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Optimal Sensor Power Scheduling for State Estimation of
Gauss—-Markov Systems Over a Packet-Dropping Network

Ling Shi and Lihua Xie

Abstract—We consider sensor power scheduling for estimating the state
of a general high-order Gauss—Markov system. A sensor decides whether to
use a high or low transmission power to communicate its local state estimate
or raw measurement data with a remote estimator over a packet-dropping
network. We construct the optimal sensor power schedule which minimizes
the expected terminal estimation error covariance at the remote estimator
under the constraint that the high transmission power can only be used
m < T + 1 times, given the time-horizon from k& = Otok = T.
‘We also discuss how to extend the result to cases involving multiple power
levels scheduling. Simulation examples are the provided to demonstrate the
results.

Index Terms—Kalman filter, packet-dropping networks, power sched-
uling, remote state estimation.

I. INTRODUCTION

Remote state estimation has gained much interest in the past decade,
and is found in a growing number of applications including sensor
networks, smart grid, smart transportation systems, etc. In many of
these applications, the available resources such as the communication
energy and network bandwidth are limited. Furthermore, information
flow across the network may be unreliable, e.g., data packets could be
randomly delayed or dropped.

In this correspondence, we consider a remote state estimation
problem subject to transmission energy constraint. A sensor measures
the state of a process and sends its local state estimate or the mea-
surement data over a packet-dropping network to a remote estimator.
The sensor has limited communication energy and it decides whether
to send the measurement data using a high transmission power or
a low transmission power. We assume that using high transmission
power leads to a higher packet arrival rate compared with using low
transmission power. This assumption is motivated by two facts: most
sensor nodes in the market have different transmission power to
choose from [17], and higher transmission power leads to a higher
signal-to-noise ratio at the remote estimator, which corresponds to a
higher packet arrival rate [7].

Consider a time-horizon from £ = 0 to & = 7" and assume the sensor
can only use the high transmission power m < T+ 1 times due to the
limited energy constraint. We are interested in how the sensor should
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schedule its transmission power at each time so that the expected ter-
minal state estimate error covariance at the estimator is minimized. Be-
fore we state the main contributions of this correspondence, we briefly
go over some related work from literature.

The majority of related work are concerned with sensor scheduling
or sensor measurement scheduling. A nonlinear state estimation was
studied by Baras and Bensoussan [2], where the authors considered
scheduling a set of sensors so as to optimally estimate a function of
an underlying parameter. Tiwari et al. [15] studied the problem of
sensor scheduling for discrete-time state estimation using a Kalman
filter. They considered two processes and one sensor and proposed
schemes to determine which process that the sensor needs to observe in
order to minimize the total estimation error. Shakeri et al. [12] studied
the problem of sensor data scheduling subject to a fixed cost constraint,
where the measurement data has a cost that is inversely proportional to
its error covariance. Vitus et al. [16] considered sensor scheduling of
a discrete-time system. Multiple sensors are employed, but only one
sensor is allowed to take a measurement at each time. Cohen and Le-
sham [5] proposed a time-varying opportunistic protocol to maximize
the network lifetime when the sensors used are battery-powered and
non-rechargeable. Similar work has been carried out by Chen et al.[3],
where the network lifetime is maximized by utilizing the channel infor-
mation. Chhetri et al. [4] proposed two sensor scheduling algorithms
for a target tracking problem. Krishnamurthy [9] proposed algorithms
for scheduling noisy sensors for measuring the state of a single Markov
chain. These algorithms aim to minimize a cost function consisting of
the estimation error and the measurement cost. Dong et al. [6] consid-
ered the data retrieval problem in a 1-D sensor network. The perfor-
mance of deterministic and random schedules are compared. A closely
related work to this correspondence is by Savage and La Scala [11],
where the authors considered the problem of optimal sensor measure-
ment scheduling for first-order systems that minimizes the terminal
error. Another work that is related to ours is given by the recent publi-
cation [10], where the authors formulated the data transmission sched-
uling problem as a finite horizon Markov decision process. The objec-
tive is to seek a transmission schedule which provides a tradeoff be-
tween transmission energy and packet loss rate subject to a delay con-
straint. It is proven that under some conditions, the optimal schedules is
given in a threshold form which reduces the computational complexity
significantly.

The main contributions of this correspondence are summarized as
follows.

1) We consider power scheduling for remote state estimation of a
general high-order Gauss—Markov system. To the best of our
knowledge, the proposed framework is novel.

2) We consider natural constraints which are typical in wireless net-
works, e.g., sensor energy constraint and data packet drops.

3) We consider two scenarios in this correspondence: the sensor
has sufficient or limited computation capability. For the first
scenario, we derive the optimal power schedule (Theorem 3.3).
For the second scenario, we give a sufficient condition under
which, an optimal power schedule (Theorem 4.1) is given. Ex-
tension to scheduling of multiple power levels is also provided
(Theorem 5.2).

The rest of the correspondence is organized as follows. The
mathematical problem is introduced in Section II. The optimal
power schedule for sensor with sufficient computation is provided in
Section III and for sensor with limited computation is provided in
Section IV. These results are extended to scheduling of multiple power
levels in Section V. Simulation examples are provided in Section VI
and some concluding remarks are given in the end.

1053-587X/$31.00 © 2012 IEEE
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Fig. 1. Power scheduling for sensor with sufficient computation.
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Fig. 2. Power scheduling for sensor with limited computation.

Notations: The non-negative integer k is the time index. R" is the
n-dimensional Euclidean space. S’} is the set of n by n positive semi-
definite matrices. When M € S, itis writtenas M > 0. M > N if
MN € SI. Prlo] is the probability of a random event . E[X] is the
expected value of a random variable X and E[X |Y = y] is the condi-
tional expectation of X given that Y = y. For two functions % and g
with the same domain and rangz, hg denotes the function composition,

ie., hg(z) = h(g(z)). fi(x) = f(f (x)) with fO(x) 2.

II. PROBLEM SETUP

Consider the following Gauss—Markov system:

Thtt = Az + wi )
yr =Cxr + vg 2)

where x;, € R"~ is the system state at k, y. € R"v is the sensor
measurement, w, and vy are zero-mean white Gaussian noises with
covariances () > 0 and R > 0 respectively. The initial condition
is zero-mean Gaussian with covariance Iy > 0. The pairs (A, C') and
(A, \/@ ) are observable and controllable. We consider two scenarios in
this correspondence: 1) when the sensor has sufficient computation ca-
pability, it pre-processes yx to form the minimum mean-squared-error
estimate #; = E[xk|yo, ..., y«]. [t then sends £} to a remote estimator
over a packet-dropping network (Fig. 1); 2) when the sensor has limited
computation, it sends the raw measurement y;. to the remote estimator
(Fig. 2).

Let #;, be the minimum mean-squared-error estimate of xj at the
estimator based on all received data from the sensor and P be the
estimation error covariance, i.€.,

2 =E[xy|all data received] (3)

P.=E [(mk — @) (2, — #4) |all data received] . )

Suppose the sensor has two transmission power levels to choose at each
k:ahigh power A and alow power 6. Let the binary variable ~yx (1 or 0)
indicate the sensor’s decision that A or 6 is chosen. The binary variable
~1 1s designed by the power scheduler at the sensor. Let another binary
variable A (1 or 0) indicate that ', or y arrives at the estimator suc-
cessfully or not. We assume { A, } is an independent Bernoulli process
and

EMilve = 1] = Aa > As = E[Ax|ve = 0] (5)

i.e., the packet arrival rate under the high transmission power A is
higher than that under 6.
Define

@T:\{O,l}x{o,l}x---x {0,1}

-~
T4+1 times

as the set of all power schedules for a given time-horizon T. In this
correspondence, we wish to find an optimal power schedule § € Or
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under which the expected terminal error covariance E[ Py (6)] is mini-
mized subject to the constraint that the high transmission power A can
only be chosen for m < T' + 1 times,! i.e.,

Problem 2.1:

elélénT E [Pr(9)]

T

s.t. Z v (0) = m.

k=0

In the next two sections, we will give a closed-form solution to this
problem when the sensor has sufficient or limited computation capa-
bility.

III. OPTIMAL POWER SCHEDULE FOR SENSOR WITH
SUFFICIENT COMPUTATION

When the sensor has sufficient computation, from standard Kalman
filtering analysis [1], &}, and its estimation error covariance matrix
P = E[(xx — #7)(zr — 37)|yo, - - . . yx] are given by

Li=P 1 C" [CPy 1 C'+ R,
& =25 —1 + Li (yr — C2pp—y) -
S S 8 S T —1 S
Pi =Pt — PiiC' [CPi C'+ R C Py,
Z Z+1|/€ =Aiy,
Plj+1|k:AP/?Al +Q
where the recursion starts from &3;_; = 0 and I'j)_; = Ilo. On the
estimator side, from [13], #x and P, have the following simple forms?2:
Zr =Ap2n + (1 — Ap) ATr—y
P :/\kP,:Z + (1 — /\k)(APkflAl =+ Q)
Define the functions £, g, and g: ST — S} as
MX)2AXA +Q
JX)EX - XC'[CXC' + R 'Cx
A
9(X) =gh(X).

Then, one can verify that P§ = ¢*(§(1l,)) and

po= 9" @), if A =1
h(Pr—1), otherwise.

Given two power schedules #1 and #2, E[ Pr (61 )] and E[Pr(6.)] are
difficult to compare in general. However, they can be quickly compared
when ~;(61) and ~x(62) only differ in two adjacent time instances.

Lemma 3.1: Let #, and ¢ be two identical power schedules except
that ’)"i(al) = 0 and ’)"1(92) =1, and i1 (91) = 1 and ;41 (92) =0
forsome 0 < i < T — 1. Then, E[Pr(61)] < E[Pr(82)].

Proof: For brevity, we write Ao as the packet arrival sequence

()\T,. . .,)\0), and )\1"“0\1' as ()\T,. . '1)\i+lw)\i—17"'7)\0)- Let3
; F(g(Ie)), ifde=1
fu(x) =419 9o, A =
h(X), otherwise.

Further, write fr...o = fr--- fo. Notice that we write the packet ar-
rival sequence in reverse order to facilitate the writing of function com-
positions. Let Pr(Ar._o|#) be the probability of the arrival sequence
(Ar, ..., Ao) for a given schedule #. Similarly Pr(Ar_o\;|6) is the
probability of the arrival sequence (Ar,..., Ait1, Ni—1,...,Xa|f).

1Tt is not difficult to show that the optimal schedule remains the same if the
constraint is changed to 37 _, v, (8) < m. In other words, more higher
power is always beneficial for reducing the estimation error.

2If Ay = 0, P, = II,.
3fo(Ily) = I, if Ay = 0, and f,(IL,) = g(Ily) if Ay = 1.
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#2: 1111000000

Algorithm 1 stops here

Fig. 3. Example of Algorithm 1.

Denoting M = 1—Jdaand s = 1 — X5 and using the above
notations, we can write E[Pr(#1)] and E[Pr(62)] as

E[Pr(00)]= > Pr(Ar._ol61)fr.o(Io)

Ar.0

=Xa)s
AT o\it1\i

X Pr(Ar_ovignil00) fr.ivzhbhfioi o(Ilo)

+Xads Z

AT o\it1\i
X Pr(Ar. ovipinilf1) fr.iv2hg (o)

+ Aa Z

AT 0\it1\i
X Pr(Ar. ovitivilfr Vfr ivag' ™ (Iy)

and

E[Pr(82)] = XsAa

>

AT 0\it1\i
X Pr(Ar_ovipiilf2) fr iv2hhfio1 o(Io)
+Xsha Z
AT 0\it1\i
X Pr(Ar_ovipnilf2)f . iv2hg' (o)
+ As Z

AT o\it1\i

X PI'(>"I“...O\1Z+1\i|92)mei+2£]i+l(H0)-

Since AsAa — Aads = Aa — s, and #1 and > are identical for
k €1]0,¢ — 1]*and for k € [ + 1,T], we conclude that

E[Pr(62)] — E [Pr(61)]
AA — s

= X
AT o\it1\i

X |:f(’\T...i+2)hgi(H0) - f(f\T...i+2)gi+l(H0):|
>0

Pr(Ar. ovit1vlf1)

where the last inequality is due to Lemma A.1. |

40,2 — 1] 2 @ wheni = 0.
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Lemma 3.1 can be relaxed to allow quick comparison of E[P; (1]
and E[Pr (#2)] when the two different time instances are not adjacent.
The proof is straightforward and is omitted.

Corollary 3.2: Let 6; and 6> be two identical power schedules ex-
cept that v;(#1) = 0 and v;(#2) = 1, and v;(61) = 1 and v;(f2) =0
for some 0 < i < j < T.Then E[Pr(6:)] < E[Pr(62)].

Algorithm 1: Power Schedule Iteration

t:=0

0, = ¢

while H/If:T—nz-l—l V() =0
t:i=t+1.
G = 0;_1.

ki = max{k <T —m: w(8:) = 1}.

ko := max{k > T — m : v(8:) = 0}.

Yky (9[) = 0.
Vo (B¢) 1= 1.
end while

With the previous results, we present an optimal power schedule in
the following theorem.

Theorem 3.3: When the sensor has sufficient computation and sends
its local state estimate &}, to the remote estimator, an optimal power
schedule ™ to Problem 2.1 is given by

9* = {’}’0 = =YT—m = 07 YT —m41 = =T = 1} (6)

i.e., under 6™, the m high power levels are scheduled in the last m time
steps.

Proof: Consider a general power schedule ¢ different than 6*.
Construct a sequence of power schedules {#; : ¢t = 1,2,...} starting
from # according to Algorithm 1. For any feasible power schedule,
there are exactly m ~x’s such that v, = 1. Therefore Algorithm 1 stops
after d < m iterations. It is easy to see that * = 6. Fig. 3 shows an
example with T = 9, m = 4, and d = 2. From Corollary 3.2, we
obtain

E[Pr ()] > E[Pr(61)] > --- > E[Pr(6s)] = E[Pr(87)].

Thus, §* is indeed optimal. [ |

IV. OPTIMAL POWER SCHEDULE FOR SENSOR WITH
LIMITED COMPUTATION

From [14], if the sensor has limited computation and sends the raw
measurement yj to the remote estimator, &5 and P, are computed
through a modified Kalman filter, e.g., when y,. is received, a normal
Kalman filter is implemented; otherwise, only the time update step of
the Kalman filter is carried out. Using the same h and ¢ defined in
Section III, P can be written as

_ ]1,(P]\~71),
= {Q(PI;—1),

if Ay =0
if A, = 1.

We have the following main result on the optimal power schedule.

Theorem 4.1: When the sensor has limited computation and sends
the raw measurement y;. to the remote estimator, then the schedule *
given by (6) is still optimal for Problem 2.1 if the following holds:

VX > 0,Gh(X) < hj(X). %
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Proof: Notice that we only need to prove
E[Pr(6:)] < E[Pr(62)]

if #1 and 6, are two identical power schedules except that v;(61) =
0 and v;(#2) = 1, and vi41(01) = 1 and vi+1(f2) = 0 for some
0 < i £ T — 1. The remainder of the proof is analogous to that
of Lemma 3.1, Corollary 3.2, and Theorem 3.3. Now using the same
notations defined in the proof to Lemma 3.1 except that f;, is redefined
asd

if \p =1,

otherwise,

ey 9(XD),
fielX) = {hm’

we obtain the following:

E[Pr(6,)] = Z Pr(Ar._ olf1)fr.o(Io)

AT, .0

=Xals
AT 0\i+1\i

X Pr(Ar_ oviz1\ith) froitzhhfioi.o(Ilo)

+Xa s Z

AT 0\i+1\i

X Pr()\ﬁr___o\i_;,_]\i|91)f1n..

+ Aas Z

AT 0\i+1\i

X Pr()\T___O\i+1\i|91)fT,..

+ Aads Z

AT 0\i+1\i

X Pr()\T___O\i+1\i |91)fT
E[Pr(62)] =Xsha >

AT o\it1\i

i+2hgfizi..0(Ilo)

iv2ghfi1...0(Ilo)

iv299fi—1..0(Io),

X Pre(Ar_oviginilf2) froip2hhfior . o(1lo)

+ Xsda Z

AT 0\it1\i

X Pr(Ar. ovitinilf2) fr.iv2hgfio1..0(Ilo)

+ Asda Z
AT 0\it1\i

X Pr(Ap. ovitivilf2) froivaghfi—i..o(Ilo)

+hada Y

AT 0\it1\i

X Pr(Ap. ovitivilb2) froivegg9fi—i...o(Io).

Since AsAa — Aads = da — s, and 6, and 65 are identical for
k € [0,¢ — 1] and for k € [¢ + 1, T, we conclude that

E [P'[((?’z)] -E [P’j’(‘gl)]

Aa — s
— Z Pr(/\TAAAo\z+1\i|91)
AT 0\it1\i
X [fr-ivahgfimio(Io) = fritaghfi—ro(Ilo)]
>0

where the last inequality is due to (7) as

hg(X) = hi (h(X)) > §h (h(X)) = gh(X), VX > 0.

Sfo(Ily) = I, if Ap = 0 and £, (I1,) = g(Il,) otherwise.
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Remark 4.2: Notice that (7) is only a sufficient condition for 8 to
be optimal. We will provide an example in Section VI which shows
that even if this condition is violated, #* may still be optimal. Finding
a necessary condition of the optimal power schedule, however, is dif-
ficult due to the huge solution space when 1" is large as well as the
nonlinearity of the function g.

We now give two conditions for (7) to hold: 1) the system is of first
order, i.e., A € R, with |4] > 1; 2) the system is of higher order
with (C'"R™'C')"" < Q. When A € R with |A| > 1, straightforward
computation shows that (7) holds. When (C' ’R*lC‘)f1 < Q, then

hi(X) =Aj(X)A' 4+ Q
>Q> ('R0
> [(h(X))™ +C'R™'C] ™ = §h(X)

where the last equality is from the well-known matrix inversion lemma
[8]. The condition (C'R™'C)~ ! < @ means intuitively that the sensor
has a smaller noise covariance R (weighted by ') than the process
noise covariance @, i.e., the sensor provides a relatively accurate mea-
surement. Then, it is optimal to assign the m high power levels in the
last m steps to minimize the terminal error covariance.

V. DISCUSSION

In the previous two sessions, we investigate the case when the sensor
has two power levels. In this section, we extend the results to multiple
power levels. Consider the sensor has L power levels {61,...,6r}
which satisfy 0 < & < --» < éz. Letv = {1,....L} denote
the sensor’s decision on which power level to use at time &, and A €
{0, 1} be the indicator whether or not the data from the sensor arrives
at the remote estimator at time %. Define As, 2 E[Ax|yvx = ] which
satisfy 0 < As; < --- < As, < 1. Assume within time horizon 7’,
each power level 6, can only be used for m; times. A power schedule
# € O specifies the value of ~; for k& € [0, T]. Denote Count;(6) as
the number of ~,’s such that v, = ¢ under . Consider the following
power scheduling problem:

Problem 5.1:

Jmin E [Pr(6)]

s.t. Count;(#) =m;,i=1,...,L.
Notice that Problem 2.1 is a special case of Problem 5.1 when L = 2,
01 = 6,8 = A, Xs; = As, As, = Aa, and m2 = m. We have the
following result based on Theorem 3.3 and Theorem 4.1.

Theorem 5.2: Consider the following 6* under which the s take
the following values: vo = -+ = Ym,—1 = 1, 7m,
Ynidmo—1 = 2,..,a0d Y7 —m, 41 = -+ = yr = L. Then

1) when the sensor has sufficient computation and sends its local
state estimate &, to the remote estimator, 8" is an optimal power
schedule to Problem 5.1;

2) when the sensor has limited computation and sends its raw
measurement yy. to the remote estimator, #* is an optimal power
schedule to Problem 5.1 if (7) holds.

The proof is similar to that of Theorem 3.3 and 4.1. Given a general
power schedule ¢, we can always construct a sequence of power sched-
ules §¢,t = 1,...,d with decreasing terminal error covariance such
that 6, = 6 and 4 = 6", where 6; and 64, are the same except that
for some k1 < k2, Yi, (05) = Yoo (0541) > o (05) = 7iy (041
The comparison of §; and 64 reduces to comparing two power levels
only, thus all previously developed results can be used. Due to the space
limitation, we omit the proof.
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Fig. 4. Trace of E[P,] as a function of A . Here condition (7) is satisfied.
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Fig.5. Trace of E[P,] as a function of A 4. Here condition (7) is not satisfied.

VI. EXAMPLE

Consider system (1) and (2) with

1.2 0.1 10 0.5 0
A‘{o 1]”C_Q_{01}R_{0 &4'

Notice that (7) holds for this system. We run a Monte Carlo simulation
forT = 30,m = 5, A\s = 0.4 and Aa € {0.6,0.8} and compare the
performance of #* with the following three common schedules:

1) Random schedule #,anq: Ateach k, A power level is selected with
probability 7 until at certain time it has been selected m times (or
6 power has been selected 7' + 1 — m times), in which case, for
all remaining times, 6 (or A) power will be selected.

2) Uniform schedule #.qis: A power level is scheduled uniformly
between O to 7'. For example, when T = 30 and m = 5, A
power is chosen at times 5, 10, 15, 20, and 25.

3) A-firstschedule #a— r: A power level is scheduled during the first
m times.

Fig. 4 plots the trace of E[ Pr] as a function of Aa under the four power
schedules when the sensor has sufficient (estimate communication) or
limited computation (measurement communication). Clearly, the trace
of E[Pr] under #” is the smallest among the four schedules.

We also run a simulation for the scenario when yr = [1 0]zx + vi
with R = (.5. For this system, the condition (7) is not satisfied. How-
ever as Fig. 5 shows, the trace of E[Pr] under 8 is still the smallest
among the four schedules.
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VII. CONCLUSION

Sensor power scheduling for remote state estimation is considered
in this correspondence. An optimal power schedule is derived when
the sensor has sufficient or limited computation capability. Under this
optimal power schedule, the expected terminal error covariance at the
remote estimator is minimized.

There are many interesting directions to explore along the line of this
work: find the optimal schedule when the packet drops are governed
by a Markov chain; consider optimal power schedule to minimize the
average estimation error; investigate power schedule in a multi-sensor
scenario.

APPENDIX

Lemma A.1.: The functions h and g have the following properties:
V0 <X <Y, (X)) < (Y), g(X) < g(Y),and g(X) < h(X).
Proof: See Lemma 1 in [14]. |
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