monitoring,
body sensor network, smart transportation and power grid, etc.
In many of these applications, sensors that measure parame-
ters of interest are battery-powered, and the amount of energy
for communication with a remote data center is limited. Net-
work bandwidth may be also limited and shared by many nodes.
Therefore, it is important to see how the remote estimation per-
formance degrades as the amount of communication reduces.
This paper considers a remote state estimation problem and

investigates how the reduction of data communication between
a sensor and a remote estimator affects the remote estimation
quality. We present one optimal offline schedule and two online
schedules and show that under the two online schedules, by tol-
erating a small increment of the estimation errors, a significant
amount of communication savings can be achieved, which is
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impossible using the optimal offline schedule. Before we intro-
duce the problem setup and present the main results, we briefly
go over some related works in literature. More related works
can be found in the references therein.
Shakeri et al. [1] considered sensor measurement scheduling

with a fixed cost constraint. In their work, the measurement has
a cost which is inversely proportional to its error covariance. Kr-
ishnamurthy [2] considered scheduling of noisy sensors which
measure the state of a singleMarkov chain. They proposed some
algorithms which aim to minimize the estimation errors as well
as themeasurement costs. Chhetri et al. [3] presented two sensor
scheduling algorithms for target tracking. Chen et al.[4] also
considered the optimal transmission scheduling to maximie the
sensor network lifetime by making use of the channel infor-
mation. Dong et al. [5] considered the data retrieval problem
in a one-dimensional sensor network. The performance of de-
terministic and random schedules are compared. Mo et al. [6],
[7] took a look at the sensor selection problems where a subset
of sensors are selected at each time to maximize the network
lifetime. Savage and La Scala [8] considered sensor measure-
ment scheduling and provided the optimal schedule under the
constraint that only measurements can be taken over a
time horizon . Arai et al. [9] considered a similar problem set-
ting and proposed a fast sensor scheduling algorithm. Vitus et
al. [10] considered multiple sensors scheduling where only one
sensor is allowed to take a measurement at each time. Cohen
and Lesham [11] presented a time-varying opportunistic pro-
tocol to maximize the network lifetime assuming that the sen-
sors used are battery-powered and non-rechargeable. Yang and
Shi [12] considered finite time-horizon sensor data scheduling
under limited communication resource using both terminal and
average error covariance as performance metrics.
The remainder of this paper is organized as follows. Section II

introduces the mathematical problem. Section III contains the
main results of this paper. Simulation examples are given in
Section IV and some concluding remarks are given in the end.
Notations: is the set of nonnegative integers. is the set

of positive integers. is the time index. is the -dimen-
sional Euclidean space. is the set of by positive semi-def-
inite matrices. When , it is written as . if

. is the expectation of a random variable and
is the conditional expectation. is the probability of

a random event. is the trace of a matrix. is the
Euclidean norm of a vector . is the by identity matrix.

II. PROBLEM SETUP

Consider the following Gauss-Markov process (Fig. 1)

(1)
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Fig. 1. System block diagram.

where is state of the process at time , is
zero-mean Gaussian disturbance with covariance

, where is the Kronecker delta function, i.e.,
if and , otherwise. The initial state

is also zero-mean Gaussian with covariance . A sensor
measures and obtains the following measurement

(2)

where is zero-mean Gaussian measurement noise with
covariance . We assume ’s, ’s,
and the initial state are mutually uncorrelated. The pair

is assumed to be stabilizable and is detectable.

After is obtained, the sensor runs a local Kalman filter to
compute , the minimum mean-squared
error estimate of . Define the local estimation error as

(3)

From standard Kalman filtering, and its estimation error co-
variance matrix are computed as
follows:

(4)

(5)

(6)

(7)

(8)

The sensor then decides whether or not it will send to a
remote estimator. The remote estimator has a built-in estimator
that estimates in case no data is received from the sensor. Let

be the indicator of such a decision, i.e., if ,
is not sent by the sensor; and if , is sent. Let be

a sensor data schedule which specifies the value of for each
. We sometime write as to indicate explicitly

that the underlying sensor data schedule is . Define as the
average sensor-to-estimator communication rate, i.e.,

(9)

Denote as theminimummean-squared error estimate of
computed at the remote estimator, and as the corresponding
estimation error covariance matrix. For a given , consider the
following cost

(10)

In this paper, we are interested in finding out how does de-
grades as a function of . In particular, we construct different
’s under which by tolerating a small increment of , a signifi-
cant deduction of can be achieved.
Standard Kalman filtering analysis [13] shows that in (5)

and (8) converges exponentially to a steady-state value .
It is straightforward to show that is the solution to

(11)

where is defined as . Since
we are dealing with an infinite-time horizon, without loss of
generality, in sequel, we will assume for all . As
a result, for all with .
Since

from (11), one can obtain that

and hence

(12)

III. SENSOR DATA SCHEDULES

A. Optimal Offline Sensor Data Schedule

In this subsection, we give an optimal offline sensor data
schedule (Proposition 3.1). We restrict to be in the range of
[1/2, 1] as we are interested in the reduction of communication
rate which corresponds to only a small increment of the estima-
tion errors.
Under any offline schedule, it is not difficult to show that

the remote estimator calculates as if and
if . Intuitively, since encodes all past

measurements by the sensor, once it becomes available, the re-
mote estimator should synchronize its own estimate with it; on
the other hand, if is not available, then the remote estimator
simply predicts the value of based on its previous optimal
estimate. The corresponding error covariance is computed
as

if ,
if

We now present an optimal offline sensor data schedule,
which is very similar to the optimal sensor transmission energy
power schedule given by Theorem 5.2 in [14]. With some
modification of the notations, the proofs are also very similar,
but we will present a simpler and alternative proof. Although
the two results look similar, they deal with different problems:
[14] considers power scheduling (i.e., should a high or low
transmission energy be used) and the following result states
whether should the sensor send data or not.
Proposition 3.1: Consider a given sensor communication rate

, where , and are co-prime and .
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An optimal offline schedule can be constructed in terms of
the values of over a period as follows:

(13)

The corresponding is given by

Proof: First, an arbitrary schedule with sensor-to-esti-
mator communication rate can be presented as a sequence of
separated units as follows:

where and that

We shall prove that hence proving the opti-
mality of .
Step 1) If there exists and with . Then con-

struct the following different based onas follows:

As

where the last inequality is due to
and (12). Hence one concludes that .

Step 2) Repeat step 1 to until

(14)

To meet the rate constraint , those ’s in

can only be 1 or 21 and in particular, the portion of
’s which equal to 2 is given by and the portion

of ’s which equal to 1 is given by . Otherwise,
if there exists with , then from (14), all
other ’s have to be either or and the
resulting rate will be strictly less than 1/2.

Step 3) It is straightforward to see that . There-
fore for an arbitrary schedule , we have

, i.e., is indeed optimal.

Remark 3.2: Note that the optimal offline schedule con-
structed in Proposition 3.1 is not unique. If we treat the
copies of (1 0)’s as separate units, and also treat the

1We only count those which appear infinitely often.

copies of (1)’s as separate units, then any permutation
of these units generates one optimal schedule that has a cost
equal to .
From Proposition 3.1, , i.e., the rate

of change in is linear to the rate of change in . Hence if we
can only tolerate a small degradation in the estimation quality,
then the reduction of the communication rate is also small (this
is illustrated in the example section). As we shall see from the
next few sections, however, for the same amount of degradation
in , the reduction of the communication rate can be significant
if online schedules are used.

B. Preliminaries for Online Schedules

Although given by Proposition 3.1 is an optimal offline
schedule, much more can be achieved by utilizing the real-time
state information. Before we introduce these online schedules,
we briefly go over some preliminaries which our main results
are based upon.
Let

with

From (11), it can be easily verified that

(15)

Let the rank of be . Since , we can find an orthonormal
matrix such that

where is a diagonal matrix whose diagonal elements corre-
spond to the non-zero eigenvalues of . Let

Then we have

(16)

Let be a zero-mean Gaussian random variable with

Let be a positive real number. Define and as

(17)

(18)

Some useful properties of and are given in the fol-
lowing Lemma. The proof follows from the definition of (condi-
tional) probability density function of a Gaussian random vari-
able and is omitted.
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Lemma 3.3: Let . Then

(19)

Furthermore and .
Some properties of defined in (3) are summarized in the

next lemma.
Lemma 3.4: The following statements on hold:
1) is zero-mean Gaussian and is independent of .
2) is independent of and for any and

.
3) is independent of .
Proof:

1) Direct result from the orthogonality principle [15].
2) Write as

(20)

Thus is a linear function of , and
. Since , ’s and ’s are mutually indepen-

dent, the statement holds.
3) From (20), we see that is also a linear function of

, and . From (7), only depends on ,
, and , thus is independent

of , , and . From the first statement,
is independent of . Therefore we conclude that
is independent of . Together with the first statement, we
arrive at the fact that is independent of .

For convenience, we denote

(21)

Since , if , then from Lemma 3.3, we have

(22)

Define as

(23)

We have the following result on .
Lemma 3.5: Assume . Then
1) is independent of ;
2) is zero-mean Gaussian with variance ;

3) .

Proof:
1) Since , we have

From part 3) of Lemma 3.4, we conclude that is inde-
pendent of .

2) Note that

From Lemma 3.4, is independent of and ,
thus

3) Let with and .
Since , we have

Therefore almost surely, which leads to the
following

(24)

From (24), one has

where we use the fact that .

C. First Online Sensor Schedule

In this subsection, we introduce a simple online sensor data
schedule , which assigns the value of according to the fol-
lowing rule

if ,
otherwise,

(25)

where and are defined in the previous subsection. Under
, when , the remote estimator simply resets ;

when , has the same form as that under the optimal
offline schedule, i.e., . However, under schedule
, if is even and no update is sent, this means that ,

which enables a revision to the standard Kalman filtering update
equation, yielding a smaller error covariance .
The next theorem characterizes the tradeoff between the

sensor-to-estimator communication rate and the corre-
sponding cost function under the online sensor data schedule
.
Theorem 3.6: Under the online schedule , the expected

sensor communication rate is given by

(26)

where is defined in (17). The corresponding cost is
given by

(27)

where is given by (21).
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Proof: When is odd, from (25), , thus
. When is even, is odd, thus . Note that

. Assume holds at this even .
Then is kept by the sensor and the remote estimator computes

. The corresponding can be computed as

where we use the independence of and (Lemma 3.5). As
a result,

The sensor communication rate under is given by

D. Second Online Sensor Schedule

We now present an improved schedule , which assigns the
values of as follows:

if
otherwise.

(28)

Notice that the event-triggering condition is slightly com-
plicated than the first one given by (25), as it also needs to
remember the past decision . This additional light com-
plexity, however, will improve the remote estimation quality as
shown in the subsequent analysis.
Under , the remote estimator computes in the same way

as that under , i.e., when , ; when ,

Fig. 2. A two-state Markov chain that represents the possible values taken by
given .

. Similar to , the error covariance under
is different than that under the optimal offline schedule. The
tradeoff between and under is given as follows.
Theorem 3.7: Under the online schedule , the expected

sensor communication rate is given by

(29)

The corresponding cost is given by

(30)

Proof: From (28), depends on , but not on
for . Thus we can use a two-state Markov chain (Fig. 2)
to represent the possible values taken by . In Fig. 2, an arrow
starts from a possible value taken by and the arrow ends at
a possible value taken by . The probability transition matrix
of this Markov chain is easily seen to be

Let be the steady-state distribution of the two states.
Simple calculation reveals that

The theorem is proved by noticing that corresponds to the
portion of times when , which equals the sensor commu-
nicate rate . The remaining part of the theorem is straightfor-
ward to show.

E. Comparison of Different Schedules

We now compare the performance of , and , and we
have the following main result.
Proposition 3.8: If the sensor-to-estimator communication

rate is the same under , and , then

with equality iff or .
Proof: We first compare with . Assume
, i.e.,
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Fig. 3. Comparison of , and ) under the same sensor-to-es-
timator communication rate .

Then

where the inequality is from Lemma 3.3, the second last equality
is from (16) and the last equality is from (15). Clearly,

iff or , which correspond to or
, respectively.

We now compare with . Note that

with equality iff or . Therefore if

i.e., the sensor-to-estimator communication rate is the same
under and , then

i.e., with equality iff or
, which correspond to or , respectively. Thus if

and , then , from which,
one has . Now (22) implies that . One
then has

Fig. 4. as a function of under the three schedules.

IV. EXAMPLES

We consider the process (1) with different ’s and ,
, . We plot the cost as a function of in Fig. 3(a)

and Fig. 4(a), 4(b) for the three schedules when , 1.5
and 2, respectively. From the figures, we can see that for the
same , , which agrees with
Proposition 3.8. Furthermore, is an affine function of under
which agrees with Proposition 3.1.
Fig. 3(b) also summarizes the percentage changes in and

the corresponding percentage changes in for the three sched-
ules when . In the figure, represents the estimation
quality degradation compared with the perfect communication
case (e.g., ), and represents the amount of com-
munication rate reduction corresponding to such a estimation
quality degradation. From the figure we can see that the on-
line sensor data schedules offer much better tradeoff between
the sensor-to-estimator communication rate and the estimation
quality.

V. CONCLUSION

In this paper, we propose two online sensor-to-estimator com-
munication strategies, both of which demonstrate a tradeoff be-
tween the sensor-to-estimator communication rate and the esti-
mation quality. As shown both theoretically and via examples,
for a small degradation in the estimation quality, a significant
communication rate reduction can be achieved using these two
online schedules which is impossible using offline schedules.
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Future work along the line of this work include considering
multi-sensor data scheduling andmore online sensor data sched-
ules which can provide even better tradeoff. Another interesting
direction is to consider data packet drops which are frequently
seen in wireless communications. The extra packet drops make
the problem more intriguing since if no update is received by
the estimator, it may get confused whether the lack of measure-
ment is due to the failure of the communication link or due to
the event-triggering at the sensor. How to modify the online
schedules or the estimation procedures at the remote estimator
to counteract and minimize the effect of data packet drops will
be investigated.
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