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Stochastic Filtering for Diffusion
Processes With Level Crossings

Agostino Capponi, Ibrahim Fatkullin, and Ling Shi

Abstract—We provide a general framework for computing the state
density of a noisy system given the sequence of hitting times of predefined
thresholds. Our method relies on eigenfunction expansion corresponding
to the Fokker–Planck operator of the diffusion process. For illustration,
we present a particular example in which the state and the noise are
one-dimensional Gaussian processes and observations are generated when
the magnitude of the observed signal is a multiple of some threshold value.
We present numerical simulations confirming the convergence and the
accuracy of the recovered density estimator. Applications of the filtering
methodology will be illustrated.

Index Terms—Diffusion processes, Fokker–Planck equation, nonlinear
filtering.

I. INTRODUCTION

Many applications in science and engineering require estimation of
the state of a system on the basis of noisy observations. When both the
state and the observation processes are Gaussian and observations are
generated continuously the optimal filter is the well-known Kalman-
Bucy filter [1]. However, in many practical cases the above assump-
tions fail and a different approach, e.g., the nonlinear filtering, must be
employed.

The modern theory of nonlinear filtering was developed between late
1960s and early 1970s in works of Kallianpur and Striebel [2], [3],
Kushner [4], and in the case of diffusion processes by Zakai [5]. The
martingale approach to nonlinear filtering, based on the innovations
process and on the systematic use of martingale representation theo-
rems, was developed by Kailath and Frost in [6].

We consider diffusion processes whose drift and volatility coeffi-
cients are sufficiently smooth functions and the corresponding forward
Kolmogorov (Fokker-Plank) operator is uniformly elliptic and has a
complete set of eigenfunctions in appropriate Hilbert spaces. This al-
lows us to use eigenfunction expansion of the joint state-noise den-
sity solving the problem explicitly. Although in the particular example
that we consider here, the governing equations are linear, the method
is equally applicable to a more general class of time-homogeneous dif-
fusion processes. Note also that since observations are comprised by
the hitting times of some predefined thresholds, the filtering problem
is nontrivial even when the processes themselves are Gaussian.

Assume that the observation (measurement) process is represented
as

�� � �
���
� ��

���
� (1)

where �
���
� is the actual state of the system and �

���
� is the noise

component. Now, suppose that we do not know the complete sample
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Fig. 1. Partition of the plane into domains � given by (2). � is shaded grey,
� is marked with diagonal strokes.

paths of �� and only receive signals when �� hits thresholds ��, � �
�������� � � � (for some fixed � � �). More precisely, once a signal
corresponding to some � is received, the next signal is generated when
�� hits the value of ��� � ��. Accordingly, we introduce the overlap-
ping domains

	� � ���� � ���� ��� 
 ��� � �� � ��� � ��	 (2)

The boundary 
	� consists of two parallel lines that belong to 	���

and 	���, denoted by ���� and ���� respectively, see Fig. 1 for il-
lustration.

1) Filtering Problem: We study the following problem. Suppose
the initial (at � � �� � �) probability density of ���� � �

���
� � �

���
�

is ������� with support in 	�. Given an increasing sequence of positive
reals (signal times)

� � �� � �� � �� � � � � (3)

and a sequence of integers (threshold indices)

� � ��� ��� ��� � � � � ��� ���� ���� � �� � � (4)

reconstruct the conditional probability density function �������, where
the conditioning set is defined as

� � �� � �� � �� � �� ��� ��� � ��� ���� �� � ��	 (5)

Here � are the hitting times of the boundaries �� , i.e., �� and � are
random variables defined recursively as (setting � � �)

�� �
�
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� ��

���
�

�
�

��� � ����� � � 
 ���� �� 	� �	 (6)

To the best of our knowledge this type of filtering problem has not re-
ceived sufficient attention in the literature, even though it occurs nat-
urally in various contexts. For example, a framework similar to ours
has been suggested for structural credit risk modeling [7], where the
state equation models the dynamics of the asset value of the firm, typ-
ically assumed one-dimensional. However, the authors do not provide
analytic expressions for the density of states. The work which is most
closely related to ours is Cvitanic et al. [8], who develop a nonlinear
filtering method to estimate the volatility from high frequency security
prices which are observed discretely, and possibly at random times.
Aihara and Bagchi [9] derive the exact volatility filter for a discrete
version of the Heston model with the aid of the particle filter algo-
rithm. Most recently, Ding et al. [10] derive a mathematical model of a
non-uniformly sampled system which allows reconstructing uniquely
the continuous time model from its non-uniformly sampled discrete-
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time counterpart. Their sampling scheme may be used in our context to
construct the continuous time filtering model consistent with the avail-
able data or sensor observations, after which the filtering methodology
can be applied. The problem of estimating the parameters of filtering
models where the output error system has colored measurement noises
is considered in [11], where the authors resort to multi-innovation iden-
tification theory to construct a stochastic gradient algorithm for param-
eter identification.

2) General Result: We show the following: suppose that ����
� and

�
���
� are time-homogeneous diffusion processes whose joint proba-

bility density admits expansion in terms of the eigenfunctions of the
Fokker-Planck operator, ��. Let �� be the last hitting time before time
�. Then, we provide a recursive analytical expression for the joint prob-
ability density of the system at time � � �� , given all the information
about collisions up to time �, in terms of the quantities computed at the
previous hitting time ����.

The method is specifically designed and efficient for sufficiently
large values of the threshold �, as in this case the optimal filter density
can be efficiently and accurately reconstructed using a small number
of terms.

In the rest of the technical note we first derive general formulas for
the filtering framework presented above, and then specialize our anal-
ysis to the case when �

���
� is a Wiener process and �

���
� is an Orn-

stein–Uhlenbeck process.

II. SOLUTION OF THE FILTERING PROBLEM

We provide some background and notation in Section II-A. We give
the main result in Section II-B. We provide a short discussion of the
error analysis in Section II-C. We provide the steps for the derivation
of the filter equations in Section II-D.

Notation and Background

Let ���� be a stochastic process satisfying the stochastic differential
equation

����� � ������������ ������������� � (7)

where��� � � �
���
� 	�

���
� 	 � � � 	�

���
� is an 
-dimensional Wiener

process. The generator of the Ito diffusion process in (7), is denoted by
�, and defined by
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The adjoint of the generator �, is denoted by ��, and defined by

�������� � �

�
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��������������	
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����������������	

����
� (9)

The transition probability density ������������� for ���� � ��� given ���� � ���,
where � � �, satisfies the Fokker–Planck partial differential equation
(with appropriate boundary conditions)



�
������������� ����������������

������������� � ������ ����� (10)

A. Main Result

The joint probability density of the system at time � � �� , given all
the information about collisions up to time �, may be reconstructed as

������� �

�������

�

�����������
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�
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����� � (11)

The coefficients 
�
���
� are computed recursively according to
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�
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� �� �� �

�
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�� 
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����� �
�

��������
���
� ���������� (12)

Here �
�	�
� , � � �	 �	 � � � are the eigenfunctions (vanishing on

the boundary) of �� in domains �	; ��	�� are the respective eigen-
values (in decreasing order). The functions �

�	�
� are such that jointly

with �
�	�
� they form bi-orthogonal sets in respective domains, i.e.,

�
�
�	�
� ������

�	�
� ��������� � ���. The transfer coefficients �

�	 �	 �
��

may be computed as follows:

�
�	 �	 �
�� �

�

�
�	 �
� ���������

�	 �
� ����� � ������� (13)

where ��� is the flux operator corresponding to �, i.e., �� � � � ��� ; ���
is the unit vector normal to 	 outward with respect to �	 .

Notice that for a practical implementation we need to truncate the
infinite series. The computational complexity of the method is driven
by the number of hitting times and the number of approximating eigen-
functions used. If the number of hitting times before time � is � , then
we need to iterate the computation of 
�’s via formula (12) � times.
Since each iteration accounts for multiplying the vector 
������ by the
transfer matrix ���, assuming that we use � eigenfunctions in each
domain, we get ����� operations per iteration. Thus the overall com-
plexity of the filtering methodology is ������.

As already pointed out in the introduction, the method becomes effi-
cient when the threshold � is large. This is evident from the expression
of 
����� in (12), which shows the exponentially-faster decay of contribu-
tions corresponding to the smaller eigenvalues. Thus, as larger values
of � result in larger inter-arrival times between consecutive boundary
hits, fewer eigenfunctions are needed to approximate the coefficients

�
���
� with high degree of accuracy.

B. Error Analysis

For practical purposes, summation in (11) and (12) must be truncated
which introduces an approximation error. For example, provided that
the error in coefficients ����� has ��-norm �� , a rough estimate on the
��-norm of the error in the approximate probability density, ��������, is
given by

��������� ��������� � �� � ���� � ���
�
� �

� �� ���� � (14)
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where�� are positive constants which depend on the order of truncation
and specifics of the problem, i.e., domains �� and the generator �.
Truncating the sum in (12) introduces similar errors

�� � �� � ������ � ���
�
��� �

� �� �� �� �
� (15)

The constants �� diminish as the order of truncation increases; the ex-
ponential factor depends on the difference between the first two eigen-
values, since it controls the rate of convergence to the stationary distri-
bution of the process conditioned on staying within the domains �� .

Derivation of the error estimates (14) and (15) is quite straightfor-
ward, but rather cumbersome; therefore, for the purposes of this tech-
nical note, we only provide the principal idea behind it. Between the
hitting times the process remains within the respective domains �� ,
thus the (unnormalized) probability density of the system satisfies the
Fokker-Planck (18) with zero boundary conditions. The normalized
probability density function is then exponentially attracted to the sta-
tionary distribution

�
�� �

� ����� � ���
���

������� � ���
���

	�������

	
	�������	���

� (16)

The rate of attraction is exactly the difference between the first and
second eigenvalues of �� in �� ; this yields the exponential factor
in (14) and (15). After some technical calculations ensuring control
over the growth of the expansion coefficients of 	������� in terms of the
eigenfunctions �

�� �
� �����, using the Gronwall’s inequality, we arrive at

formula (14). Formula (15) may be obtained similarly by estimating
the error in distribution of exit locations 
� �����.

Note also that the eigenfunction expansion method provides con-
vergence of the density in �� which does not guarantee its positivity.
However, this is not essential if the probability density function is em-
ployed to compute expected values of various quantities, e.g., the mo-
ments. Moreover, in our experiments, we found that including a suffi-
cient number of terms in the approximation achieves positivity when-
ever � � �� is not too small.

C. Derivation of the Result

Since time � � �� is the hitting time of the last boundary, 
� , by
the Markov property we have that for all �  ��

������� �
����


�
�� �
� ���������
� �����	��� (17)

where 
� ����� is the distribution of exit locations from �� and

�
�� �
� ��������� is the transition probability density for ���� given that

���� � ��� and ���� � �� for all �  �� . (Before the first hitting time,
i.e., for � � �, ������� � ����	 �

���
� ����������������	���.) The transition

density is the normalized solution of the Fokker–Planck equation

��	�
�� �
� ��������� � ��	��� �

� ��������� (18)

with the boundary condition 	�
�� �
� ��������� � � for ��� � ��� and initial

data 	�
�� �
� ��������� � ����� � ���� (tilde is used to emphasize that the so-

lution must be normalized to produce the actual transition probability
density). It may be represented using the standard methods, see e.g.,
[12], as

	�
�� �
� ��������� �

�

���

�� ���� ��
�� �
� ������

�� �
� ������ (19)

Substituting this expression into (17) and introducing

	����� �
����


�
�� �
� �����
� �����	��� (20)

we recover the asserted formula (11). Further on, by the same argument
for � � ������ ���, � � �

	������� �

�

���

�� ���� ��
�� �
� �����	������� � (21)

Since the (unnormalized) distribution of exit locations from �� is
given by 
� ����� � ��� ������ 	�������, we obtain


� ����� �

�

���

�� �� �� ������� �
� ����� � ���	������� � (22)

Using this expression in formula (20), we recover relations (12) and
(13).

III. EXPLICIT EXAMPLE AND NUMERICAL SIMULATIONS

Consider a system described by the following stochastic differential
equations:

	�
���
� � 	�

���
� ������

	�
���
� � ������

� 	�� �	�
���
� ����������� �����

(23)

where � ���
� and �

���
� are independent one-dimensional Wiener pro-

cesses, �  �, and �  � are parameters. Using (8), we obtain that
generator of ���� is given by

� � ������� � �

�
��� � � ����� � � (24)

The Fokker–Planck operator�� is the (formal) adjoint of the generator
�, and can be obtained using (9) as

�� � ��� �� �
�

�
��� � � ����� � � (25)

Note that since �� is translation-invariant with respect to the �� vari-
able, the eigenvalue problems in all domains �� are equivalent, and
the eigenfunctions may be produced by simple translation; we there-
fore use �� for explicit calculations. The eigenvalues and eigenfunc-
tions of �� together with their orthogonal counterparts, ��	�����, and
the transfer coefficients are computed in Appendix A and are given by
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�
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�
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���	���� �	 � 	 � ����� 
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��	�	

����� � ����

�� � ���� �� � � ���� �� (26)

Here �� � ��� � ��!�!


� � �� and the double index notation �� �

�� �� � � � � � � �� �� � � �� is convenient since the eigenfunctions are
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Fig. 2. Probability density function of the state variable � at � � ��� with
the initial condition ��� � � obtained using 1, 10, and 45 eigenfunctions (from
grey to black lines, respectively), and the Monte-Carlo simulation (light grey
line).

computed using the separation of variables. The symbol � reflects the
fact that in order to obtain analytical expressions we used perturbation
theory considering � a small parameter. In general, this is not necessary
and all quantities in (26) may be precomputed numerically, which is a
necessity for more complicated diffusion processes.

Now we evaluate the accuracy, convergence and efficiency of our
density estimator. As time increases, so does the number of hitting
times. Since at each hitting time �� , when a transition from the do-
main �� to the domain �� occurs, the truncation approximation
has to be reapplied, we need to ensure that the truncation error is under
control. We next provide evidence via simulations that the proposed
methodology can be applied over a large time horizon to approximate
the actual conditional state probability density function with a small
error. The diffusion parameters used in our numerical tests are� � ���,
� � ���, � � �.

We first compare the probability density conditional on the observa-
tion process �� staying within the first domain �� computed using our
methodology with the probability density estimated from Monte-Carlo
runs. The first density is computed using (11) and (12) with eigenfunc-
tions and eigenvalues given by the analytical expressions in (26). We
choose the initial condition corresponding to the initial distribution to
be ������� � 	�����. This choice is representative for the purpose of error
estimation, since in this particular case the eigenfunction expansion
produces large coefficients for the higher harmonics and thus the trun-
cation results in greater errors. The Monte–Carlo density is obtained
simulating the Brownian paths via the forward Euler scheme



���
���� � 


���
� 	

�

�� (27)

with � being a standard Gaussian. We simulate the Ornstein-Uhlen-
beck process 
���

� as [13]



���
���� � 


���
� �	 �� (28)

where  is a standard Gaussian independent of � and

� � �
����

� ��� �
��

��
��� �

��� (29)

We set the time discretization 
� � ����. The results presented in Fig.
2 show that a number of 10 eigenfunctions already provide a very accu-
rate approximation of the actual density, with a perfect match reached
when using 45 eigenfunctions, thereby indicating that the approach is
accurate and efficient in a single domain.

Fig. 3. The upper plot shows the probability density function of the state vari-
able � computed using � eigenfunctions, � � ��� �� �� ��� (from light
to dark color) at the time when � is hit. The lower plot shows the probability
density function on the state variable computed using the same eigenfunctions
at the time � such that � � � � ���, with � being the time when � is hit. In
both plots, the dashed line represents the Monte-Carlo density.

We next analyze the number of eigenfunctions needed to approxi-
mate the actual filter density exactly at the hitting time, and at a time �
shortly after the hitting time �� , where � � �� � ���. We set the coef-
ficient ������ � � if � � � and 0 otherwise, which corresponds to hit-
ting the boundary from the stationary distribution, ������� � ��������.
The density right at the hitting time is a singular distribution on the
boundary and thus requires the greatest number of eigenfunctions to
be approximated. We sort the eigenvalues in the decreasing order and
define �� to be the rank of the eigenvalue ��� in the sorting. In our
particular case, the corresponding eigenfunctions happen to contribute
the most into the expansion, so it is sensible to approximate the true
density using all eigenfunction up to order �� . We have that �� � �,
�� � ��, �	 � ��, �
 � ��, �� � ��, and ��� � ���. We
would like to remark that among the �� eigenfunctions used, only few
of them contribute noticeably to the reconstruction of our density esti-
mator (the coefficients of the transfer matrix corresponding to the other
eigenfunctions are either very small or zero), thus in a practical appli-
cation of the method most of them could be removed without altering
the quality of the density reconstruction.

The results in Fig. 3 show that even though approximations converge
rather slowly at the hitting time (the positivity is also an issue due to
Gibbs phenomenon when approximating a singular distribution), even
shortly after the hitting time, the convergence improves dramatically.
This is due to the damping of the higher-order contributions by the ex-

ponential factors �� ���� � in formula (11). Fig. 3 also evidences a
very good match between the Monte-Carlo density computed shortly
after the hitting time, and our eigenfunction expansion density esti-
mator. The systematic shift on the left of our density estimator with
respect to the Monte-Carlo density is due to the small � approximation
used to obtain the eigenfunctions. Clearly, the match is not perfect on
the boundary, because the density becomes singular and cannot be ap-
proximated using an eigenfunction expansion in ��.

We finally demonstrate that the method converges fast to the actual
state filter density over a large time horizon. We simulate state and noise
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Fig. 4. The upper plot is the state filter density at � � �� (different shades
correspond to � � �, 3, 5, 7, from light to dark). The lower plot is the �

distance between� and� order approximations of the density, with � � �,
5, 7, 9. The smooth curve is an exponential fitting.

diffusion paths and record all the conditioning information to compute
the state filter density, which consists of pairs of the form (index of
hit boundary, hitting time). We pick a realization where the difference
between the final simulation time, � � ��, and the last hitting time is
small, so that the filter density has not yet converged to the stationary
density and the higher order approximations are needed. The simulated
conditioning path is given by

� � ��� ������ �	� ���
�� ��� ���	��� �	� ������� ��� 	���
��

��� 	����� ���� 	
����� ��� 	������ ���� 	�����

��	� 
���	�� ���� 
��
�� ��	� 
����� � (30)

We compute the density at time � � �� on the path specified in (30)
using the �� eigenfunction approximation as above. As the eigenfunc-
tion expansion method is guaranteed to converge in ��, and therefore
also our filter methodology converges in ��, we compute the �� dis-
tance between �� and ���� order approximations of our density esti-
mator. It appears from the �� distance plots in the right panel of Fig. 4
that the difference between the �� and ��� order approximations is
negligible (of the order of ����). The grey line in the �� distance plot
fits the �� distance with an exponential curve �� � ����������, thus
demonstrating that the convergence is exponentially fast with respect
to 	.

Finally notice that even at the order of ��� � ��, the matrix-vector
multiplications needed for iterating our scheme require roughly
266,000 operations at each hitting time, which is computationally
fast (moreover, e.g., for our particular processes, the transfer matrix
is sparse and thus only a few of the first 516 eigenfunctions actually
contribute into the final result). Since all this is independent of the

conditioning information set, then a pre-analysis of the problem can
further reduce the computational burden of the methodology.

IV. CONCLUSION

We presented a general framework to solve a nonlinear filtering
problem, where the nonlinearity comes from the conditioning infor-
mation. The observations are generated at random times when the
measurement process hits pre-specified thresholds. We illustrated the
method on a particular example where the state and the noise are
modeled by Wiener and Ornstein-Uhlenbeck processes respectively.
Our numerical simulations demonstrate that reasonable accuracy is
achieved even when only a few eigenfunctions are used for expansion
of the probability density function of the system.

As the threshold 
 gets smaller, our framework formally reproduces
the continuous time filters, e.g., [2]: the signals are generated more
often, until, in the limiting case, they are generated continuously and
the conditioning observation set then consists of the whole process ��.
However, in this case the practical use of our method is limited, as in
order to keep the approximation errors small it is necessary to account
for a large number of eigenfunctions.

APPENDIX

EIGENFUNCTIONS AND EIGENVALUES

OF THE FOKKER-PLANCK OPERATOR

First, let us find all eigenvalues and eigenfunctions (vanishing on the
boundary) for the operator

�� ���� � ����
��� ��

�

	
��� � � �� ���

��� ��
�

	
��� � (31)

in the domain � � � ��� ��. In order to find the eigenvalues �� and
the eigenfunctions ������ of��� , we observe that the greatest (smallest
by the absolute value) eigenvalue �� and the corresponding eigenfunc-
tion ������ are given by

�� � �� ������ �


�
���� � (32)

Notice that the eigenfunction �� is normalized to have total integral
unity. Setting ������ � ������������we obtain equations for������

��� � ������� 	���� ������ � 	��������� (33)

This immediately implies that ������may be expressed using Hermite
polynomials as

������ � ���
�
��� (34)

thus we obtain

�� � � ��

������ �


�
���� ���

�
���� � � �� �� 	� � � � (35)

The operator��� has eigenvalues�� � ������	�� and eigenvectors

������ �
�

	�
���

����
�

� � � �� 	� 
� � � � (36)

Since

���������������� � ���� � ���� ��������������

� ��� � �������������� (37)
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�� has the following eigenvalues and eigenvectors:

��� � �� �

��
� ���

������ �
�
��

��
���� ���

�
���� ���

���

�

(38)

where	 � �� �� 	� 
 
 
 � � � �� �� �� 
 
 
 Finally, the functions
�������
such that ���������� 
�������� form a bi-orthogonal set are given by


�� �
�

����
���

�
���� ���

�	��

�
 (39)

For the discussion in Section III, we need to find the eigenvalues and
eigenfunctions (with vanishing boundary values) of the Fokker–Planck
operator

�� � ��� �� �
�

�
�
�
� � � �

�
�
�
� � (40)

in the domain � � ����� ��� � ��� � ��� � ��. Introducing

�� �
�� � ���
� � ��

� �� �
��� � �

��
� � ��

(41)

we obtain

�� �
�

�
�
�
� � � �

�
� �

�
�

� � ��
�� �� � ������ � ���� � � �

�
�� ��

while the domain transforms into

�� � ���� ��� � ���� � ��
� � ��

 (42)

For sufficiently small � we may use the regular perturbation theory
and results in (38) and (39) reproducing relations (26). The transfer
matrix �

�	 
	 �

��
����� 
� � may be computed explicitly using the approx-
imate eigenfunctions obtained from the small � approximation and
formula (13).
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On Nonsingularity Verification of Uncertain Matrices
Over a Quadratically Constrained Set

Tong Zhou

Abstract—Nonsingularity of a matrix is investigated in this technical
note that depends affinely on several uncertainty matrices whose real and
imaginary parts are constrained by some quadratic forms. Based on some
equivalent descriptions for these uncertainty matrices, a sufficient condi-
tion is derived. This condition is given in a linear matrix inequality form
and can in principle be efficiently validated. The obtained result includes
some well known results in systems and control theory as a special case,
such as the Lyapunov equation based stability criterion for linear time
invariant systems, the � �-scaling based upper bound for the mixed
structured singular value, a sufficient condition for the stability of spatially
interconnected systems, etc. A computationally verifiable condition is
also provided that indicates situations under which the aforementioned
condition becomes necessary.

Index Terms—Linear matrix inequality (LMI), robustness, spatially in-
terconnected system, stability, structured singular value.

I. INTRODUCTION

It is now well recognized that verification of the nonsingularity of
matrix valued functions (MVF) over a prescribed set is a fundamental
problem in system and control theory. For example, well-posedness
of a closed-loop linear time invariant (LTI) system and stability of a
regular/singular LTI system can be equivalently expressed as the non-
singularity of a MVF over a prescribed domain on the complex plane
[3], [10], [17]. Moreover, validation of the robust stability and robust
performance of an LTI system against modelling errors has been recast
as the mixed structured singular value (SSV), in which a matrix is re-
quired to be nonsingular that depends affinely on actual and artificial
modelling errors [2], [7], [11], [13], [15], [16]. In addition, it is now
also known that if a spatially interconnected system (SIS) is both time
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