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Abstract—State estimation using wireless sensor networks (WSNs) is
an important technique in many commercial and military applications, in
which a group of (nonidentical) sensors take noisy observations of system
state and send back to a fusion center through wireless broadcasting
for state estimation. In order to minimize the terminal estimation error
covariance at the fusion center, a partial broadcasting policy should tell
which sensors to broadcast at each stage. The limited battery allows each
sensor to broadcast only a few times. The limited wireless communication
bandwidth allows only a few sensors to broadcast at the same time. Due
to these couplings, the optimal partial broadcasting policy is not clear
in general. Despite the abundant applications of partial broadcasting
policies, theoretical analysis is rare. In this technical note, we provide
a first study on the properties of optimal partial broadcasting policies.
When there is no packet drop, a good-sensor-late-broadcast (GSLB) rule
is shown to perform optimally for both the scalar system and the vector
system. When packet drops with positive probability, situations in which
the GSLB rule may or may not perform optimally are analyzed. Under
different dropping rates, the GSLB rule is compared with several other
policies through simulations.

Index Terms—Kalman filtering, partial broadcasting, wireless sensor
network (WSN).

I. INTRODUCTION

State estimation using wireless sensor networks (WSNs) has be-
come an important technique in many commercial and military appli-
cations. Usually a group of (nonidentical) sensors take noisy observa-
tions of the system state and send back to a fusion center through wire-
less broadcasting. The fusion center processes all the information from
the sensors and outputs a state estimate. Due to the limited battery at
each sensor and the limited wireless communication bandwidth, usu-
ally only part of the sensors can broadcast at a time. The policy that tells
which sensors to broadcast at each time is called a partial broadcasting
policy. The optimal partial broadcasting policy, which minimizes the
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estimated state error covariance at a terminal stage, is considered in this
technical note.

There are three difficulties to find the optimal partial broadcasting
policy. First, the limited battery capacity makes the decision making
at different stages correlated. Second, the limited communication
bandwidth renders the decision making at different sensors correlated.
Third, the random packet drop not only degrades the amount of
information that a sensor shares with the fusion center, but also makes
the sequence of estimated state error covariance a stochastic one. This
substantially complicates the theoretical analysis, as will be discussed
in Section IV.

Due to the aforementioned difficulties, despite the abundant
applications of partial broadcasting policies, theoretical analysis is
rare. In this technical note, we focus on the finite-horizon discrete-time
state estimation of a linear time-invariant system and provide a first
study on the properties of optimal partial broadcasting policies. When
there is no packet drop, a good-sensor-late-broadcast (GSLB) rule
is shown to perform optimally, which means that sensors with small
observation noise should broadcast as late as possible. An algorithm is
then presented to generate the optimal policy. When there is a positive
probability of packet drop, situations in which the GSLB rule may
or may not perform optimally are analyzed. Under different packet
dropping rates the GSLB rule is compared with the optimal policy,
a round-robin policy, a random policy, and a greedy policy through
simulation.

The rest of the technical note is organized as follows. A brief
literature review is presented in Section II. The problem is math-
ematically formulated in Section III. The main results are shown
in Section IV, where Section IV-A considers scalar system without
packet drop; Section IV-B considers vector system without packet
drop; Section IV-C considers the case of packet drop; Section IV-D
contains the simulation results; and Section IV-E discusses extensions.
A brief conclusion is presented in Section V.

II. LITERATURE REVIEW

Partial broadcasting policy optimization is related to the sensor se-
lection problem, where a central node selects a group of sensors to per-
form certain tasks. The sensor selection problem in general is NP-com-
plete [1]. Many heuristics have been developed to solve this problem
approximately. Zhao et al. [2] suggested selecting the most informative
sensors. Xiao et al. [3] developed an incremental selection heuristic to
provide enough detection probability. Xu et al. [4] discussed different
heuristics for prediction and wake-up mechanisms.

To consider the uncertainty in estimation and tracking, the sensor
selection problem has been formulated as a partially observable
Markov decision process (MDP) [5], [6] or a hierarchical MDP [7].
However, due to the huge state space approximate solutions were
obtained instead.

Some researchers focus on linear Gaussian state-space models.
Alriksson et al. [8] used experiments to show that a distributed
approach where communication only takes place between neighbors
performed almost as well as the centralized Kalman filter. Shi et al.
[9], [10] systematically analyzed the tradeoff between the estimation
quality and the communication and computation capacities of each
node. Joshi and Boyd [11] used convex optimization to approximately
solve the sensor measurement selection problem. Ambrosino et al.
[12] considered the channel capacity constraint. Sinopoli et al. [13]
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considered the effect of independent and identically distributed (i.i.d.)
packet drop on state estimation, and studied the statistical convergence
properties of the estimation error covariance. They showed that there
exists a critical value for the arrival rate of the observations, beyond
which a transition to an unbounded state error covariance occurs.
Huang and Dey [14] and Xie and Xie [15] considered the effect of
Markovian packet drops. Hespanha et al. [16] surveyed recent progress
in networked control systems.

Savage and La Scala [17] considered the optimal scheduling of scalar
Gauss–Markov systems with a terminal cost function. Although both
their paper and this technical note focus on Gauss–Markov system with
terminal cost, the differences are clear. First, they used a single sensor
to measure and track multiple targets, while in this technical note we
consider state estimation of a single system through multiple sensors.
As a result, the objective functions are different. They minimized the
total estimated state error variance of multiple systems at a terminal
stage, while we minimize the expectation of the estimated state error
covariance of a single system at a terminal stage. Second, a limited
total measure budget is considered in [17], and no constraint on the
communication is imposed because a single sensor is used. However,
in this technical note the constraints are caused by the limited commu-
nication power of each sensor and the limited wireless communication
bandwidth among the sensors. Third, data packet drops are considered
in this technical note as a natural consequence of wireless communi-
cations among sensors, but are not considered in [17]. Last but not the
least, they considered scalar system but we consider both scalar system
and vector system. Their proof technique does not apply to our analysis
for the vector system. And our sample-path-based analysis technique
for the packet drop case is also new to the literature in this research area
to the best of our knowledge.

Li et al. [18] considered partial broadcasting of WSNs. They devel-
oped a good-estimates-first-broadcast policy to minimize the one-stage
estimated error covariance, which is different from the terminal cost
considered in this technical note.

Gupta et al. [19] considered a stochastic sensor selection algorithm.
They provided upper and lower bounds for the expected error covari-
ance for a given random schedule, and developed an algorithm to min-
imize the upper bound on the expected steady-state performance. This
technical note is different from theirs because 1) we consider the ter-
minal cost of finite stages and 2) we consider the expected error co-
variance directly, not an upper or lower bound, but their work points
out interesting future work of this technical note as will be discussed
in Section IV-E.

Note that in this technical note an optimal schedule is of interest
which determines beforehand which sensors to broadcast at each stage.
Such open-loop schedules are easy to implement and do not require
much computing capabilities from each sensors. More generally, sen-
sors could be scheduled in a closed-loop way, say based on the differ-
ence between the state estimate at the fusion center and the state esti-
mate that could be obtained using full (or partial) sensor information.
Feedback policies of this type have been examined in the literature on
event-based sampling, say [20] and [21]. Imer and Basar [22] also con-
sidered a joint encoder (at the sensor) and decoder (at the fusion center)
design problem for Gauss–Markov systems with average cost criteria.
These feedback policies are useful when sensors have some computing
capabilities.

III. PROBLEM FORMULATION

Let � � ��� ��. Let � be the set of all �-by-� positive definite
matrices. Consider a system evolving as follows:

���� � ��� � �� (1)

where �� � � is the system state at stage � with initial value �� �
�������; � � ���; �� � ������ is the process noise assumed
white, � � � (positive semi-definite). The system state is observed by
	 sensors
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where 
���
�

� � is the observation; � � ���; ����
�

� ���� �����
is the observation noise assumed white, ���� � �. Assume ��� ���
and �� are mutually uncorrelated, and � � ���� � ���� �

� � � � ����. At each time, some sensors are selected to broad-
cast their local observations 


���
�

back to the fusion center. Let
�� � ������� � � � � ���	��� � �� denote such a selection, where
���� � � (or 0) means sensor  is (not) selected at time �. Let
�� � ���� � � � � ��� denote the selection from time 1 to �. Then ��

represents a partial broadcasting policy, where � is the length of
the horizon of interest. A message will reach the fusion center with
probability � � � � �. Denote �� � ������� � � � � ���	��� � �� ,
where ���� � � (or 1) means the packet from sensor  at time �
is (not) dropped, and define �� � ���� � � � � ���. Then the obser-
vations from sensors in ���� 	 ��� will reach the fusion center at
time �, where �� 	 �� � ������������ � � � � ���	����	��� and
���� � �
��� � ��. The optimal estimate 	�� using a Kalman filter
is [23]
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where the recursion starts from 	�� � � and �� � ��. If ����	 ��� �
, then we have [13] 	�� � �	����� �� � ������

� ��. To simplify
notations, introduce functions �� ��	 � �	  ��� � as
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where for functions ��� ��� �������  ���������. Then we have �� �
�	 �
 ������. The partial broadcasting policy optimization problem
can be cast as follows:
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where the objective function is the expected estimated state error co-
variance at time � ; the two groups of constraints correspond to the
battery and communication bandwidth constraints, respectively.

IV. MAIN RESULTS

A. Scalar System Without Packet Drop

For scalar system (1) and (2) can be simplified to

���� � ��� � ��
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where �� � ���� ��� � � � and ����� � ���� �����. We start from this
simple case and focus on the following rule.

The Good-Sensors-Late-Broadcast (GSLB) Rule: Sensors should
broadcast as much as possible in the lifetime and as late as possible.
Furthermore, if sensor � broadcasts at stage � and not at any future
stages, then sensor 	 
 � should not broadcast at any stage �� 
 �.

We will show that
Theorem 1: When ��� � � and � � �, if a policy �� violates the

GSLB rule, there exists another policy �
�
� that satisfies the GSLB rule

and is no worse than �� , i.e., � ����� � � ����.
We will prove Theorem 1 through three steps. First, we will show that

more broadcastings are always beneficial (Lemma 2). Second, sensors
should broadcast as late as possible (Lemma 3). Third, exchanging an
early broadcasting of a good sensor with a late broadcasting of a bad
sensor is always beneficial (Lemma 4). We now follow the three steps
to prove Theorem 1. Define functions �� ��� � �� � �� as

���� �
�

���� ���
�

������ �����

����� � ��������

Then we have ��
� � �� �� ���

����.
Lemma 1: ���� ��� 
 �����, � 
 �, ���� � �, �� is the vector

with only the �th component being 1 and the rest being 0.
Proof: Because �� 
 �, we have ���� ��� � ��������� �

���� ������ � ����� ��� 
 �����.
Lemma 1 means that ��

� ��� � ��� 
 ��
� ����, if ����� � �. To

show that more broadcastings of sensor � at time � are also beneficial
to � , we need the following properties.

1) Property 1: If �� 
 �� 
 �, ����� 
 �����.
Proof: Note that � ��������� � ������� ���� 
 �.

2) Property 2: If �� 
 �� 
 �, ������ 
 ������, �� � 	� .
Proof: By definition, ����� � ���� ��� . From Property 1, we

know that ���� is strictly increasing with respect to (w.r.t.) �. Thus
����� is strictly increasing w.r.t �. This completes the proof.

Combining Lemma 1 and Property 1, we can see that ��
� ��� �

��� 
 ��
� ����, which implies that � ���� ��� � � ����. Then we

have
Lemma 2: � ��� � ��� � � ����, ���� � �.
Lemma 2 implies that sensor � should broadcast exactly �� times by

time � . Next we have the following:
3) Property 3: ���� � � � ���� ��, � 
 �, � 
 �.

Proof: By definition, we have

���� � �� ���� �� �
�

��� ��
� ��

�� �

���� �� � ��
� (4)

The right-hand side of (4) equals to

����� � ������� ��� � ������ ������� �� � ��

���� �������� �� � ���
� (5)

Since ��� � �, we have ������� �� � �� � �. So (5) � �.
Lemma 3: �� �� �� ��� � �� �� �� ���� � 
 �� ����� �

����� � �.
Proof: By definition, we have �� �� �� ���� �� �� �� ����

���� ���� � �� � ���� ��� � �� � � �, where the last inequality
follows from Property 3.

Thus postponing the broadcasting always reduces � . For the third
step of the proof of Theorem 1, we have the following:

4) Property 4: ���� �� � � � ���� �� � �, � � �, � 
 �.

Proof: By definition and after some deduction, we have

����� �� � ��� ����� �� � �� �

�� � �������� ����� �� � ����	�� �� �� � �� � ���
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� �

where the last inequality is due to ��� � � and as a consequence �� �
�� � �.

Lemma 4: �� �� �� �� ��� � �� �� �� �� ���, � 
 �, � � 	,
����� � ���	� � ����� � ���	� � �.

Proof: By definition, we have

�� �� �� �� ��� � ������ ��� ��� � ��� ���

�� �� �� �� ��� � ������ ��� ��� � ��� ��� �

Note that �� 
 �� . Following Property 4, we have
�� �� �� �� ���� �� �� �� �� ��� � �.

Lemma 4 implies that exchanging an early broadcasting of a good
sensor with a late broadcasting of a bad sensor is always beneficial.
Now we can prove Theorem 1.

Proof (of Theorem 1): If a policy �� violates the GSLB rule, we
can first add broadcasting of sensor � if it has not broadcast �� times
by time � . Second, we postpone the broadcastings of all the sensors
as late as possible, while keeping the relative order among the broad-
castings not changed. Third, starting from the earliest broadcasting of
sensor 1, if any other sensor broadcasts later, exchange the two broad-
castings. Repeat the exchange operation for sensors 	� 
 
 
 �� . When
this is completed, we obtain a policy ��� , which satisfies the GSLB rule.
Lemmas 2-4 ensure that the above modifications of �� do not increase
� , i.e., � ����� � � ����.

Note that following the modifications in the proof of Theorem 1, the
resultant policy is optimal. This leads to Algorithm 1 that efficiently
constructs the optimal policy after exactly ��
��� �

��� ��� steps.
In the special case when � � �, each time only one sensor can

broadcast. Then the optimal policy selects sensor �� � � in the first
� � ��

��� �� stages, selects sensor �� in the following ��� stages, and
continues the selection similarly in the rest of the stages, where �� is
determined by ��

��� �� � � and ����
��� �� 
 � .

Algorithm 1 Construct the Optimal Policy When � � �

�� � �� � � �� 
 
 
 �� . �� � �.

for � � � to � do

for � � � down to 1 do

if ��� � ��� and � ���
	�� ����� � �� then

����� � �. �� � �� � �.

end if
end for

end for

Output �� .

B. Vector System Without Packet Drop

For vector system we follow three similar steps to show the opti-
mality of the GSLB rule under the following assumption.

Assumption 1: �����
 ��������� � �
 ���������,�� � 	.
Note that the left-hand side of the above inequality quantifies the

information contained in the state estimation if the state at the last stage
is accurately known and the observation of sensor 	 at this stage is
received. The right-hand side quantifies the information contained in
the state estimation if only the observation of sensor � at this stage is
received. So Assumption 1 implies that sensor � is significantly better
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than sensor �. One can obtain more accurate state estimation simply
using the observation of sensor � than jointly using the system state at
the last stage and the observation of sensor � at this stage. Under this
assumption, we have the following results.

Lemma 5: ���� ��� � ������ �� � �� ���� � �.
Proof: Note that
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where the last line holds from Assumption 1.
Lemma 6: Under Assumption 1, �� �� �� �� ��� �

�� �� �� �� ������ � �� ����� � ����� � ����� � ����� � �.
Proof: We have
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(6)

Note that under Assumption 1, we have

�� �	������� 
�� � �� �	�������

� � �� �� ���
��

� �� �	������� (7)

where the last inequality is due to ���� � ���� � � �� � �.
Combining (6) and (7), this completes the proof.

Lemma 7: �� �� �� ��� � �� �� �� ����� � �� ����� �
����� � �.

Proof: Consider a fictitious sensor � with 	��� � 	���. Lemma
7 is a natural corollary of Lemma 6 for 	������.

Combining Lemmas 5–7 we have the following:

Theorem 2: Under Assumption 1 and when � � �, if a policy ��

violates the GSLB rule, there exists another policy ��� that satisfies the
GSLB rule and is no-worse than �� .

Note that Algorithm 1 also outputs the optimal policy for vector
system. Theorems 1 and 2 show the optimality of the GSLB rule under
different conditions besides � � �. Theorem 1 uses 	�	 � � and
Theorem 2 uses Assumption 1. These two sufficient conditions do not
imply one the other. It remains open whether Theorems 1 and 2 hold
under other conditions.

C. Packet Drop

When packet drops with probability, i.e., � � �, the analysis is com-
plicated because �� is random. We focus on scalar system and take a
sample path view to compare the performances of different policies on
each (pair) of sample paths. First, we show that more broadcastings are
beneficial.

Lemma 8: �	��
���� ��	���	 
 �	��

��	���	, � 
 �, ���� � �.
Proof: We have

�	��
���� ��	���	 �

�
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�	��
��	���	 �

�

	

 	
	��

���	����

Note that �� � ��� � � � � � � � �� � �. Then from Lemma 1,
we have � ���� ��	��� 
 ���	���, if ���� � �; � ���� ��	��� �
���	���, if ���� � �. Since 
������ � � � � 
 �, we
then have

	��
� ���� ��	��� 


	��
���	���. Hence,

�	��
���� ��	���	 
 �	��

��	���	.
Lemma 9: �	��

���� ��	���	 � �	��
��	���	, � 
 �, ���� � �.

Proof: Note that ����� ��	��� � �� ���� ��	�������� and
���	��� � ����	��������. Lemma 8 shows that � ���� ��	����� �
���	�����, where the inequality is strict if ���� � �. We have

����� ��	��� � ���	���� (8)

Then �	��
���� ��	���	 � �	��

��	���	 as 
������ � � � � 
 �.
Lemma 9 implies that the additional broadcasting of a sensor at time

� reduces ����	. It turns out that ���� 	 is also reduced, but we need
the following monotonicity of �����.

1) Property 5: If �� 
 �� 
 �, then ������ 
 ������, �� .
Proof: Note that ������ � ����������

�� and ������ �
����������

��. Property 1 shows that �������� � ��������. Thus,
we have ������ 
 ������.

Theorem 3: �� ��� �	 � � � �� �	 ��� �� ��	 ���	�
�� ��� �	 � � � �� �	 �� �	 ���	, � 
 �, ����� � �.

Proof: Combining (8) and Property 5 we have

�� �	 � � � �� �	 ��� �� ��	 ���

� �� �	 � � � �� �	 �� �	 ����

Then �� ��� ��� � ���	 � �� ��� ����	 as 
������� � � 
 �.
Second, we show that postponing the broadcastings of sensors are

always beneficial.
Theorem 4: �� ��� �	 � � � ��� �� ��	 �� �	 ���	�

�� ��� �	 � � � �� �	 ��� �� ��	 ���	, � 
 �, ����� �
������� � �.

Proof: The idea is to construct a different sample path �
�
� . The

differences between �� and �
�
� are that ������ � �������, �������� �
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�����. In other words, in �
�
� , we exchange the channel randomness at

time � and � � � of sensor � in �� . Note that

��� �� ��� �� �� ���

� � �� �� ��� �� �� �

�

��

�

�� �� ��� �� ��� ���

� �� �� � �� �� ��� �

�

��

�

Case 1: ����� � �. We have �	��� � 
�� � ����� �
	��� � ���� � 
�� �	� � 
�� � �� � 	� � �� � 
�. Then
from Lemma 3, we have � �� �� ��� �� �� ����� �
�� �� � �� �� ��� �����.
Case 2: ����� � �. We have �	��� � 
�� � ����� �
	��� � ����� �	� � 
�� � �� � 	� � �� .
Then we have � �� �� ��� �� �� ����� �
�� �� � �� �� ��� �����.

Combining the above two cases, we have
� �� �� ��� �� �� ����� � �� �� � �� �� ��� �����.
Combining the above equations together, we have

��� �� ��� �� �� ��� � �� �� ��� �� ��� ����

Note that for every �� , such a �
�
� can be constructed

as above. And all such �
�
� ’s are different. Since

�������� � �� � �  �, combining with Property 5,
we have �� 	�� �� � � � ��� �� ��� �� �� ���
�

�� 	�� �� � � � �� �� ��� �� ��� ���
.
For the third step towards showing the good performance of the

GSLB rule, we need to show that exchanging an early broadcasting
of a good sensor with a late broadcasting of a bad sensor is beneficial.
We have the following:

Theorem 5: �	� �� �� ��� � �� �� ��� ���
�
�	� �� �� ��� � �� �� ��� ���
, �  �, � � �,
	���� � 	���� � 	������ � 	������ � �.

Proof: For any given ��� ���� � �� , construct ��� and ������
s.t. ������ � �������� �

�
���� � �������� �

�
������ � �������

�
������ �

������ �
�
���� � ������ � 	� �� �� � � �� � � �� In other words, in ���

and ����� the channel randomness of sensors � and � are exactly the
randomness in ���� and �� , respectively. It is easy to verify that when
������� �������� � ��� ��, we have

� �� �� ��� � �� �� ��� ��� � � �� �� ��� � �� �� ��� ����

When ������� �������� � ��� ��, we have

� �� �� ��� � �� �� ��� ��� � � �� �� ��� � �� �� ��� ����

When ������� �������� � ������� ��� ���, we have

�� ���	� �
������	��	��	���

� �� �� ��� � �� �� ��� ���



�� ���	� �
������	��	��	���

� �� �� ��� � �� �� ��� ���

� ��

Note that �������� � �� ������� � �� � �������� �
�� ������� � �� � ��� 
 ��. Combining the three
cases, we have �	� �� �� ��� � �� �� ��� ���
�
�	� �� �� ��� � �� �� ��� ���
.

Note that Theorem 5 means �	���
�������
 � �	���

�����
�
��
. One

may naturally wish to show that �	������� �
 � �	������
�
��
. How-

ever, the following counter example shows that this is not true for
some cases. Consider two sensors with � � �� ���� � �� ���� �
�� � � �� �� � �� � �. Consider two policies �� and �

�
� , where

����� � 	�� �
 and ������ � 	�� �
. In other words �� violates the
GSLB rule and �

�
� satisfies the rule. When packets drop with a posi-

tive probability, we have

� �� ����� � ��
 ��������� � ���� �� ����

� ���
 �� 	�� ����� � ��� ����


� 	�� ����
 � ��
 ��������� � ���� �� ����

� ���
 �� 	�� ����� � ��� ����
 �

Therefore, we have

� �� ����� 
� 	�� ����
 � �������
 ��������
� � �������

(9)

where

������ � �� �� ����
 �� �� �����

������ � �� ����� � ��� ����
 �� �����
 ��� �����

Regarding � as a variable, then there are two roots of
� 	�� �����
 
 � 	�� ����
 � � which are �� � � and
�� � ������� �������
 �������.

Case 1: ������  �. Then

� �� ����� 
 � 	�� ����


 �� � � � � ��
� �� � � ��
� �� �� � � � �.

Case 2: ������ � �. � 	�� �����
 
 � 	�� ����
 � �� � �
� � �.

For example, when � � �� �� � �� � � �, ������  � and

� �� ����� 
 � 	�� ����


 �� � � � � �����

� �� � � �����

� �� ����� � � � �.

This means that when packets arrive with high probability ��  ��� the
GSLB rule ����� performs optimally, but when packets arrive with low
probability �� � � � ��� the GSLB rule does not perform optimally.
In the following, we present another example, in which the GSLB rule
performs optimally for all the packet-arrival rates. When � � �� �� �
�� � � �, we have ������ � � and � 	�� �����
 
 � 	�� ����
 �
�� � � � � �.

Note that Theorem 5 shows that exchanging an early broadcasting
of a good sensor with a late broadcasting of a bad sensor improves the
amount of information contained in the state estimation. This implies
that the GSLB rule may give good performance, if not optimal. We will
use numerical results to show this in the next subsection.

D. Simulation Results

Consider a scalar system with two sensors, where � � �� � � �� � �
�� ���� � �� ���� � ���� � ��� � ��� �� � �� � � � � �.
Compare the following policies.

• GSLB rule ����	
�.
• The optimal policy �����, which is obtained through enumeration.
• Round-robin policy (���� and ����), which iteratively picks

sensor 1 and 2. ���� and ���� pick sensor 1 and 2 first,
respectively.
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Fig. 1. � �� � � � �� �� �� for different policies and packet-arrival rates
�’s.

• Random selection ����, which randomly picks a feasible schedule
with equal probability.

• Greedy policy ����, which minimizes ������ for each �. Thus
�� picks sensor 1 for stage � � � and picks sensor 2 for the rest
of the stages.

For � � ���� ��	� 
 
 
 � �, we estimate ���� � of each policy by 10 000
iterations and show���� ������ ������ in Fig. 1. We can see that the
GSLB rule performs optimally when � � �. In all the other cases, the
GSLB rule performs slightly worse than the optimal policy but outper-
forms all the other policies.

E. Discussion

We discuss potential extensions of the GSLB rule to other cases.
First, different objective functions. The optimality of the GSLB rule
depends on the objective function in (3), which only considers the ter-
minal error covariance. A more general objective function is

�

���

���� ������ ��� ��� �� � �� � � �� 
 
 
 � ��

Unfortunately, the GSLB rule in general is not optimal for this objec-
tive function. To see this, consider a two-stage problem with only two
sensors. Suppose only one sensor can broadcast at each time and each
sensor can broadcast only once. Let �� � � and �� � �. Then it is
clear that selecting sensor 1 at stage 1 and sensor 2 at stage 2 is better
than otherwise. Thus, the GSLB rule is not optimal in this case. Next,
let �� � �� 	 �. It is clear that the GSLB rule is not optimal in
this case either. These two examples imply the following. Good sen-
sors improve the estimation accuracy faster than bad sensors. Due to
the limited battery, good sensors cannot broadcast at all stages. If the
terminal error covariance is of interest, good sensors should broadcast
as late as possible. Therefore, the GSLB rule holds. If the error covari-
ances at early stages are of interest, good sensors should broadcast as
early as possible. When a weighted sum of the error covariances at all
the stages is of interest, the schedule for the broadcastings of good sen-
sors becomes less clear and depends on the weights ��’s.

Second, nonidentical channels. In some applications the broadcast-
ings from sensors have different dropping rates due to the different ge-
ographic locations of the sensors. Then the GSLB rule is not optimal
in general. To see this, consider two sensors. Each can broadcast only
once in their lifetime. The limited bandwidth allows only one sensor to
broadcast at each stage. Sensors 1 and 2 use different communication

channels, with arrival rates �� and ��, respectively. Consider two poli-
cies �� and ��� , where 
���� � ��� 	� and 
����� � �	� ��. In other
words �� violates the GSLB rule and ��� satisfies the rule. We have

��������� � ��� ������ ����
�����

� ��� ������
� �����

� ����� �����
� ���� � �����

� �� ����

���������� � ��� ������ ����
�����

� ��� ������
� �����

� ����� �����
� ���� � �����

� �� �����

Consider the special case where �� � ���. Then we have

���� ����������� �����

� ����� ������� ������ � ��������

where

����� � �� ������ ��� ���� � �� �� ����� �� �� ����

����� � ��� ����� �� ������

Regarding �� as a variable, then the root of ���������� �
��������� � � is �� � �� � ������ ������� ������.
Then we have

��������������� �����

	 �� � � �� � ��

� �� �� � ��

� �� �� � �� � �.
(10)

This means when �� is large, the GSLB rule is still optimal, but when
�� is small, the GSLB rule is not optimal.

Third, the selection of channels. In some other applications, sensors
may choose which channel to use. Then a partial broadcasting policy
should specify which sensors broadcast using which channels at each
stage. Denote such a policy by�� � ���� 
 
 
 � ���, where ����� �
��� 
 
 
 � �� specifies which channel is used by sensor � at stage �, or
sensor � is not selected at stage � if����� � �. An interesting question
is whether good sensors should always choose good channels. We start
from a simple example. Suppose there are two sensors with �	�
 � �	�


and there are two channels with packet-arrival rates �� 	 ��. Consider
two policies � � �	� ��� and � � � ��� 	�� . It is easy to verify that

��� �� ������� ���� � ��� ����� �� ����� ��� � ��� � �� (11)

In other words, assigning good channel to good sensor is beneficial in
this example. In general, if a policy�� assigns a good channel to a bad
sensor and assigns a bad channel to a good sensor at stage �, then one
can construct��

� that is almost the same as�� except that at stage �
the channel assignments for that two sensors are exchanged. Then one
can follow the above idea to show that �������

��� � ���������.
The proof is omitted due to space limit.

Note that in the above more general cases we may consider an ap-
proximate problem of (3) that minimizes an upper bound of ���� �.
The bounds in [19] would be very useful for such analysis. This would
be an interesting future research topic.

V. CONCLUSION

In this technical note, we consider the discrete-time Kalman filtering
of a linear time-invariant system using WSNs, where each sensor has
limited communication budget and the WSN has a limited wireless
communication bandwidth. First, when there is no packet drop, the
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good-sensor-late-broadcast (GSLB) rule is shown to perform opti-
mally. An efficient algorithm is developed to construct this optimal
policy. Second, when there is a positive probability of packet drop, we
show that the GSLB rule improves �����

�
�, and construct a counter

example to show that the GSLB rule does not improve ����� in some
cases. The combination of the two results suggests that the GSLB rule
might have good performance, if not optimal. Third, the performance
of the GSLB rule is compared with other policies using simulations.
The results show that GSLB performs well if not optimal under all the
packet dropping rates. Discussions show that the GSLB rule may not
be optimal if a different objective function or nonidentical channels
are considered. The important future research topics include relaxing
Assumption 1 in Theorem 2 for the vector case, considering random
delay in the wireless communication, and theoretically quantifying the
performance loss of the GSLB rule when it is not optimal.
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Slow-Fast Controller Decomposition Bumpless
Transfer for Adaptive Switching Control

Shin-Young Cheong and Michael G. Safonov, Fellow, IEEE

Abstract—A bumpless transfer technique with slow-fast controller
decomposition is introduced. This bumpless transfer technique designated
for adaptive switching control has complemented a simple bumpless
transfer method that only ensures continuity on control signal using
state-space model of controllers. Simulations demonstrate comparative
advantages over a continuity assuring bumpless transfer method.

Index Terms—Adaptive switching control, bumpless transfer, controller
state reset, slow-fast decomposition.

I. INTRODUCTION

Controller switching is frequently observed in various schemes of
feedback control system. A switching from manual control to auto-
matic control is one of the typical examples. A switching among mul-
tiple linearized controllers is also a switching strategy in nonlinear con-
trol [1]. One remarkable expansion of controller switching schemes is
adaptive switching control. In adaptive switching control system de-
scribed as in Fig. 1, controller output signal mismatch at switching in-
stants can lead to discontinuities or abrupt changes called ‘bumps’ in
controller output �. These bumpy transients are not desired in many
cases. For example, a passenger aircraft that equips switching con-
troller for intelligent adaptive control requires to avoiding bumpy tran-
sient. If controller switched and bumpy transient causes sudden change
of aircraft’s attitude, passengers would be scared and feel unstable.
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