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and W;, j = 1,2,3, are defined in (9). The last inequality follows

W; > 0. This concludes the proof.

VI. CONCLUSION

We take an operator-theoretic point of view to stability analysis of
discrete-time linear systems with varying time delays, and propose to
tackle the problem via integral quadratic constraint (IQC) analysis.
Under this framework, the system is viewed as feedback interconnec-
tion of an LTI operator and the so-called “delay difference” operator,
for which we derive several novel IQCs based on the assumption that
the time-varying delay parameter and its variation are bounded. A set
of new stability criteria emerges as the result and their effectiveness
are examined via numerical experiments. The results indicate that the
approach we propose is in many cases outperforms the state-of-the-art
criteria in the literature.
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Convergence and Mean Square Stability of Suboptimal
Estimator for Systems With Measurement Packet Dropping
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Abstract—We consider remote state estimation over a packet-dropping
network. A new suboptimal filter is derived by minimizing the mean
squared estimation error. The estimator is designed by solving one deter-
ministic Riccati equation. Convergence of the estimation error covariance
and mean square stability of the estimator are proved under standard
assumptions. It is shown that the new estimator has smaller error covari-
ance and has wider applications when compared with the linear minimum
mean squared error estimator. One of the key techniques adopted in
this technical note is the introduction of the innovation sequence for the
multiplicative noise systems.

Index Terms—Convergence, discrete-time system, mean square stability,
packet dropping, Riccati difference equation, suboptimal estimation.

I. INTRODUCTION

The problem of state estimation is of great importance in various
applications ranging from tracking, detection and control [1]. For many
linear stochastic models, a useful tool is the standard Kalman filtering
theory which has a wide spectrum of applications.

The Kalman filter is well studied in control theory when there is no
information loss [2]. However, the recent trend of utilizing networks for
transmitting measurement data introduces some interesting new prob-
lems due to the unreliable characteristics of networks such as random
data packet delays and drops. How does packet dropping affect the per-
formance of an estimator is of significant interest.

The early work [3] considered the linear minimum mean squared
error (LMMSE) estimation. By modeling the uncertainty as a sequence
of i.i.d. binary random variables indicating the signal availability, the
author derived a recursion similar to the Kalman filter utilizing the sta-
tistics of the unobserved binary uncertainty sequence. In [4] the authors
gave conditions for obtaining recursive filtering when the uncertainty
sequence is not necessarily i.i.d. Asymptotic stability of the LMMSE
filter was established in [5] when the packet arrival sequence is i.i.d.
with known arrival probability. Since in this case the estimation covari-
ance is governed by a deterministic equation, one can perform stability
analysis by constructing an equivalent linear system without packet
dropping. However, LMMSE filter in the aforementioned literatures
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[3]-[6] only makes use of the statistics of the unobserved binary un-
certainty sequence, and the solution to the estimator involves both a
Riccati equation and a Lyapunov equation. Note that solving the ad-
ditional Lyapunov equation introduces extra cost of computation, and
moreover, restricts the application to stable systems only when refer to
infinite horizon case [5].

On the other hand, Kalman filter with intermittent observations by
using time-stamped data packet has attracted much attention in recently
years [7]-[10] (we shall call it as intermittent Kalman filter in this tech-
nical note). The authors in [7] has shown that, for an unstable system
with i.i.d. Bernoulli packet drops, there exists a critical threshold such
that the expected value of the error covariance will be bounded if the
packet arrival rate exceeds this threshold, but will diverge otherwise.
This approach was extended by [8] to multi-sensor scenario. In these
results, the packet arrival sequence is known at the estimator and this
leads to a random Riccati equation involving the packet arrival indi-
cator sequence, which differs from the deterministic recursion for the
covariance function in [3]-[6]. The stability analysis of Kalman filter
with binary Markovian packet dropping can be found in [9] where the
notion of peak covariance stability was first introduced. It should be
pointed out that both the error covariance matrix iteration and Kalman
filter updates are stochastic and depend on the random arrivals of the
measurements. It has been proved difficult to analyze the convergence
of the stochastic Riccati equation and the mean square stability of the
estimator. The existing results are limited to boundary analysis.

Motivated by this, we propose a suboptimal estimator under a new
performance index. The proposed estimator can be seen as a tradeoff in
performance between the LMMSE filter and the intermittent Kalman
filter. The new estimator shall improve the performance of LMMSE
Kalman filter and possess better properties of convergence and stability
than the intermittent Kalman filter.

The remainder of the technical note is organized as follows. Sec-
tion II provides the problem statement. The suboptimal filter is derived
in Section III, and the convergence and stability of the filter are proved
under standard assumptions. Differences between our estimator and
previous estimators are discussed. In Section IV, an example is given
to demonstrate the effectiveness of the approach. Section V concludes
the technical note. Some proofs for the main results are provided in the
appendix.

Notation: Throughout this technical note, a real symmetric matrix
P > 0(> 0) means that P is a positive definite (or positive semi-
definite) matrix, and A > (>)B means A — B > (>)0. Matrix
denotes an identity matrix of appropriate dimension. The superscript
“T" represents the transpose, R" denotes the n-dimensional Euclidean
space. E'{-} stands for the mathematical expectation operator. * is used
as an ellipsis for terms that are induced by symmetry. Matrices, if the
dimensions are not explicitly stated, are assumed to have compatible
dimensions for algebraic operations.

II. PROBLEM STATEMENT

Consider the following system:

x(k+1) = Ax(k) + w(k) (D)
y(k) =~v(k)Hx(k) + v(k) 2

where x(k) € R" and y(k) € R™ are respectively the system
state and measurement, w(k) and v(k) are respectively the system
noise and measurement noise with zero mean and covariances
B{w(k)w' ()} = Qbk.j, E{v(k)v'(5)} = R6;. ;, where &, is
the Kronecker Delta function. The initial state x(0) is a random vector

1249

with mean po and covariance E{[x(0) — po][x(0) — o]’} = Po.
The following assumptions are made on the packet arrival indicator
~(k) throughout the technical note.

Assumption 1: ~(k) is a scalar quantity taking on values of 0 and 1
with Pr{y(k) = 1} = ¢, Pr{~v(k) = 0} = 1 — ¢, and the random
processes w(k), v(k), v(k) for all k£ and the initial state x(0) are mu-
tually independent.

Assumption 2: (k) is assumed to be observed at every time instant
k by employing the time-stamp technique. That is v(k) together with
observation y (k) are available in the estimator design.

Before describing the problems, we introduce the sequence e(k) as-
sociated with the measurement y (%)

e(k) = y(k) = v(k)Hx(k|k = 1) 3)

where

X(k + 1|k)=A%(k|k — 1) + Kp(k)e(k), (0] = 1)=po  (4)
and K, (k) is chosen such that the following is minimized:

E {[x(k+ 1) = %0k + 1] [x(k + 1) = x(k + 10)]"} )

where the expectation is taken over w, v and ~.

Recall [10] we have the following results:

Lemma 1: The sequence e(k) defined in (3) is mutually uncorre-
lated noise with zero mean.

Remark 1: Ttis clear that the sequence e (%) defined in (3) is different
from the standard Kalman innovation for additive-noise system [11] but
they posses the similarity of being mutually uncorrelated and having
zero mean. Therefore we shall refer e(k) as innovation in this technical
note for consistency.

We now formulate the problem with the innovation sequence {e(-)}.

Suboptimal Filter: Find an estimator X(k + 1|k) of x(k + 1) in the
form of (4), where the gain I, (k) is chosen such that (5) is minimized.

Remark 2: The above filtering problem is different from the inter-
mittent Kalman filter studied in [7] where the expectation is only taken
over on w and v, and +y is assumed to be known.

Remark 3: The above estimation problem is also different from the
LMMSE Kalman filtering problem. In fact, the measurement (2) can
be rewritten as

y(k) = qHx(k) + [y(F) — o] Hx(k) + v(F). (6)

Then the LMMSE estimation problem is to find the estimator %X(k +
1|k) in the form of

X(k + 1|k) = AR(k|k — 1) + K, (k) [y(k) — ¢HX(k|k — 1)] (7)

and K'p(lf) is chosen such that (5) is minimized.

III. SOLUTION TO THE SUBOPTIMAL ESTIMATOR

A. Calculation of the Suboptimal Estimator

The following result gives the suboptimal gain matrix I, (k) of (4).
Theorem 1: For the given systems (1), (2), the filter defined in (4)
is given by

&(k+ 1)k) =[A — v(b) K, (k) H%(k|k — 1) + K, (k)y(k),
(0] = 1) = po (8)

where the estimator gain K, (k) is calculated as

Kp(k) =qAP(k)H M~ (k) )
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M(k)y=qHP(k)H" + R (10)

and P(k), the covariance of estimation error, is the solution to the gen-
eralized Riccati equation

Pk+1) =AP()A” +Q — K, (k)M (k)K, (k),

P(0) = . (11)

Proof: Letx(k|k —1) = x(k) — %X(k|k — 1). From (4), we have

%(k + 1|k) = A%(k|k — 1) — K, (k)v(k) HZ(k|k — 1)

+w(k) — K,(k)v(k). (12)

Then it follows from (12) that:

%(k+ 1|k)x" (k + 1]k)
={A - K,(k)v(k)H} x(k|k — 1)
x % (k|k —1){A - K,(k)y(k)H}"
—{A = K, (k)y(k)H} x(k|k — D)v" (k)K, (k)
+{A = K, (k)y(k)H} x(k[k — 1)w (k)
— K, (k)v(k)X" (k|k — 1) {A — K,(k)y(l) H}"
+ K,(k)v(k)v (k) K] (k) — Ky(k)v(k)w" (k)
—w(k)v' (B)K] (k) +w(k)w' (k)
+w(k)x" (k|k — 1) {A - K,(k)y(k)H}" .

13)

Taking expectation with respect to v(k), w(k) and v(%) on both sides
of (13) yields

B {[&(k + 1] [&(k + 10" }
T
— AP(R)A" + Q — AP H M~ (k) [AP(k)HT]

+ [K, (k) = K (k)] M(k) [K, (k) — K (k)] (14)

where

Pk)=E {fc(k|k — )& (k|k — 1)},
K (k) =qAP(k)H" M (k),
M(k)=qHP(k)H" + R.

It is obvious that E{%(k + 1|k)%x" (k + 1|k)} will be minimized
precisely if we choose K,(k) = I, (k). Therefore the proof is
completed. |

B. Convergence and Stability of the Estimator

In this subsection, we study the convergence and stability of the pro-
posed estimator. Similar to our previous work [12], we assume the fol-
lowing in this technical note.

Assumption 3: (AT, qH",0,H™) (0 < ¢ < 1) is stabilizable.

Assumption 4: (A", 0, QY 2) is exactly observable.

Remark 4: Recall from [12] that, (AT, HT, AT, HT) is called sta-
bilizable in the mean square sense if there exists a feedback control
uw(k) = Kxz(k) with K being a constant matrix, such that for any
xo € R™, the closed-loop system

e(k+1) =[A" + H K)e(k) + [Aé’ + H{{’K] e(k)w(k),

x(0) =0 (15)
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is asymptotically mean square stable. Here w(k) in (15) is a wide

sense stationary, second-order process with E{w(k)} = 0 and
E{w(k)w(j)} = obi;.
Consider the stochastic system
x(k+1)= AT;zf(k) + AOT.L(k)w(k) (16)
y(k) =C" w(k) (17)

(AT, Al,C7) is called exactly observable if

y(k)=0, as.Vke{0,1,---} = 20, =0.

Theorem 2: Under the Assumption 3-4, with an arbitrary
but fixed initial nonnegative symmetric P(0), the matrix P(k)
abided by (11) converges to a unique positive definite ma-
trix P. In other words, we have lim,_..P(k) = P > 0,
limy— oK, (k) = K, = qAPH [HPH" + R]™".

Proof: See Appendix A. |

Following Theorem 2, when k& — oo, the suboptimal filter of (8)
becomes

x(k+1k)=[A - y(k)K,H X(klk - 1)+ K,y(k). (18)

Now we present the results on mean square stability for the filter
(18).

Theorem 3: Under the Assumption 3—4, the suboptimal estimator
(18) is mean square stable.

Proof: Note that (18) can be further rewritten as

X(k+1|k) = [A — qK, H|%(k|k — 1)+ K,y(k)
+5(k)[- K, Hlx(k[k = 1) (19)

where ¥(k) = v(k) — ¢ is arandom scalar variable with zero mean and

covariance ¢(1 — ¢). In the proof of Theorem 2 it has been shown that

[A—gK,H|P[A—qK,H]) +¢(1—¢)K,HPH" K} —P < 0. (20)
Thus we conclude that the system
(k+1|k) = [A—gK, H|%(k|k—1)+5(k)[- K, H%(k|k—1) (21)

is mean square stable [13]. Hence (18) is a mean square stable
estimator. |

Corollary 1: If (A, Q'/?) is reachable and (A, H) is detectable.
Then for any ¢ > qo, the matrix P(k) of (11) converges to a constant
matrix I, where ¢q is given by the solution to the following optimiza-
tion problem:

qo=argmin,®,(W,X)>0, 0<W<I, 0<¢<1 (22)
W * * ok %
AT"W—gH'XT W o« % %
,WX)=| V1-9¢H'XT 0 W % =« 23)
R:XT 0 0 I =«
FW 0 0 0 I

where F is a real matrix satisfying = F” F. Furthermore, the esti-
mator (18) is mean square stable.
Proof: See Appendix B. |
Remark 5: 1t is readily known that (A, Q'/?) is reachable is equiv-
alent to Assumption 4.
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C. Discussions on the Proposed Estimator and Previous Estimators

The study on Kalman filtering problem for packet dropping can be
tracked back in the 60’s. The earlier works focus on the LMMSE (linear
minimum mean squared error) estimation [3]-[5] and the recent works
on the standard Kalman filter using time-stamp technique [7]. The pre-
sented filter (8) is derived by combining the LMMSE approach and
time-stamp technique. In this subsection, we compare the proposed es-
timator with the previous ones.

1) Comparison with LMMSE Kalman Filter: From Remark 3, the
LMMSE Kalman filtering gain I;'p(k) is calculated as [14] Iz'p(k) =
qAS(BYH  [*HS(E)H  +9q(1—¢)HD(E)H" +R]™", where D(k)
and S(k) are given by

D(k+1)=AD(k)A" +Q

S(k+1)=AS(k)A" +Q — ¢ AS(k)H"
x [FHSUE" +4(1 ) HD(WE" + B -
x HS(k)A"

(24)

(25)

where S(k) is the error covariance of the LMMSE estimator. Thus the
design of the LMMSE estimator (7) involves both the solution to the
Riccati difference (25) and the solution to a Lyapunov (24). Due to the
fact that the Lyapunov equation is solvable only in the case when the
system is stable, the LMMSE estimator for systems (1), (2) is only ap-
plicable to stable systems. Note that the solvable condition of the pre-
sented estimator has been reduced to a weaker condition of Assumption
1 and 2.

Moreover, the proposed estimator has smaller estimation error than
the LMMSE estimator since the new estimator exploits additional in-
formation on the arrival sequence.

Lemma 2: With the same initial condition D(0) = S(0) = P(0),
one has

Pk+1)< S(k+1) < D(k+1) (26)

where P(k+ 1), S(k+ 1) and D(k+ 1) are as in (11), (24) and (25),
respectively.

Proof: We complete the proof by induction. Note that S(0) =
D(0), it follows readily from (24), (25) that S(1) < D(1). Assume
S(k) < D(k), then

S(k+1) < AS(K)AT + Q < AD(K)AT +Q = D(k +1).

Next we prove P(k+ 1) < S(k + 1). Since S(0) = P(0), we have
P(1) < S(1). Now suppose P(k) < S(k), then
P(k+1)
=[A-K,(k)gH] P(k)[A—K,(k)¢H]" +Q
+q(1—q)K,(k)HP(k)H" K, (k)4 K,(k)REK, (k)
< [A-K,(k)gH] P(k) [A- K, (k)gH]" +Q
+e(1—q) K, (k) HP(k)H' K, (k)+ K, (k)RE, (k)
< [A=K, (k)gH] S(k) [A— K, (k)gH]" +Q
+a(1- K, (W HS(KH' K, (k)+EK,(k)RE, (k)
<AS(K)AT+Q-*AS(k)H"
—1
><[qQHS(k)HT—i-q(l—q)HD(k)HT—i—R] HS(k)AT
=5(k+1) @7
where K, (k) is given by (9), K (k) = ¢ AS(k)H* x [¢HS(k)H* +
R]™'. Thus the proof is completed. |

2) Comparison with Intermittent Kalman Filter: Although the in-
termittent Kalman filter has received much attention in recent years, the
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Fig. 1. (a) Covariance of proposed estimator; (b) Covariance of LMMSE
estimator.
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Fig. 2. Tracking performance of the proposed estimator (30).

analysis of the estimator is only limited to the boundary analysis for es-
timation-error covariance due to the complexity of discussions [8], [9].
On the other hand, we have shown in Section III that the proposed esti-
mator in this technical note is mean square stable and the covariance of
estimation error converges to a positive definite matrix under standard
assumptions. However, we would like to point out that the proposed es-
timator has larger estimation error covariance than intermittent Kalman
filter in time-stamp case. Thus the proposed estimator can be seen as
a tradeoff in performance and analysis between the LMMSE filter and
the intermittent Kalman filter.

IV. NUMERICAL EXAMPLE
Consider the linear discrete-time system

x(k+1)=1.01x(k) + w(k).x(0) =2
y(k) = = 0.79(k)x(k) + v(k)

(28)
(29)

where w (%) and v(%) are Gaussian random noises with zero means and
covariances 1, and v(k) is the packet arrival indicator with Pr{~y(k) =
1} = 0.9 and Pr{y(k) = 0} = 0.1. We design the LMMSE esti-
mator and the proposed new estimator for the above system. The es-
timation error covariance matrix P(k) in (11) and S(k) in (25) are
shown in Fig. 1 (with its tracking performance in Fig. 2), which shows
that the covariance of our proposed estimator is asymptotically conver-
gent while the covariance of the LMMSE estimator is divergent. Fur-
thermore, the covariance of estimation error of our proposed estimator
converge to 2.2745. As a result, the constant gain K, is —0.7225 and
the estimator is

x(k+1]k) = [1.01 — 0.50575~7 (k)] %(k|k — 1) —0.7225y (k). (30)

V. CONCLUSION

A new approach to suboptimal estimation over a packet-dropping
network has been proposed by minimizing the mean squared estimation
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error where the mean has been taken over the system noise, measure-
ment noise and random packet arrivals. Under this performance index,
it has been shown that the derived estimation gain for filtering is con-
stant which allows us to analyze the convergence and stability for the
proposed estimator under standard assumptions. We have also shown
in theory and simulation that the proposed estimator has wider appli-
cations and better performance than the LMMSE filter.

APPENDIX A
PROOF OF THEOREM 2

Proof: In view of Assumption 3, there is a matrix J. such that
(A— K.qH,—K.H) is mean square stable. Define a fictitious subop-
timal as follows:

X (kH1|k) = AX" (k|k — 1)+ K. {y(k)—~(k)H&" (k|k—1)}. (31)

Let x°(k + 1|k) = x(k+ 1) — x°(k + 1|k), and P°(k + 1) =
E[%"(k+ 1)k)%x°7 (k + 1|k)]. Combining (1) and (31) we obtain

X (k+1k) = [A —v(B) K H]x (k|k—1)4+w(k)— K.v(k). (32)
Thus one has

P(k+1)=[A—- K.qH|P*(k)]A - K.qH]" + K.RK!
+q(1 - q)K.HP (k)H'K] + Q. (33)

Considering that (A— K.qH, — K. H ) is mean square stable, we obtain
that P“(k + 1) in (33) has a bounded solution for any initial condition.
By its suboptimality, P*(k + 1) > P(k + 1) > 0 in general, thus
the bound on P(k + 1) is obtained. On the other hand, let PQO(Lt)
and KSO (k) stand for the covariance matrix gain satisfying (11) and
gain matrix abiding by (9), both with an arbitrary initial condition ()o.
Then similar to [15] we can prove that P°(k + 1) > P°(k) for Vk.
As shown previously, P° (k) is bounded and monotonically increasing
with %, which implies lim .. P° (k) = P > 0. Now taking limits in
(9)—(11) with initial condition O one obtains

K, = gAPHTM ™ M = ¢qHPHT + R,
P=APA" +Q— K, MK, .
Along the same line of the proof in [12], we conclude that > > 0 due

to the fact that (A%, 0, Q'/?) is exactly observable. Note that it follows
from (34) that

[A-K,qH|P[A-K,qH) +¢(1—¢)K,HPH" K —P < 0. (34)

According to [13], we conclude that (A — K,qH, —K,H) is mean
square stable.

In the following, we show that the Riccati iteration initialized at
P(0) = Ro > P also converges, and to the same limit P. To prove
this, we consider the following operators:

g, (V) =AY A" + Q - AV H'

x [HYH" + R|"'[AYH"]" (35)
$q(L,Y) =[A - LqH|Y[A — LqH]"
+q(1-q¢)LHYH"L" + Q+ LRL". (36)

Assume Y € S = {S € R"*"|S > 0}. According to the similar idea
in [7], the following facts are true.
i): With Ly = gAY H" [¢HY H” + R™", 9,(Y) = ¢4 (Lv,Y).
ii): g(Y) = minp¢g(L,Y) < ¢4(L,Y), VL.
iii): If Y7 < Y5, then g4(V1) < g,(Y2).
By making use of (35) and the fact iii), we have P70(1) =
gq(PT0(0)) = g4(Ro) > g4(P) = P. A simple calculation using the
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mathematical induction reveals that P%0 (k) > P for Yk. Moreover,
it follows from (35), (36) and 1), ii) and iii) that:

0<P*(k+1)-P
=04 (K52 (1), PR (1)) = 6 (K,. P)
<oy (I(,,,PR“(ks)) — (K, P)
=[A - K,qH] [P (k) = P| [4 - K,qH]"

+a(l— K, H [PRO (k) — P] (&, H]. 37)

Since (A — KpqH, — K, H) is stable, by taking limit on (37) one has

0< lim P®(k+1)-P=0. (38)
Thus we have proved that the Riccati iteration initialized at P(0) =
Ry also converges to the same limit P. Finally, we demonstrate that
P(%) in (11) also converges to the same limit P under arbitrary initial
value P(0) = Fy. Define Ry = P, + P. Consider the three Riccati
iterations, initialized with 0, Py and Ry. Note that 0 < F,. Assume
that P°(k + 1) < PPo(k 4 1), then P°(k +2) = g(P°(k+ 1)) <
g(PPo(k+1)) = PYo(k+2). Hence V k, P°(k +2) < P (k42)
holds. Similarly we obtain that P70 (k + 2) < P™0(k + 2). In other
words, Vk, P°(k+2) < PP (k 4+ 2) < P™o(k+ 2). Noting that the
Riccati equations P° (k 4 2) and P** (k 4 2) in (11) converge to the
same P, thus
P = lim P°(k+2) < Jim P (k4 2)

< lim PMo(L4+2)=P. (39)
And the proof is completed. |

APPENDIX B
PROOF OF COROLLARY 1
Proof: When ¢ = 1, under the conditions that (4, Q'/?) is reach-
able and (A, H) is detectable, it has been proven in [15] that the matrix

P(k) of (11) converges to a unique positive definite matrix P which
satisfies the algebraic Riccati equation

P=APA" + Q- APH"[HPH" + R 'HPA". (40

SetY = W1, K = W 'X, it can be deduced from &, (W, X) < 0
after elementary transformation that

Y % %

YAT — goVHTET YV =«

VA =qg)gYH'EY 0 Y

which is also equivalent to that there exists a positive definite matrix Y
such that

>0 (41)

[A— qKHY[A - qKH]" + (1 —q)KHYH'K* =Y <o0.

(42)
Therefore (A7,0,qoH,H") (0 < ¢qo < 1) is stabilizable from
(42). On the other hand, (A, Q/?) is reachable is equivalent to
( AT, 0, Ql/ 2) is exactly observable. Thus based on Theorem 2, one
has that P(k), which satisfies

P(k+1)=AP(k)AT + Q — s AP()H"
x[gHP(k)H" + R|” HP(k)A" (43)

converges to a positive definite matrix P, and P satisfies the following
algebraic Riccati equation:

P=APAT + Q- 2 APH [ HPHT + R| 'HPAT. (44)
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Finally we will find the minimum ¢o such that for any 1 > ¢ > qo,
P(k) of (11) converges. In order to do this, similar to [7], we can prove
the following statements are equivalent.

a): Y > OsuchthatY > ¢,(Y).

b): 3L, Y > OsuchthatY > ¢4(L,Y).

¢): 3X and0 < W < T such that

w * * k %
ATW —qHTXT W % % %
o, (W.X)= [ V/A-q)gH" X" 0 W * x| >0,
Rz X" 0 0 I =«
FW 0 0 0 I

Moreover, we can prove that g,(Y") is monotone in ¢, that is,
9o (Y) > 94,(Y), V0 < ¢1 < ¢2 < 1,VY > 0. Combining
the facts a), b) and making use of the monotonicity of g,(Y"), we
get (A, 0,¢H", H") (g0 < ¢ < 1) is also stabilizable under the
condition of (A'T, 0,q0HT,HT) is stabilizable. Also, we can deduce
o, (W,X) > 0 from ®,,(W,X) > 0 by combing the facts a), c)
and making use of the monotonicity of g,(Y"). Thus we have proved
that under the condition ®,(W, X) > 0 and (A, Q'/?) is reachable,
P(k) satisfying (11) converges to a positive definite matrix, and the
minimum go is given by the solution to the optimization problem (22).
As for the mean square stable estimator, one can follow the proof of
Theorem 3. Thus the proof is completed. ]
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Englewood

Power Control in Wireless Networks: Stability and
Delay Independence for a General Class
of Distributed Algorithms

Ioannis Lestas

Abstract—We show that for a general class of distributed power control
algorithms in wireless networks, if a feasible steady state power allocation
exists, this is asymptotically stable for arbitrary gains and time varying
heterogeneous delays. The analysis exploits certain contraction proper-
ties of the interference in such algorithms, and makes use of Lyapunov
Razumikhin functions to address the infinite dimensional character of the
problem.

Index Terms—Decentralized control, delays, large scale systems, network
analysis and control.

I. INTRODUCTION

Efficient control of power is an important part of the design of wire-
less systems. On the one hand, the power transmitted by individual
nodes must be high enough to ensure a reliable connection, but at the
same time, this causes interference to neighboring nodes and reduces
battery lifetime. This is a tradeoff that has triggered research in this
area from an early stage e.g. [1]-[6] and more recent control theo-
retic approaches as in [7]-[9]. Furthermore, the need for power con-
trol schemes to be distributed is a key requirement in large scale net-
works, i.e. power update rules should be based on local interference
measurements, rather than centralized control. One of the most well
known distributed algorithms was originally proposed in [2], with its
asynchronous version analyzed in [10]. This is essentially a linear up-
date scheme that converges to user specific signal-to-interference-ratio
requirements. Convergence is guaranteed if a feasible such power al-
location exists, but the system will otherwise diverge. Therefore, non-
linearites in the form of power constraints, or other power assignment
rules, often need to be incorporated. This has led to the general frame-
work introduced by Yates in [4], which is based on some generic as-
sumptions on the effective interference from other users.

Delays, which can be heterogeneous and time varying, are inevitably
present in the communication of interference measurements in such
algorithms. These cannot be neglected in realistic models as it is well
known that they can potentially lead to instabilities and oscillatory
behaviors. Nevertheless, they render continuous time models of such
nonlinear control laws infinite dimensional, something that adds a
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