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Event-Based Sensor Data Scheduling: Trade-Off Between
Communication Rate and Estimation Quality

Junfeng Wu, Qing-Shan Jia, Karl Henrik Johansson, and Ling Shi

Abstract—We consider sensor data scheduling for remote state estima-
tion. Due to constrained communication energy and bandwidth, a sensor
needs to decide whether it should send the measurement to a remote
estimator for further processing. We propose an event-based sensor data
scheduler for linear systems and derive the corresponding minimum
squared error estimator. By selecting an appropriate event-triggering
threshold, we illustrate how to achieve a desired balance between the
sensor-to-estimator communication rate and the estimation quality.
Simulation examples are provided to demonstrate the theory.

Index Terms—Estimation performance, event-based scheduling, Kalman
filter, sensor scheduling.

I. INTRODUCTION

Networked control systems have received much attention in the
last decade and are found in a wide spectrum of applications, e.g.,
in civil structure maintenance, environmental monitoring, battlefield
surveillance. In many of these applications, sensor nodes are battery-
powered. Replacing old batteries that are running out of energy
are costly operations and may not even be possible. At the same
time, the communication network may be shared by many nodes,
and consequently the communication bandwidth might be scarce
and uncertain. Thus it is practically important to minimize the
sensor-to-estimator communication rate. A too low rate may, however,
lead to poor estimation quality. It is of significant interest to reduce
the sensor-to-estimator communication rate while guarantee a certain
level of desired estimation quality.
Related research on remote estimation under communication con-

straint and sensor scheduling in various forms have appeared in
recent years. The problem of sensor scheduling can be traced back
to the 1970s. Athans [1] first formulated a class of optimization
problems dealing with selecting one measurement provided by one
out of many sensors. Gupta et al. [2] proposed a stochastic sensor
scheduling scheme among multiple sensors for one process and
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Fig. 1. Event-based scheduling for remote state estimation.

provided the optimal probability distribution over the sensors to
be selected. In control of modern networked systems, actions are
often desired to be taken only after certain events occur. These
events may contain useful information about the system [3], and
using an appropriate event-based scheduler, the performance of the
estimator can be improved. Imer and Basar [4] considered op-
timal estimation with limited measurements where the stochastic
process was a scalar linear system. They showed that the optimal
observer policy has a solution in an event-triggered form. Cogill
et al. [5] considered a sensor data scheduling problem and used a
feedback policy to choose the transmission times which provides a
trade-off between the communication rate and the estimation error.
Ambrosino et al. [6] considered the channel capacity constraint. In
recent work by Li et al. [7], an event-triggered approach was used
to trigger the data transmission from a sensor to a remote observer
in order to minimize the mean squared estimation error at the
observer subject to a constraint on transmission frequency. Closely
related works are also given by Riberio et al. [8] and Msechu et
al. [9] where quantized Kalman filter were considered. The main
distinctions between our work and [8], [9] include the different
communication models (packed-based versus finite-bit channels) and
different estimation procedures. While we design an event-based
scheduler to optimize the tradeoff between the sensor-to-estimator
communication rate and the remote estimation quality, the work
of [8], [9] focused on designing encoder-decoder pairs to improve
the estimation quality over a bit-limited channel.
This paper focuses on the design of sensor data scheduler and the

corresponding networked state estimator illustrated by the architecture
in Fig. 1. We propose an event-based sensor data scheduler and derive
the corresponding minimum mean-squared error (MMSE) estimator.
By adopting an approximation technique from nonlinear filtering,
we derive a simple form of an accurate MMSE estimator, from
which an illustrative relationship between the sensor-to-estimator
communication rate and the remote estimation quality can be obtained.
The remainder of this paper is organized as follows. In Section II,

we provide the mathematical problem formulation. In Section III,
we derive the exact MMSE estimator and an approximate MMSE
estimator for an event-based sensor data scheduler. Via simulation
examples in Section IV, we demonstrate how a desired trade-off
between the sensor communication rate and the estimation quality
can be achieved. It is also shown that the approximate MMSE
estimator produces accurate results. In Section V, some concluding
remarks are given.
Notation: is the set of positive semi-definite matrices.

When , we simply write ; Similarly, means
. represents the probability density function (pdf) of

the random variable (r.v.) x, and denotes the pdf of a r.v. x
conditional on the variable y. denotes Gaussian distribution
with mean and covariance matrix . denotes the mathematical
expectation and denotes the probability of a random event.
denotes the trace of amatrix and denotes the Hölder infinity-norm
of a vector.
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II. PROBLEM SETUP

A. System Model

Consider the following linear system:

(1)

(2)

where is the state vector, is the sensor measurement,
and are mutually uncorrelated white Gaussian

noises with covariances and , respectively. The ini-
tial state is zero-mean Gaussian with covariance matrix

, and is uncorrelated with and for all .
and are observable and controllable, respectively. After
(the measured value of ) is taken, the sensor decides whether it will
send to a remote estimator for further processing. Let
or 0 be the decision variable whether shall be sent or not. Define

with ,

(3)

and

(4)

The estimates and are called the a priori and a posterioriMMSE
estimate, respectively. Further define the measurement innovation
as

(5)

Define the functions , , and : as follows:

where denotes the function composition. In the sequel, if ,
and will be written as and for brevity. We can write the update
equation for in a compact form as

if
if .

Notice that as for any . This
has an intuitive explanation: the measurement (or alternatively, the
innovation ) always reduces the estimation error covariance.

B. Event-Based Sensor Scheduler

We consider in this paper applications where feedback is available
from the estimator to the sensor, see Fig. 1.1

Consider the following two cases for the Kalman filter when :
1) and ;
2) and .

1Examples of such applications can be found in remote estimation based on
the IEEE 802.15.4/ZigBee protocol: sensor devices can be scheduled to com-
municate to the so-called Personal Area Network coordinator which also serves
as a remote estimator. The coordinator broadcasts information to all devices at
the beginning of each periodic superframe and can then incorporate the required
feedback information.

The estimate for the two cases are the same, but the error covari-
ances are different. Therefore if the sensor finds that is zero and
does not send to the estimator, and at the same time, the estimator
is aware of this information, then even without receiving , the esti-
mator knows that has error covariance , which
is smaller than .
Since , there exists a unitary matrix

such that

where and are
the eigenvalues of . Define as

(6)

Evidently, . The matrix is computed by
the remote estimator and is sent back to the sensor along with at
each time, see Fig. 1. Define as

(7)

This transformation is called the Mahalanobis transformation. The
coordinates of are decorrelated, so has -variable standard
Gaussian distribution, which contains a set of independent principal
components of .
We consider the following event-based sensor data scheduler:

if
otherwise

(8)

where is a fixed threshold. Under this scheduler, if , the
estimator can infer that . It is this additional information
that helps reduce the estimation error at the remote estimator. With a
slight abuse of notation, we redefine the information received by the
remote estimator till as

Define the average sensor communication rate as

(9)

Notice that both the average rate and the estimation error covari-
ance matrix depend on the threshold . For example, if ,
then and the sensor sends at each (almost
surely). Consequently, and . On the other hand,
if , then the sensor keeps for all , thus making . As
the event provides no extra information on the innova-
tion, the estimator is in this case equivalent to an open-loop predictor.
Therefore, . In the latter case, when is unstable,
diverges as . Apparently there is a tradeoff between the com-
munication rate and the estimation quality.
We now state the main problems considered in this paper.
1) Under the event-based sensor scheduler (8), what is the MMSE
estimator?

2) How to choose the threshold in (8) to achieve a desirable
trade-off between the communication rate and the estimation
quality?

We will provide answers to these two problems in the remainder of
the paper.
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III. EVENT-BASED STATE ESTIMATION

In this section, we derive theMMSE estimator under the event-based
sensor data scheduler (8), first the exact estimator and then an accurate
approximation.

A. The Exact MMSE Estimator

The MMSE estimate is uniquely specified as the conditional mean
given all available information [10]. In this subsection, we provide an
exact MMSE estimator corresponding to the event-based scheduler (8)
using the following two-step updating procedure.
1) Time Update: The a priori estimate , which is the conditional

mean of given the information set , is derived as

(10)

and the corresponding estimation error covariance is given by

2) Measurement Update: The a posteriori estimate , which is the
conditional mean of given , is derived as follows. Depending on
whether or 1, we have the following two cases:
1) . The sensor does not send to the remote estimator, but
the estimator is aware of that . Consequently, is
given by

(11)

where we denote . Define the set
as

(12)

then one can compute using Bayes’ rule as

(13)

where and

(14)

The a posteriori error covariance is given by

2) . The sensor sends to the remote estimator. Denote
the measured value of the innovation as . Then becomes

. The remote estimator updates as in
(11), but the conditional pdf is now calculated using
Bayes’ rule as

(15)

where, from (14), one easily sees that

The a posteriori estimation error covariance is given by

Remark 3.1: Although the above two steps produce the MMSE esti-
mate corresponding to the event-based scheduler (8), each updating
step requires numerical integration. The amount of computation in-
volved make this estimator intractable in general, which motivates us
to consider an approximate MMSE estimator. As we will demonstrate,
by using a standard technique in nonlinear filtering, we can derive an
approximate MMSE estimator in a simple recursive form.

B. Approximate MMSE Estimator

A commonly used approximation technique in nonlinear filtering
is to assume that the conditional distribution of given is
Gaussian, i.e.,

(16)

This assumption reduces the estimation problem from the tracking
of a general pdf, which is usually computationally intractable, to the
tracking of its mean and covariance matrix. The approximation is
widely used in the literature, e.g., [8], [9], [11]. Unless specifically
mentioned, our analysis in the rest of this paper is based on this
assumption. The approximation leads to a very simple form of the
estimator, as shown by the following result.
Theorem 3.2: Consider the remote state estimation in Fig. 1 with

the event-based sensor scheduler (8). Under the assumption (16), the
MMSE estimator is given recursively as follows:
1) Time update:

(17)

2) Measurement update:

where

(18)

and is the standard -function defined by

(19)

Before we present the proof, we state a few preliminary results.
From (14) and (16), is zero-mean Gaussian conditioned on .

Furthermore, is jointly Gaussian with conditioned on . From
(14)

(20)

and

(21)

Now let us take a look at defined in (7). From (20)
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Thus, given , is a zero-mean Gaussian multivariate random
variable with unit variance. Denote as the th element of . Then
and are mutually independent if . Notice that implies
that the event happens. We then have the following result.
Lemma 3.3: .
Proof: Straightforward calculation yields the first equality. Given
, due to the independence of and for alongwith Lemma

A.1 in the Appendix, we have

and

Thus

The following lemma is used in deriving the main result.
Lemma 3.4: The following equalities hold:

(22)

(23)

(24)

(25)

where .
Proof: We first prove (22). From Lemma A.2, (20), and (21)

(26)

Since given , is Gaussian with zero mean and unit covariance,
we can define . Using the conditional pdf

if
otherwise

(27)

we obtain

where the last equality is from Lemma 3.3. From (22), we have

which shows (23). To prove (24), using Lemma A.2, we have

(28)

Notice that (26) leads to

which together with (28) shows (24). Now from (24), one obtains

where to get the second last equality, we note that from (27) we have

Proof to Theorem 3.2: The proof of the time update is simple, shown
as follows:

Next, we verify the measurement update for the following two cases.
1) : According to (26) and (28)

2) : the sensor does not send to the remote estimator which
computes as

where the last equality is due to

since being a pdf of Gaussian distribution, is even
and defined in (12) is symmetric and centered in the origin.
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Now from (23), (25), Lemmas 3.3, and A.1, the corresponding
error covariance matrix can be computed as

From Theorem 3.2, we can write the update for in a compact
form as

if
if .

(29)

Remark 3.5: is a function of and , both of which
depend on . By properly tuning , we can achieve a desired trade-off
between the sensor communication rate and the estimation quality in
terms of . For example, if we wish to have a small , then picking a
large would serve the purpose. The optimal choice of depends on
the available communication resources.
Lemma 3.6: Let . Then

Proof: Note that iff
, . Therefore

The following result is on the average sensor-to-estimator commu-
nication rate .
Proposition 3.7: Consider the remote state estimation in Fig. 1 with

the event-based sensor scheduler (8). Under the assumption (16), the
average sensor-to-estimator communication rate in (9) is given by

(30)

Proof: Note that is a random variable taking value in {0,1}
with . From Lemma 3.6,

whatever value takes.
Therefore, solely determines the distribution of and can be de-
scribed by

Equation (30) is then proved from the definition of expectation of
and the definition of .

IV. SIMULATION EXAMPLE

In this example, we consider the scheduling of two sensors mea-
suring Process 1 and Process 2 (see Fig. 2). Let Process 1 be the stable

process with , , , and

Fig. 2. Scheduling of sensors communication for Process 1 and Process 2.

Fig. 3. Estimation quality of Process 1 and Process 2 versus .

Process 2 be the unstable process with parameters , ,
, . Assume at each time only one of the sensors is

able to communicate its measurement to the remote estimator due to
a shortage of communication bandwidth. Since Process 1 is stable, a
trivial sensor scheduler that guarantees a bounded estimation error
covariance for both processes is that sensor 2 occupies the channel all
the time, while sensor 1 is idle and the remote estimator predicts the
state of Process 1 at each time. Let the estimation error covariances of
Process 1 and Process 2 under the scheduler be and ,
respectively, which are given by the following two recursions:

The steady-state values of and under are given by
and . By using the event-based scheduler

proposed in this paper, we can reduce the estimation error for Process 1
significantly while letting the estimation error for Process 2 grow only
slightly.The idea is simple: let sensor 2 follow theevent-based scheduler
(8);whenever sensor 2does not senddata due to , let sensor 1
communicatewith the remote estimator. The resulting errors are plotted
in Fig. 3 as a function of the parameter being used by Process 2, which
clearly demonstrates the advantage adopting the event-based scheduler.
For example, when , the values of 2 and
are 27.89 and 3.99, respectively, corresponding to a 52.7% decrease
of estimation error for Process 1 and a 5.83% increase of estimation
error for Process 2. In Fig. 4, we plot the empirical average sensor
communication rate and the theoretical average sensor communication
rate (30) for Process 2 under different values of . The two curvesmatch
almost indistinguishable anddemonstrate that the approximatedMMSE
estimator is very close to the exact MMSE estimator.

V. CONCLUSION

We propose an event-based sensor data scheduler for state estima-
tion over a network. The MMSE estimator is derived together with an

2Since is a stochastic process due to the randomness of ,wewill consider
as a performance measure for the remote estimator under the event-

based sensor scheduler (8), which is obtained in this example via Monte Carlo
simulations.
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Fig. 4. Sensor communication rate versus scheduling parameter .

approximate estimator. It is shown that by tolerating a small amount of
increase of the estimation error, a significant reduction of the sensor-to-
estimator communication rate can be achieved. In many applications of
networked control systems, multiple sensors may be involved. Con-
structing appropriate event-based schedules at each sensor and esti-
mating the process state based on the received data and the additional
information inferred by the events are more difficult than the one we
have considered. This will be pursued in our future work.

APPENDIX

Lemma A.1: Let be a Gaussian r.v. with zero mean and
variance . Denoting , then

.
Proof: The property

yields

where can be calculated as:

Then .
Lemma A.2 [10, pp. 24–25]: Let and be jointly

Gaussian with mean and variance

Then x is conditionally Gaussian given with
where .
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Geometric Criteria for the Quasi-Linearization of
the Equations of Motion of Mechanical Systems

Dong Eui Chang and Raymond G. McLenaghan

Abstract—A linear transformation of velocity for a mechanical system is
said to quasi-linearize the equations of motion of the system if it eliminates
all terms quadratic in the velocity. It is well-known that controller/observer
synthesis becomes tractable when the dynamics of a mechanical system are
in quasi-linearized form. In this technical note, we show that the quasi-lin-
earization property is equivalent to the property that the Lie algebra of
Killing vector fields is pointwise equal to the tangent space to the configu-
ration manifold with the Riemannian metric induced by the mass tensor of
the mechanical system. A sufficient condition for this property is that the
Riemannian manifold be locally symmetric. We further show that a neces-
sary and sufficient condition for quasi-linearizability on 2-D Riemannian
manifolds is that the scalar curvature is constant. The above results extend
the zero Riemannian curvature condition that has been extensively applied
since its introduction in 1992. Moreover, the local symmetricity condition
and the constant scalar curvature condition can be easily verified using
differentiation.

Index Terms—Killing vector fields, mechanical systems, quasi-
linearization.

I. INTRODUCTION

In the Lagrangian formulation of mechanics, the equations of mo-
tion of a mechanical system on a configuration space are normally
written in the coordinate system on the tangent bundle that
is induced by a coordinate system on [10]. In coordinates,
the equations of motion contain quadratic terms in velocity . By intro-
ducing a quasi-velocity defined by [3], where is an
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