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Scheduling Two Gauss–Markov Systems:
An Optimal Solution for Remote State
Estimation Under Bandwidth Constraint

Ling Shi and Huanshui Zhang

Abstract—We consider scheduling two Gauss–Markov systems. Two sen-
sors, each measuring the state of one of the two systems, compute and report
their local state estimates to a central remote estimator, respectively. Due
to the bandwidth constraint, at each time, only one of the sensors is allowed
to communicate its estimate with the remote estimator. Upon receiving the
data from the sensors, the remote estimator computes the minimum mean
squared error estimate of each system’s state. We provide an explicit con-
struction of an optimal schedule, which is periodic (hence allows simple and
efficient practical implementation) and minimizes the sum of the average
estimation error covariance of each system.

Index Terms—Communication constraint, Kalman filter, remote state es-
timation, sensor scheduling.

I. INTRODUCTION

We consider scheduling two Gauss–Markov systems. Two sensors,
each measuring the state of one of the systems respectively, are sched-
uled to send their local state estimates to a remote estimator for further
processing. Due to the communication constraint (e.g., limited band-
width), only one sensor is allowed to communicate with the remote
estimator at each time.

Remote state estimation are found in many applications, such as in
wireless sensor networks, networked industrial processes, smart grid,
smart transportation, etc. [1]. If the communication media is perfect
and has sufficient bandwidth, and guarantees reliable data flow, many
existing tools such as the Kalman filter [2] can be used to estimate the
state of a process. However, in many of the aforementioned applica-
tions, communication bandwidth is expensive, and different sensors
and state estimators may be required to share the same network. In
these cases, novel tools and methodologies for state estimation under
communication constraints are needed. This research area has attracted
much interest from different communities in recent years [3].

Mo et al. [4] considered sensor selection problems where a subset of
sensors is to be selected at each time so that the network lifetime is max-
imized or the average error covariance at the estimator is minimized
subject to limited energy budget constraint. By using convex relaxation
techniques, a suboptimal sensor schedule is constructed. Shakeri et al.
[5] considered sensor measurement scheduling subject to a finite cost
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constraint, where the measurement contributed a cost that is inversely
proportional to its error covariance. They reduced the problem to a non-
linear optimization one with linear equality and inequality constraints.
Vitus et al. [6] considered optimal sensor scheduling for a discrete-time
system with multiple sensors, where only one sensor is allowed to take
a measurement at each time. Chhetri et al. [7] proposed two sensor
scheduling algorithms for a target tracking problem. Krishnamurthy
[8] constructed algorithms for scheduling noisy sensors which measure
the state of a single Markov chain. These algorithms aim to minimize
a cost function of estimation errors and measurement costs. Chen et al.
[9] presented transmission scheduling algorithms for maximizing the
lifetime of a sensor network. The problem of dynamically selecting a
group of sensors in their work was formulated as a stochastic shortest
path Markov decision process. Cohen and Lesham [10] proposed a
time-varying opportunistic protocol for network lifetime maximization
when the sensors used are battery-powered and nonrechargeable. Chen
et al. [11] considered the optimal transmission scheduling for maxi-
mizing the sensor network lifetime by utilizing the channel informa-
tion. Dong et al. [12] considered the data retrieval problem in a 1-D
sensor network. They also compared the performance of deterministic
and random schedules. Zhang et al. [13] considered the infinite-horizon
sensor scheduling problem for linear Gaussian processes with linear
measurement functions. One of � sensors needs to be scheduled at
each time to take a measurement of a single process so as to minimize
the average estimation error covariance. The authors proved that the
optimal estimation cost can be approximated arbitrarily closely by a
periodic schedule with a finite period.

Most of the aforementioned works focused on a single process or
target system. Multiple sensors are used to measure the state of the
process, and only one or a subset of the sensors can report their mea-
surement to a remote estimator at each time. In our paper, however, we
focused on scheduling of two independent processes subject to com-
munication constraint. We provide two motivational examples of the
considered problem.

1) Indoor environmental monitoring: Consider measuring the tem-
perature and humidity level inside an office using two sensors.
At each time, either the sensor measuring the temperature or the
sensor measuring the humidity reports its data to an access point
(or remote estimator). The communication constraint is imposed
to avoid potential data collision. Upon receiving the data from the
two sensors, an estimate of the temperature and humidity is cal-
culated.

2) Target tracking: Two sensors measuring two mobile targets (vehi-
cles, missiles, etc.) need to report their readings to a central com-
putational unit, which reads the data from one of them at each
time. An estimate of the position of each target is calculated based
on the sensor data received.

The main contribution of the paper is the explicit construction of an
optimal sensor schedule, which is periodic, hence allowing efficient
implementation in practice. To the best of our knowledge, such an ex-
plicit construction of an optimal sensor schedule is novel.

The remainder of the paper is organized as follows. Section II
provides the mathematical problem setup. Some preliminary result
is presented in Section III-A. The main result is then presented in
Section III-B. Concluding remarks are given in the end.

Notations: � is the �-dimensional Euclidean space. is the set of
natural numbers. The nonnegative integer � is the time index. �

� is the
set of � by � positive-semidefinite matrices. When � �

�

�, we write
� � �; when � is positive definite, we write � � �. For a matrix
�� �� denotes its transpose. ����� denotes the trace of a matrix. ���
denotes the expectation of a random variable. For functions ��� ��, and
� with appropriate domains, �� � ����� ���������� ����� � ,
and � ���� ��� �������.
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Fig. 1. System block diagram.

II. PROBLEM SETUP

Consider the following two Gauss–Markov systems (Fig. 1):
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��� � ���
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� � �
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�� � � �� � (1)

�
�
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�
� � �

�
�� � � �� � (2)

where ��� � � is the state of the �th system at time 	� ��� � � is the
measurement obtained by sensor � at time 	� ��

�’s, ���’s and the initial
system state ��� are mutually uncorrelated zero-mean Gaussian random
variables with covariances 
� � �� �� � �, and �� � �, respectively.
�� is unstable, and the pair ����

�

�� is controllable and ���� ��� is

observable.
After obtaining ��� , the �th sensor (abbreviated as ��) computes1

	��������� , the minimum mean-square error (MMSE) estimate of ���
using a Kalman filter as follows:
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where the recursion starts from 	���������� � � and  ��
������� � ��.

Assume the communication bandwidth is limited and as a result,
only one of the sensors is able to communicate with the remote esti-
mator at each time step. Let ��� � ��� �� indicate whether 	��������� is
sent or not, i.e., if ��� � �, then 	��������� is sent to the remote estimator
at time 	; otherwise if ��� � �� 	��������� is not sent. Let � � ������ ���� 

	 � �� �� �� � � �� be a sensor communication schedule that specifies
the values of ��� and ��� for each 	. We sometimes write ��� as ������ to
indicate that the value of ��� is determined by the schedule �.

Define the information vector ������ as ������
�������	���������� � � � � ������	����������, i.e., ������ contains all in-
formation the estimator has about the �th system at time 	 under the
sensor communication schedule �. Based on ������, the estimator
computes 	������, the MMSE estimate of the state ��� , and its
estimation error covariance  �

���� as
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1Many sensors available in the market nowadays have on-board CPUs and a
communication unit. The extra capabilities make them “smart” and be able to
process and communicate their data with a remote state estimator.

Since 	��������� encodes ����� � � � � ����, it is straightforward to show that
the estimator should compute 	������ as follows2:

	������ �
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��	�
�
������� if ������ � ��

In other words, the remote estimator synchronizes its own estimate 	���
with the received local estimate at the �th sensor if sensor � is scheduled
to send data; otherwise, the remote estimator predicts ��� based on its
previous optimal estimate 	�����. Consequently,  �

���� is computed as
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For a given schedule �, define a cost function ���� associated with
� as follows:
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Consider the set of all schedules �. This paper investigates the fol-
lowing problem3:

Problem 2.1:

��
��


����

���� �
�
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�
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In other words, we wish to find a schedule � which minimizes the sum
of the trace of the average estimation error covariance of each system.
Notice that the constraint is imposed by the finite communication band-
width. A schedule � � � is said to be optimal to Problem 2.1 if for any
other �� � �� ���� 	 �����.

For brevity, we will write ������ as ���� 	�
�
���� as 	��� , and  �

���� as
 �
� , etc., when the underlying schedule � is evident from the context.

For any � � , the notation ����
� means sensor � is scheduled � times

consecutively.

III. MAIN RESULTS

A. Preliminaries

To simplify the notations and facilitate the analysis in subsequent
sections, we define the functions �� and ��:

�
� 
 �

� as follows:
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�
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�
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�
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�
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Then, one can verify that the local state estimation error covariance
 �
������� at the �th sensor at time 	 is given by
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Notice that applying �� to  �
��������� corresponds to the time-update

step in the Kalman filter; and applying �� to��� �
���������� corresponds

to the measurement-update step in the Kalman filter.
Since ����

�

�� is controllable and ���� ��� is observable, from

standard Kalman filtering analysis (e.g., [2]), there exists a unique� �
� such that

� � �� � ����� (4)

2If �� is not received, then �� ��� � � and � ��� � � .
3It is not difficult to show that the optimal schedule remains the same if the

constraint is replaced by a more general one: � ����� ��� � ���� � �. The
intuitive idea is that more communication between the sensors and the remote
estimator leads to less estimation error. Thus the cost function is minimized only
if � ��� � � ��� � ���� � �.
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which corresponds to the steady-state estimation error covariance of the
Kalman filter at the �th sensor. Furthermore, � �

������� converges to ��

exponentially fast. Since the cost function is over an infinite-horizon,
we may ignore the transient period and assume the initial state co-
variance �� � �� without loss of generality. As a result � �

������� �
��� �� � �. Then, the estimation error covariance � �

� at the remote
estimator evolves according to

�
�
� �

��� if ��
� � �

�� � �
��� � if ��

� � ��

Notice that � �
� � �� and � �

� � �� cannot hold simultaneously due to
the communication constraint.

We now introduce the following important result on �� and ��,
which shall be used in deriving the main result in the next section. The
proof is presented in the Appendix.

Lemma 3.1: For � � �� �, the following holds.
1) �

�
� ���� � �
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� ���� if �� � ��, and ��

����� �� ����
� ���� for any

� � �.
2) For any � � �,

�	
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�
����� �

B. An Optimal Schedule

In this section, we present the main result of this paper: the explicit
construction of an optimal sensor schedule to Problem 2.1. Without loss
of generality, we limit the search of an optimal schedule to Problem 2.1
in a subset � �  that satisfy the following two conditions.

1) �� is first scheduled at � � �.
2) A schedule 
 � � can be presented as
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for some ��� � �� ��� � �� � � �� �� � � �, i.e., under 
� �� is first
scheduled for ��� times, then �� is scheduled for ��� times; after
that, �� is scheduled for ��� times, and �� is scheduled for ���
times; and so on, and so forth.

If an optimal schedule 
 does not satisfy the first condition and sched-
ules �� first for a consecutive � times before scheduling ��, then we can
construct a schedule 
� by letting ��

��

�� � ��

��� �
�� � � �� �� �� � � �.
It is straightforward to show that �
� � �
��, thus 
� is also optimal
that satisfies the first condition.

The second condition is derived from the first one and the fact that
�� or �� cannot be scheduled consecutively for an infinite number as
� �
� or � �

� will diverge otherwise. Now consider any finite � � �. Let
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Clearly, �
� � ��� ������ ��
�. Further define ����� and ����� as
follows:
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Then, one easily verifies using the preliminaries from the previous
section that ��
� with 
 presented in the form of (5) is given in a
closed-form by
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from which we obtain the following:
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� is a convex combination of the � quan-

tities �
� ��
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� has to be no
less than the minimum of these � quantities, i.e.,
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where �� � � and �� � �. Since (8) holds for any � � �, one immedi-
ately obtains that
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We now present one of the main results of this paper in the following
theorem.

Theorem 3.2: Let �� � ��� � � and �� � ��� � � minimizes
����� ��� which is defined as
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Let 
� be a periodic schedule with period ��� � ��� which schedules ��
and �� in the first period as �

�

� �

�

� . Then 
� is an optimal schedule to
Problem 2.1.

Proof: The cost of 
� is easily seen to be given by
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Thus, from (9), for a general 
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which establishes the optimality of 
.
Now, we have shown that the periodic schedule 
� is optimal and our

remaining task is to find the exact values of ��� and ��� to allow efficient
implementation in practice. First, we have the following result.

Lemma 3.3: Let �� � � and �� � �. If
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Proof: To simplify the notations, let us define
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Assume (11) holds, i.e., � � �. From Lemma 3.1, � � �� � �.
Furthermore, � � � � � � �. From these inequalities, we obtain

����� ���� ����� �� � ��
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The remaining part of the lemma can be proved similarly.
From Lemma 3.3, it is straightforward to see that ��� � � or ��� � �.

If
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���� (12)

then ��� � �; otherwise ��� � �. Notice that ��� � ��� � � if (12)
becomes an equality.

Without loss of generality, assume (12) holds and ��� � �. We would
like to find ��� . Define ���� as
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���

� �
�

�
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Then, we have the following result.
Theorem 3.4: ��� satisfies
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� � ����	 (14)

Proof: It suffices to prove that if �� � ����, then ���� ��� �
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Now, � � � � � � � and �� � � � �. Furthermore, from the
definition of ���� in (13), � � �. Thus, we have

���� ���� ���� ����� � �� � ��� ���� � �� � ��� ���
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Since � is unstable, 	
���

��
��� increases exponentially in �. As a
result, ���� can be found efficiently. After ���� is found, we can eval-
uate ��� from (10) and (14), which needs to compare ���� numbers
����� ��� ���� ��� � � � � ���� ������ and find out the minimum number.
The complexity is only�������. The following result, however, states
that we can find the optimal ��� in less than ���� steps.

Proposition 3.5: ��� defined by (14) can be calculated as

�
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� � ��
��� ��

��� � ���� �� � �� � ���� ����	 (15)

Proof: Note that it suffices to prove if ���� �� � �� � ���� ���,
then ���� �� � �� � ���� ��� for any � � �. Now

���� �� � �� � ���� ���

�� ��� � ������ �� � �� � ��� � ������ ��� � ���� ���

��	
 �
� ��

� �
�� � 	
�
�� � ���� ���	 (16)

Fig. 2. ��� � as a function of � .

Therefore

���� �� � �� � ���� ���
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From Lemma 3.1 and (16), the last inequality holds as
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�� � 	 	 	�	
 �
� ��

� �
�� � �	
�
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� � 	
 �
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Thus, the proof is completed.

C. Example

Consider the following two second-order systems with

�� �
� �	���

� �	�
� �� �

� �	�

� �
�

�� � � � � �� �� � � � � ��

and �� � �� �� � �� �� � �	�� �� � �	�. It is found that ��� � �
as the inequality in (12) holds. According to Proposition 3.5, we
evaluated the first few ���� ��� for �� � �� � � � � � whose values
are given by ���� �� � ��	����� ���� �� � ��	����� ���� �� �
��	����� ���� �� � ��	����� ���� �� � ��	����� ���� �� �
��	����� ���� �� � ��	����. Thus, we found ��� � �. The cost
function ���� � for different ��’s are plotted in Fig. 2, where ��
stands for the periodic schedule which schedules �� and �� in a period
of ���� as ���

�

� . The plot is consistent with our result in Proposition
3.5.

IV. CONCLUSION

In this paper, we consider scheduling of two sensors each reporting
its own local state estimate to a remote estimator. The two sensors
measure two independent Gauss–Markov systems respectively. Due
to the communication bandwidth constraint, only one of the sensors
is allowed to communicate with the remote estimator. We provide an
explicit construction of an optimal sensor schedule. Future work will
be extending the results developed in this paper to multiple sensors
schedule problems.

APPENDIX

Proof to Lemma 3.1: 1) From the definition of ��, for any � � �,

����� � � ���
�
������

�
� ����

��
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Therefore

�� � �� � ������ � ������ (17)

Since ����� � ���� � for any � � � � �, by applying �� repeatedly
on both sides of (17), we get
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�
�
����� � �

���
� ����� (18)

Then from (18), we obtain the following ��
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� is the state dimension of the �th system. Consider 	 � 
�.
Then
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����� � �
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� �
�
�����

� �
�

� �
�
�������
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� �
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����

�
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�

As ����
�
�� is controllable, the controllability matrix � �

� of the �th
system, which is given by

�
�
� � � �� � � � � �

� ��

� �

has rank 
�. This leads to the fact that

� ��

���

�
�
����

�

��
� � �

�
� �

�
�

�

� ��

thus ��
����� � �. Now considering 	 � �, we have ��

����� �
����

�
������. Hence, ��

����� � � is a positive-definite solution to the
Lyapunov equation � � ����� � �����

� ��. Again from the fact
that ����

�
�� is controllable, we conclude that � is stable, which

contradicts with the assumption that � is unstable. This completes the
proof for the first part.

2) From the first part, we immediately have ��	��
 � ��	������
 �
� � � � ��	��

�����
. Suppose there exists � � � such that ��	��
�����
 �

��	����
� ����
. Then, on the one hand, ����

� ���� � ��
����� � � from

the first part. On the other hand, ��	����
� ���� � ��

�����
 � �. There-
fore, we conclude that the eigenvalues of the positive semi-definite ma-
trix ����

� ���� � ��
����� are all zeros, which implies that ����

� ���� �
��
����� � �. Thus ����

� ���� � ��
�����, which contradicts with the first

part. Therefore, for all � � �� ��	��
�����
 � ��	����

� ����
. This com-
pletes the proof for the second part.
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Single-Transmission Distributed Detection via
Order Statistics

Paolo Braca, Stefano Marano, and Vincenzo Matta

Abstract—Consider a sensor network made of remote nodes connected to
a common fusion center. In a recent work, Blum and Sadler proposed the
idea of ordered transmissions—sensors with more informative measure-
ments deliver their messages first—and they proved that optimal detection
performance can be achieved using only a subset of the measurements avail-
able to the system. Taking to one extreme this approach, we show that using
only one transmission the detection error can be made as small as desired,
provided that the network size is large enough. Indeed, we design a dis-
tributed detection scheme and prove its asymptotic consistency with respect
to , when the decision is made using just one—but the best—out of col-
lected samples.

Index Terms—Consistent detection, ordered transmissions, wireless
sensor network.

I. INTRODUCTION

Consider a distributed detection system, e.g., a wireless sensor net-
work (WSN), designed to solve a binary hypothesis test, in which the
remote nodes collect their measurements and send messages to the fu-
sion center (FC), at which the final decision is made. Exploiting the
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