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Deterministic Sensor Data Scheduling Under Limited
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Abstract—We consider finite time-horizon sensor data scheduling under
limited communication resource. A sensor can only send of its measure-
ment data to a remote estimator within a time-horizon . When use
the terminal estimation error covariance of the estimator as a performance
metric, we provide an explicit form of the optimal data schedule; when use
the average estimation error covariance as a performance metric, we pro-
vide a necessary condition for a schedule to be optimal for a general .
When has a special form, the necessary condition allows us to construct
an explicit optimal data schedule.

Index Terms—Communication constraint, Kalman filter, remote state es-
timation, sensor data scheduling.

I. INTRODUCTION

Networked sensing, estimation, and control systems have attracted
much attention over the past decade [1], thanks to the recent advances
in sensor and communication technology. Remote state estimation and
information processing have a wide range of applications such as in
environmental monitoring, body sensor network, vehicle navigation,
industrial process, smart grid, etc.

In many of the aforementioned applications, sensors that collect
physical data of interest may be battery-powered, which means that
the energy for the sensors to communicate with remote data processors
is limited. Network bandwidth is often a scarce resource and could be
limited as well. Therefore, a sensor may not be able to communicate
with a remote data processor at each time. These practical constraints
require an appropriate data scheduling algorithm (referred simply as
a schedule) to balance the limited communication resource and the
performance of the remote data processor.

Sensor data scheduling has been a hot topic due to its practical im-
portance as well as the technical challenges involved. Savage and La
Scala [2] considered a sensor measurement scheduling problem. Within
a finite time horizon � , to minimize the terminal estimation error co-
variance, they provided the optimal schedule under the constraint that
only � � � measurements could be taken. Shakeri et al. [3] consid-
ered sensor measurement scheduling subject to a fixed cost constraint,
where the measurement contributed a cost inversely proportional to its
error covariance. They reduced the problem to a nonlinear optimiza-
tion one with linear equality and inequality constraints. Vitus et al. [4]
considered optimal sensor scheduling of a discrete-time system with
multiple sensors where only one sensor is allowed to take a measure-
ment. Arai et al. [5] considered a similar problem, and proposed a fast
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sensor scheduling algorithm. Chhetri et al. [6] proposed two sensor
scheduling algorithms for a target tracking problem. Krishnamurthy [7]
constructed algorithms for scheduling noisy sensors which measure the
state of a single Markov chain. These algorithms aim to minimize a
cost function of estimation errors and measurement costs. Cohen and
Lesham [8] proposed a time-varying opportunistic protocol for net-
work lifetime maximization when the sensors used are battery-powered
and non-rechargeable. Chen et al. [9] considered the optimal transmis-
sion scheduling for maximizing the sensor network lifetime by utilizing
the channel information. Dong et al. [10] considered the data retrieval
problem in a 1-D sensor network. They also compared the performance
of deterministic and random schedules.

The main contribution of this paper is the construction of optimal
schedules of sensor communication times under the constraint that the
sensor can only communicate with the remote state estimator � times
within a time-horizon � � �. When use the terminal estimation error
covariance of the estimator as a performance metric, we provide an ex-
plicit form of the optimal data schedule; when use the average estima-
tion error covariance as a performance metric, we provide a necessary
condition for a schedule to be optimal for a general � . When � has a
special form, the necessary condition allows us to construct an explicit
optimal data schedule. Notice that the set of all possible deterministic
schedules contains �

�
elements, thus finding an optimal schedule is

in general a challenging task. To the best of our knowledge, explicit
form of the optimal schedule has only been obtained in literature for
the terminal error performance metric for a special class of systems
(see Remark 3.2).

The remainder of this paper is organized as follows. Section II
gives the problem description. Section III presents the optimal
schedule which minimizes the terminal estimation error covariance
(Theorem 3.1). Section IV gives a necessary condition on the optimal
schedule which minimizes the average estimation error covariance for
a general � (Theorem 4.2). Such a necessary condition allows us to
construct the optimal schedule when � takes a special form (Theorem
4.3). Some examples and concluding remarks are provided in the end.

Notations: is the set of natural numbers. is the set of non-neg-
ative integers. � � is the time index. � is the �-dimensional Eu-
clidian space. � is the set of non-negative real numbers. �

� is the set
of all � by � positive semi-definite matrices. For functions �� ��� ��
with appropriate domains, �����	� stands for the function composition

�� ���	� , and � ��	� � � ����	� with ���	� 	.

II. PROBLEM SETUP

Consider the following first-order Gauss–Markov system (Fig. 1)

	��� � 
	� � �� (1)

�� � 	� � �� (2)

where 	� is the system state at time �, �� is the measurement obtained
by a sensor,��’s, ��’s and the initial state 	� are mutually uncorrelated
zero-mean Gaussian random variables with covariances � � �� � � �
and �� � � respectively. Assume �
� � � and  �� �.

After obtaining the measurement, the sensor decides if it will
transmit �� to a remote estimator for further processing. The estimator
calculates the minimum mean-squared error estimate of the state 	�

in (1) based upon all measurement data it receives by time �. It is
well known that such estimate and its associated error covariance can
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Fig. 1. Sensor measurement scheduling diagram.

be computed via a Kalman filter [11]. Denote the predicted estimate
before receiving �� as �������, which is called the a priori estimate,
and the associated error covariance as ������. After receiving �� ,
denote the estimate as ����� and the associated error covariance as
���� , which are called the a posteriori estimate and error covariance.
If �� is received, the computation is as follows:

������� � ����������

������ � �
�
�������� � �

�� �
�������

�������� � �

����� � ������� � ����� � ���������

���� ���� ����������

where the recursion starts from ����� � � and ���� � 	�. Otherwise if
�� is not received, the a posteriori simply equals the a priori one, i.e.,

����� � ����������

���� � �
�
�������� � �


For brevity, we write ����� as ��� and ���� as �� for the remainder of
the paper.

Assume the sensor can only communicate � times with the remote
estimator within a time horizon � � �. The constraint could be im-
posed by the limited transmission energy at the sensor or finite band-
width of the network.

Define a deterministic schedule  as a set of transmission times:
���� ��� � � � � ��� with � � �� � � � � � �� � � , i.e., �� is a time
when �� is transmitted to the estimator. Clearly, ��� and �� depends
explicitly on the schedule  being used. Thus, we will write them as
����� and ���� if we want to highlight this dependence. Let 	 be the
set of all deterministic schedules, which contains �

�
elements. In gen-

eral, the estimator has different performance corresponding to different
schedules. In this paper, we consider two types of performance metrics,
the terminal error covariance and the average error covariance of the es-
timator, each corresponding to a certain class of practical applications.
In other words, we wish to find a schedule  � 	 such that 1) �� ��
is minimized and 2) �

���
���� is minimized. The two cases will be

considered separately in the next two sections. To simplify notations in
subsequent sections, let us introduce the functions �� � 
 ��� � as
follows:

���� �
�
�� � (3)

���� �
�
�� � �

������� ���

������� �� � �

 (4)

From their definitions, it is straightforward to verify that both ����
and ���� are monotonically increasing functions for any � � � and
���� � ����. Furthermore, we have the following result on � and �.

Lemma 2.1: When 	�	 
 � and � �� �,

����� � ������ �� � �
 (5)

Proof: See the Appendix.

Using the functions � and �, one can verify that �� is given recur-
sively as

�� �
�������� if �� is received
�������� if �� is not received.

(6)

III. OPTIMAL SCHEDULE FOR MINIMIZING THE

TERMINAL ERROR COVARIANCE

In this section we will find an optimal schedule  that minimizes
�� ��. Intuitively since the cost function is the terminal error covari-
ance, the sensor should spend all its communications with the estimator
in the last � time steps. Indeed, this intuition holds, which is captured
in the following theorem.

Theorem 3.1: The optimal schedule � � ���� � �
�

� � � � � � �
�

�� which
minimizes �� �� is given by ��� � � � �� �� � � �� �� � � � � �.

Proof: From the definition of �, �� ��� � ����������. To
prove � is optimal, consider any  � ���� � � � � ��� that is different
from �, and we shall show that �� ��� � �� ��. This holds as

�� ��

��
���

��
� �� ��

��
� �� ��� � ���� �� ��

��
� ������


 ��
��� ��

��
� �� �� � � � ��� �� ��

��
� ������


 �
�
�
��� �� � � � ��� �� ��

��
� ������

...


 �
�
�
������� � �� �

��

where the inequalities are from (5) and that both � and � are increasing
functions. Since  �� �, from (5), at least one of the above inequalities
is a strict inequality. Hence, we conclude that �� ��� � �� ��.

Remark 3.2: This result is the same as part of the work Savage and
Scala did in [2]. However, [2] only discussed the � � � � � case.
Theorem 3.1 covers the more general case 	�	 
 � and � �� �.

Remark 3.3: For a general �th order Gauss–Markov system

���� ���� � ��

�� ���� � ��

with �� and �� being zero-mean Gaussian random vectors having co-
variance matrix � 
 � and � 
 �, respectively, Theorem 3.1 still
holds if

����� � ������ for � 
 � (7)

where � and � (now �

���
�

�) are redefined as

���� ���
� ��

���� ����� ����� �������� � ���������


For example, if � 
 �� ��������, then it is not difficult to verify that
(7) holds.

IV. OPTIMAL SCHEDULE FOR MINIMIZING THE AVERAGE

ERROR COVARIANCE

In this section we wish to find an optimal schedule  that minimizes
the cost ��� defined as

���

�

���

����
 (8)
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Intuitively, since the cost function is the average error covariance,
the sensor should spend the � communications with the estimator as
uniform as possible within � . However, compared with the terminal
error case, this is quite challenging to prove. In fact, it may not
always hold. Nevertheless, with some additional assumptions, we
can prove this intuition does hold. The following two conditions are
assumed in this section: 1) the initial condition �� � ������ �����;

2) �

�
� �, where ���� ����� ���� � ���� �

�

��
� �

��

and ���� �	
�� ���� � ���� � �

�
. The first assumption

is to facilitate our discussion and can be extended to general case.
The second assumption means we require the scaled measurement
noise has a smaller covariance than the system noise, i.e., the sensor
provides a relatively accurate measurement. We start with the simple
case � � � where an explicit form of the optimal schedule is provided.
We will then cover the more general case. When � � �, we have the
following result.

Theorem 4.1: Denote the optimal schedule as �� � �	��. For � �
, if � � �
  � for some 
 � , then 	� � 
  �. If � � �
,

then 	� � 
 or 	� � 
  �.
Proof: See the Appendix.

For a general �, we have the following necessary condition on the
optimality of �.

Theorem 4.2: Let � � ��  ���  �, � � � � �, and denote
	 � 		� �, � � 	�� 	��	� �� � � �� � � � � � and ��	 � � � 	�.
If � is optimal, then � � � ������ ��� 	�� �. Furthermore, denote
the number of interval with length � � � and � as �	�	 and �	 .
Then �	�	 � � � � and �	 � �  �.

Proof: See the Appendix.
Theorem 4.2 contains an important fact, which is stated in the fol-

lowing theorem.
Theorem 4.3: When � � ����� � �, then the optimal schedule

�� � �	�	 � 	
�
� � � � � � 	

�
�� is given by 	�� � ��� � � �� �� � � � � �, i.e., the

communication times are separated as uniformly as possible.
Proof: From Theorem 4.2, the length of intervals can only be

� � � and � � �. Furthermore, �	�	  �	�� � �  � and
�	�	�� � ��  �	���� � ��  � � � , from which we obtain
�	�	 � � � and �	�� � �.

Remark 4.4: When taking the terminal error as the cost function,
in Remark 3.3, we give a sufficient condition (7) such that Theorem
3.1 still holds for a higher order Gauss–Markov system. Unfortu-
nately, when taking the average error as the cost function, finding an
optimal schedule for a general higher order Gauss–Markov system is
challenging and remains an open problem.

Remark 4.5: In this paper, we mainly focused on one sensor sce-
nario. In many remote estimation examples, a network of sensors may
be used to gather the state information. When the network bandwidth
is limited, only a subset of the sensors can communicate their data with
a remote estimator at each time. At the same time, each sensor may be
battery-powered and can only communicate with the remote estimator
for a limited times. Following the same framework developed in this
paper, we can ask when and which sensor should send their data such
that the estimation error at the remote estimator is minimized. Mathe-
matically, consider the following system:

�
�	 � ��
  �


�
�

 � ���
  �

�

� � � �� �� � � � � �

where �
 is the system state at time 	, ��
 is the measurement ob-
tained by the �th sensor,�
’s, ��
’s, and the initial state �� are mutually
uncorrelated zero-mean Gaussian random variables with covariances
� � �� �� � � and �� � �, respectively.

Define a schedule � as a set of communication control variables
��	
� �

�

� � � � � �

�

 �� 	 � �� �� � � � � � , where ��
 � 1 or 0 and ��
 � �

represents that the �th sensor will send its measurement to the remote
estimator at time 	. Upon receiving the measurements from the sensors,
the remote estimator computes the state estimator ��
 and the associ-
ated error covariance �
 as follows (known as the Kalman filter in the
information form [12]):

��
�
�	 � ���
�	�
�	

�
�
�	 � �
�
�
�	�
�	  �

��
�
�
�	 ���
�
�	�

�	

�
� �	

���

��

��
�
 � �
�
 ��
�
�	�
�	��
�
�	 

�
� �	

��

��
�
�



where the recursion starts from ����� � � and ���� � ��.
We can then cast the problem of optimal sensor scheduling in a multi-

sensor scenario as follows:

��� ����




�	

�
���

����

�

��	

�
�

 � �� 	 � �� �� � � � � �




�	

�
�

 � ��� � � �� �� � � � � �

where � is the considered time-horizon, � � � is the finite bandwidth
constraint, �� is the limited communication times for each sensor �.
Apparently, this more general problem setup includes the current paper
as a special case, i.e., when � � � � � and �	 � �. An explicit
optimal schedule to this general problem, however, is far from clear at
the present stage. It will be worthwhile and interesting to consider this
problem in the future work.

V. EXAMPLES

Since the result on the terminal cost function is quite straightforward,
we only provide here an example for the average cost function case.
Consider � � ����, � � �, � � �, � � ��, and �� � �. If � � ��
and � � �, Theorem 4.1 states that the optimal transmission time is
	� � ��, which is indeed verified from Fig. 2, where the left part plots
���� � ��	� as a function of the transmission time 	. If � � ��
and � � �, Theorem 4.3 states that the optimal transmission times are
	�	 � � and 	�� � ��. Again this is verified from the right part of Fig. 2.

We now show how to obtain the optimal schedule analytically. The
proof of Theorem 4.2 provides us a way to obtain the optimal schedule
from an arbitrary initial schedule. For instance, let us start with the
schedule 		 � �� 	� � ��, i.e., 	 � �� � � ��� � � �. Clearly
this schedule is not optimal as 	 is not within � � � and �  �.
According to the proof of Theorem 4.2, we can shift 		 forward by
one step and construct a schedule with 	 � �� � � ��� � � �,
which has been shown to have a lower cost. Continuing to shift 		
forward several times, we produce the schedule with 	 � �� � �
�� � � �. This, however, is not optimal as � is not within ��� and
�  �. Thus, we can improve this schedule by shifting 	� backward
one step and obtain the schedule with 	 � �� � � �� � � �.
Continuing to shift 	� backward several times, we construct a schedule
with 	 � �� � � �� � � �. Repeatedly the above process, we
eventually obtain the schedule with 	 � �� � � �� � � �. This
last schedule which corresponds to that 	�	 � � and 	�� � �� is optimal
by Theorem 4.3.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 10, OCTOBER 2011 5053

Fig. 2. The left one shows that the schedule with � � �� is optimal when
� � ��, � � �. The right one is the � � � case. The center of the contour is
the projection of the minimum point, which is (7,14).

VI. CONCLUSION

In this paper we study the system state estimation problem with lim-
ited measurements within a finite horizon � . We show that the times of
transmitting measurement in the optimal schedule should be close to
uniform distribution. In the special case, the transmitting times are ex-
actly uniformly distributed. Future work include searching for the op-
timal schedule for a general � and extending current results to higher
order Gauss–Markov systems as well as systems involving multiple
sensors.

APPENDIX

Proof to Lemma 2.1: Let���� � ������ �

�
, then one obtains

���� � �

�
� � �

�
�� �

����
. Also define ���� � ��� � ��� � � � �

�
.

Then

������ �����

� �
� �

��
� � �

�

��

� ��

����
�

�

��
�

�

��

� �

����

�
�

��

�� � � � �� �

�
��� �������� � �

�
����� �� �

�
����

��������
	

Since ��� � �, �� � � � �, straightforward computation shows that
������ ����� 
 �.

Proof to Theorem 4.1: First consider � � 	� � �. Comparing
two schedules �� � ��� and �� � ��� with � � � � �, we have
the following two cases.

Case 1 � � � � �.

������ �����

�

� ��

���

�
����� �

���

���

�
�
��

� ������

�

� ��

���

�
����� �

���

���

�
�
��

� ������

�

���

���

�
�
��

� ������� �
� �������

���

���

�
�
��

� ������

� �
���

��
� ������� �

� ������

�

���

���

�
�
��

� ������� �
�
��

� ������ 	

Since � � � � � � � 
 �,

�
���

��
� ������� �

� ������

� �
����� �

��
� ������� �

��� ���
�� � �

��� ��

��� ��

�
��

�
�

	
�
����� � �

��
� �

�� �

��
� �

��� ��

���

�
��

	

Next, we have

���

���

�
�
��

� ������� �
�
��

� ������

�

���

���

�
�� ��� ��� � ������

�

�
�� ���� � � �

�
�� ���� � �


 �

��� � ��� �
���

���

���

�

�
�� ���� � � �

�
�� ���� � �

where the inequality holds as

�� � ����� � � ����� � � � ��� 
 � ��� � ��
�

��
� �

� � ��� � ��� � � � ����	

When � � � � �,

��

�
�
� ���� �

��

�
�
�� �

	��
� �

� ��

���

�
�� �

�

	
�
�� �

� ��

���

�
��
�

hence

������ ����� 

�

	
�
����� � �

��
� �

�� �

��
� �

��� ��

���

�
��

�

���� 	���
���

���

���

��������

� �

��� ��

��� 	�

�
�� �

���� 	���
���

���

���

��������

� �
��� 	��

�

���� ��

���

�
�� �

���

���

���

��������
�

where

��� �
�

	
�
�� �

���

���

�
�� � �	 (9)
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After some manipulation, it can be proved that����������� � �.
When �� � �, since

��

�
�
� ���� �

��

�
	
�� �

���
� 


� ��

���

	
��

�
�

�
	
�� �

��

�



� ��

���

	
��
�

we have

������ ����� �
�

�
	
����� � �

��
� 	

�� �

��
� 


��� ��

���

	
��

�

	��� ���

���

���

	��

��������

�
�

�
	
������ �

��
�

	������

�

���

	��

������ ��

�	
������ �

�

��
� � �

�


�

���

	�� � 

�

���

	��

������ ��

� ��

where

��� �
�

�
	
�� �

��

�



���

���

	
�� � ��

Since ���� � ����� � ���� � ��� � ������ for � � �� � �,
we have the following direct result1

��� � �� � ��� ���� � �� � ��� � � � �

���� � �� � �� ����

i.e., when � � �� �, ���� decreases as � increases.
Case 2 � � � � �� � � � �.

������ ����� �

� ��

���

�
����� �

���

���

�
�
��

� ������

�

� ��

���

�
����� �

���

���

�
�
��

� ������

��
� ������ �

���

���

�
�
��

� ������

�

���

���

�
�
��

� ������

��
� ������� �

���
��

� ������

�

���

���

�
�
��
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1��� � �� � ��� stands for the cost ���� where � � ���, i.e., under � the
sensor communicates its measurement data with the remote estimator at time
� � �. We abuse the notation a little bit here as it is more informative.

As ���� and ���� are monotonically increasing functions,
��� ������ � ��� ������. Hence,
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Therefore, ����� � ����� � �. Similar argument as in case 1
shows that when � � ���,���� increases as � increases. Hence,
we conclude that �� � � � �.
Now let us consider � � ��. Similar to the discussion in the
� � ��� � case, for two schedules �� � ���� and �� � ����
with �� � �� � �, when � � �� � � � �, we can prove that
����������� � �, and when��� � �� � ���, we can prove
that ������ ����� � �. However, when �� � �� �� � �� �,
we have
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Notice that �� � � �

��
� �

�
� which implies that �

�
�� � � �

�� �
�
� ��. Clearly when �

�
�� � � is sufficiently close to

0, we have ����� � �����; and when �

�
�� � � is

close to � �
�

, there exist an � and 	� �� 
� � such that
�������

������� � �������� � ������, in which case
we have ����� � �����. Therefore, ������ ����� is not always
positive or negative for all ��. By solving ����������� � � and
������ ����� � � we have the range of ��. One sufficient con-
dition for ������ ����� � � is �� � ���������, e.g., �� � 	�,
where 	� � � satisfies 	� � ������	��. When ����������� � �,
the optimal �� � �, and when ������ ����� � �, the optimal
�� � �� �.
Proof To Theorem 4.2: For convenience, we denote �� � ��

and �� � ��. Note that �

��
� �� �

�

�
for all �. First we present an

overall description of the strategy for proving this theorem: assuming
� is an optimal schedule but there is at least one pair �� � of � such
that 	�� � ��	 � �, which is equivalent to the following two cases:
�� � �� �� � �� � and �� � �� �� � ���; we show that for each
case, by shifting the communication time between� and �, a lower cost
can be produced, hence producing a contradiction as to the optimality
of �.

Now we present the following three detailed steps to prove the
theorem.
Step 1: We consider �� � � and �� � � � �. Without loss of

generality we assume � � � and �� � � � �. The case
� � � is equivalent to Step 2 and the cases when�� � ���
can be proved similarly.
Without loss of generality, we assume the intervals between
�� and �� (if any) are identical to �� � as other cases are
easy to transfer to this one. Consider the following schedule
�� (see Fig. 3): ��

� � ����� � � �� 
 
 
 ��� � and ��

� � ��
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Fig. 3. For a schedule � with � � �� � � �� �� � � �� �, we construct
� by shifting � � � � � � � one step forward.

for all other �’s. Then it is straightforward to verify that
��� � �� � � � � � �, ��� � �� � � � � � �, and
��� � ��� � �� �� �. Hence,
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, where ���� is given by

(9). Therefore,
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Fig. 4. For a schedule � with � � �� � � ���, we construct � by shifting
� � � � � � � one step backward.

where we use the fact that 
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where the second inequality follows from


��	���
� ��.

Simple calculation reveals that the content in the first largest
bracket is non-negative. Therefore, ����� ����� � �.

Step 2: We consider �� � � and �� � � � �. Without loss of
generality we assume � � � and �� � � � �. The case
� � � is equivalent to Step 1 and the cases when�� � ���
can be proved similarly.
We can construct a schedule �� as follows: ��� � �� �

�� � � �� � � � � � � �, and ��� � �� for other �’s. Then
��� � ����� ��� � ���� and ��� � ��� � �� �� �. Using
the same technique from Step 1, it is not difficult to show
that ���� � ����� � �. Thus, �� is better than �, which
contradicts the optimality of �.

Step 3: Write ���� � �. From the first two steps, all the other
intervals should be � � � or � � �. Furthermore, intervals
with length ��� and ��� can not coexist. Hence, the length
of the intervals of an optimal schedule should be � and ���
or � and � � �. Since � � �� � ��� � �, the intervals
should have length � and � � �. From the equalities
������� � ��� and��������������� �
� , we arrive at ���� � �� � and �� � �� �.
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On the Restricted Neyman–Pearson Approach
for Composite Hypothesis-Testing in Presence of

Prior Distribution Uncertainty

Suat Bayram and Sinan Gezici

Abstract—The restricted Neyman–Pearson (NP) approach is studied for
composite hypothesis-testing problems in the presence of uncertainty in
the prior probability distribution under the alternative hypothesis. A re-
stricted NP decision rule aims to maximize the average detection prob-
ability under the constraints on the worst-case detection and false-alarm
probabilities, and adjusts the constraint on the worst-case detection prob-
ability according to the amount of uncertainty in the prior probability dis-
tribution. In this study, optimal decision rules according to the restricted
NP criterion are investigated. Also, an algorithm is provided to calculate
the optimal restricted NP decision rule. In addition, it is shown that the av-
erage detection probability is a strictly decreasing and concave function of
the constraint on the minimum detection probability. Finally, a detection
example is presented to investigate the theoretical results, and extensions
to more generic scenarios are provided.

Index Terms—Composite hypothesis, hypothesis-testing, max-min,
Neyman–Pearson (NP), restricted Bayes.

I. INTRODUCTION

Bayesian and minimax hypothesis-testings are two common ap-
proaches for the formulation of testing [1, pp. 5–22]–[3]. In the
Bayesian approach, all forms of uncertainty are represented by a prior
probability distribution, and the decision is made based on posterior
probabilities. On the other hand, no prior information is assumed in
the minimax approach, and a minimax decision rule minimizes the
maximum of risk functions defined over the parameter space [1, pp.
13–22], [4]. The Bayesian and minimax frameworks can be considered
as two extreme cases of prior information. In the former, perfect
(exact) prior information is available whereas no prior information
exists in the latter. In practice, having perfect prior information
is a very exceptional case [5]. In most cases, prior information is
incomplete and only partial prior information is available [5], [6].
Since the Bayesian approach is ineffective in the absence of exact
prior information, and since the minimax approach, which ignores the
partial prior information, can result in poor performance due to its
conservative perspective, there have been various studies that take par-
tial prior information into account [5]–[11], which can be considered
as a mixture of Bayesian and frequentist approaches [12]. The most
prominent of these approaches are the empirical Bayes, �-minimax,
restricted Bayes and mean-max approaches [5]–[7], [11], [13]. As a
solution to the impossibility of complete subjective specification of
the model and the prior distribution in the Bayesian approach, the
robust Bayesian analysis has been proposed [12], [14, pp. 195–214].
Although the robust Bayesian analysis is considered purely in the
Bayesian framework in general, it also has strong connections with the
empirical Bayes, �-minimax and restricted Bayes approaches [12],
[14, pp. 215–235].
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