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Optimal Periodic Sensor Scheduling
With Limited Resources

Ling Shi, Peng Cheng, and Jiming Chen

Abstract—In this technical note, we consider the problem of periodic
sensor scheduling with limited resources. Two sensors are used to measure
the state of a discrete-time linear process. We assume that each sensor has
a maximum duty cycle and at most one sensor can communicate with a re-
mote estimator at each time step due to the limited communication band-
width. When a sensor is scheduled to send data, it sends the most recent D
measurement data to the estimator. Upon receiving the measurement data
from the sensors, the estimator computes the optimal estimate of the state
of the process. We first present a necessary condition for a periodic sensor
schedule to be optimal. Based on this necessary condition, we construct an
optimal periodic schedule that minimizes the estimation error at the esti-
mator and at the same time satisfies the energy and communication band-
width constraints. Examples are provided throughout the technical note to
demonstrate the results developed.

Index Terms—Networked control systems (NCSs).

I. INTRODUCTION

Networked control systems (NCSs) have gained much interest in the
past decade thanks to the recent advances in fabrication, modern sensor
and communication technologies, and computer architectures. Appli-
cations of NCSs are found in a growing number of areas, including au-
tomobiles, autonomous vehicles, environment and habitat monitoring,
industrial automation, power distribution, space exploration, surveil-
lance, transportation, etc [1].

Compared with classic feedback control systems, control over net-
works can reduce the system wiring, make the system easy to operate,
maintain and diagnose, and increase system agility. However, new
problems also arise when sensor information and control information
flow over a network. For example, due to the limited bandwidth of
the network or limited communication energy, data packets may be
dropped or delayed, which affects the stability of closed-loop system.

In this technical note, we consider a sensor scheduling problem. In
typical NCSs, resources are often limited. For example, sensors may be
battery-powered, and the energy for data collection and transmission is
limited. Communication channel may be shared by many sensors, and a
sensor may not transmit its measurement all the time. Therefore proper
scheduling of the sensor data transmission is needed.

Sensor scheduling has been a hot topic of research for many years.
Different formulations and approaches have been proposed. Baras and
Bensoussan [2] studied nonlinear state estimation problem and consid-
ered scheduling a set of sensors so as to optimally estimate a function
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of an underlying parameter. Walsh et al. [3], [4] studied the problem of
when to schedule which process to access to the network so that all pro-
cesses remain stable. Gupta et al. [5] considered a different scheduling
problem where there are one process and multiple sensors. They pro-
posed a stochastic sensor schedule and provided the optimal probability
distribution over the sensors to be selected. Hovareshti et al. [6] con-
sidered sensor scheduling using smart sensors, i.e., sensors with some
memory and processing capabilities, and demonstrated that estimation
performance can be improved. Sandberg et al. [7] considered estima-
tion over a heterogeneous sensor network. Two types of sensors were
investigated: the first type has low-quality measurement but with small
processing delay, while the second type has high-quality measurement
but with large processing delay. Using a time-periodic Kalman filter,
they showed how to find an optimal schedule of the sensor communi-
cation. Similar work has been done by Arai et al. [8], [9] where fast
sensor scheduling was proposed for networked sensor systems. Savage
and La Scala [10] considered the problem of optimal sensor scheduling
for scalar systems that minimizes the terminal error.

The main contribution of this technical note and comparison with
existing work from literature are summarized as follows.

1) In this technical note, we develop schedules of two sensors that
can provide the best estimation quality subject to both sensor en-
ergy and communication bandwidth constraints. To the best of our
knowledge, the framework is novel.

2) Since the solution space contains infinitely many possible sched-
ules which are discrete in nature, find an optimal schedule is in
general difficult and challenging, and usually NP hard. As a re-
sult, most existing work proposed algorithms and heuristics that
typically generate a suboptimal schedule, and nothing in general
is said on the optimality of the proposed schedule. However, with
some minor assumptions, we are able to provide an optimal peri-
odic schedule that minimizes the estimation error at the estimator
and at the same time satisfies the energy and communication band-
width constraints.

The rest of the technical note is organized as follows. In Section II,
we provide the mathematical models of the systems and state the main
problem of interest. In Section III, we provide some preliminary results
on the state estimation. A necessary condition for a schedule to be op-
timal is presented in Section IV. Based on this necessary condition, an
optimal periodic schedule is constructed in Section V. Examples are
provided throughout the technical note to demonstrate the results de-
veloped. Some concluding remarks are given at the end.

The following terms that are frequently used in subsequent sections
are defined below. Z is the set of all integers. S’} is the set of n by n
positive semidefinite matrices. When X € S, we simply write X >
(0; when X is positive definite, we write X > 0. Tr(X) is the trace of
X.LetX € ST andY € S} . Wesay X <Y ifY —X > 0.Clearly if
Y —X > 0,then Tr(Y —X) > 0. For functions f, fi, f> : S — S},
fi o fois defined as f1 o f2(X) 27 (fg(X)) and f' is defined as

FHX) L2fofo-o f(X). For arandom variable X, E[X] denotes
—_—

t times
the expected value of X.

II. PROBLEM SETUP

A. System Models

Consider the system in Fig. 1. The process is discrete and linear time-
invariant and its dynamics is given by

e = Awp + wi (D
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Fig. 1. System block diagram.

where k € Z is the time indices, 2, € IR" is the process state vector,
wy, is the process noise (or disturbance) which is zero-mean white
Gaussian with covariance () > 0. The initial state x is also a zero-
mean Gaussian variable with covariance ITy. The pair (A, /Q) is sta-
bilizable.

Two sensors are used to measure x4, in (1). Their measurement equa-
tions are given as follows:

ye =Ciag + ) (2)
yi = Coxp + v ?3)

where y; € IR™! and y7 € IR™?2 are the measurements collected by
the two sensors at time &, v; and v3 are the measurement noises which
are zero-mean white Gaussian with covariances Ry > 0 and R> > 0.
Further assume o, wz, v}, and v} are mutually uncorrelated, and the
pair (A, [C] C3]') is detectable.

Denote 3/21: ke = WWhkys-een¥ kz} as all the measurements collected
by sensor ¢ from time %1 to k2. Let D be an integer and define z;, (D)
as %(D) = Yr_pi1.4- Sometimes we write Nk(D) as zi when D
is clear from the context. Assume sensor i sends zj in a single data
packet to a remote estimator.! The remote estimator then computes &,
the optimal linear estimate of «, based on all data received up to time
k. Notice that different D renders different data available at the remote
estimator. Thus &1, and its associated error covariance I, depend on
D implicitly, i.e., they are functions of D.

It is well known that 21 (D) and its associated error covariance ma-
trix P (D) for the process state in (1) are given by

(D)
P, (D)

= E[z|all data received up to k] (@)
=Eleyey|all data received up to k] )

where e (D) = 2, — #,(D) is the estimation error.

Assume at most one sensor can communicate with the remote es-
timator at each time k due to the limited communication bandwidth.
Let +;, be the indicator function whose value (1 or 0) indicates whether
sensor ¢ is selected to use the communication channel. Thus the com-
munication bandwidth constraint can be expressed as

T+ W <IVE> L (6)

Let ¢ be a periodic schedule which assigns values to ~i and © be the
set of all periodic schedules. Notice that both &4 (D) and P, (D) in
(4)—(5) are functions of the schedule #, thus we sometimes write them
as 23 (D,#) and Pi(D, ) to show their dependency on 6 explicitly.

IThis only requires the sensor has some processing capability and a buffer
to store the previous D — 1 measurement data. Most wireless sensor nodes in
the market nowadays have such capability. In typical data networks, a packet is
in the order of Kilobytes or even hundreds of Kilobytes. Thus as long as D is
reasonably small, one data packet is enough to include z} (D).
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B. Problems of Interest

For a given schedule § with period N (), define J;(6) as the duty
cycle of sensor ¢, i.e.

1 N(0)
N ; Z Yi(8) (7)

and P,(D,#) as the trace of the average estimation error covariance,
ie.

Ji(6) =

T
1
P.(D,§) 2 Tr (TlggoTkZ]Pk(D,e)) ®)

Let ¥, < 1 be the maximum duty cycle of sensor ¢. For simplicity,
assume ¥, is a rational number. The maximum duty cycle is imposed
to represent the limited communication energy at the sensor.

In this technical note, we are interested in finding a D and a periodic
schedule ¢ that solves the following optimization problem:2

Problem 2.1:

s.t. ”/]}, (9) + ”/i 14

In other words, the optimal D and # minimize the estimation error at
the remote estimator and at the same time satisfies the limited commu-
nication energy and bandwidth constraints. As we shall see shortly in
Section V

IgléigPa(oo,H) < P.(D,0),YD>1,V0€O.

Thus we will first look for the optimal #* such that P,(co,8%) is
minimum. Then we seek a finite D (as small as possible) such that
P,(D,0") = P,(co,0"). This approach will be elaborated in the next
few sections.

For brevity, we will write 74 (D, #) as & (or #5(#)) and Pr(D,#)
as P, (or P, (0)), etc., when the underlying D and 6 are clear from the
context.

III. OPTIMAL ESTIMATION AT THE ESTIMATOR

In this section, we show how to compute &3 and Py based on the
Kalman filter [11]. Before we introduce the optimal estimation proce-
dure at the estimator, we first define a few functions to simplify the
notations in subsequent sections. Define the functions h, §i, g2 and
g : S} — Sk as follows:

h(X)2AXA +Q ©)
H(X)EX - XC[C\XCr+ RO X (10)
G2 (X) 2 X — XC3[CoXCh + Ro] ™' Co X (11)
GX)EX - XC'[CXC' +RI”'CX 12)

where C' = [C] C3]') and R = diag(R:, R2). Further define the
functions g1, ¢2 and and ¢ : S — S} as

A~

yoh, g2

B =gioh, g goh.
Notice that applying h to I’.—; corresponds to the time update step
of the Kalman filter, and applying §; to h(/Px—1) corresponds to the

measurement update step of the Kalman filter if y;, is used to improve

2In Remark 5.5, we show that with some work the limitation of searching the
optimal sequence within the set of periodic sequences can be eliminated.
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the estimate. Let I be the set of all measurement data, collected
by the sensors at or before & — 1, available at the estimator. Further
let P,_; be the estimation error covariance of the optimal estimate
of xj,_; given the data set I._;. Then, one can verify the following
equalities:

E[(zr — &) (xx — &) [ Tem1, y2] = 91 (Prer) (13)
Elerer [ Tn—1, y%] = g2(Pez1) (14)
Elerer|Te—1, yi. yi) = 9(Pr—1). (15)

Since (A, +/Q) is stabilizable and (A, C') is detectable, from stan-
dard Kalman filtering analysis [11], the equation X = ¢(X) has a
unique solution P > 0, which is the steady-state error covariance of
the Kalman filter when both sensors are used.

The following lemma summarizes a few well-known properties of
the functions h, g, and the steady-state error covariance PP. The proofs
are omitted.

Lemma 3.1: Forany 0 < X < Y andany 1 < t; < ta, the
following inequalities hold:

1) h(X) < R(Y).

2) g(X) < h(X).

3) 9(X) < gi(X),i=1,2.

4) g;*(P) < g*(P),i = 1,2,

We are now ready to introduce the optimal estimation procedure at
the estimator. Let us first consider the simple case when D = 1. It is
easy to see that the optimal estimator is simply the Kalman filter, and
the error covariance Py evolves as

WP, il =2 =0,
Pe= 1 g1(Pemr), if =1,
92(Py—1), ifvi=1

When D > 2, the estimation procedure is different than the Kalman
filter. The reason is that at time k, the previously not available data
might become available. Thus the previous estimate can be further im-
proved at k. Let Sf, t < k, denote the set of measurements collected
at time 7 that are available at time k. Then S;ﬁl C 8;{;2, Vi<k <k
holds as a newly arrived data packet also contains the previous D — 1
measurement. The following example illustrates the idea.

Example 1: Assume D = 2. Consider the following schedule from
time 1 to4.~; : 0110 and ~7 : 1 0 0 1. Then one can verify that

D) Si = {yi}.

2) S = {yl.91}: S5 = {y2}.

3) S5 = {yl. 47}, 85 = {v2}. 85 = {ys}.

4) Si = {yl.yi}. 81 = {2}. 8 = {y5.43}. 81 = {vi}.
Clearly S| C S3 and S§ C &5. Attime 1, &1 = E[z|S]] and
P, = g2(P). At time 2, yi becomes available. Thus &, can be fur-
ther improved, i.e., &1 = |E[.L1|Sr_ﬂ and P1 = g¢(I%). Notice that
from Lemma 3.1 we indeed have g(Py) < ¢2(Po). Consequently

Iy = [E[.12|S§] and P, = g1 (g(Po) . At time 3, the only new in-
formation is y%, thus &2 remains unchanged and 3 = g1(FP%). At
time 4, i3 is first recalculated as y2 becomes available. As a result,
Py = g2(g9(g1(g(Fo)))). The estimation procedure is presented with
details in [12]. The key idea is that the newly available data collected at
the earliest time, e.g., ¢ < k, is first used to improve &, which is then
used to update &4 . This is repeated until we compute #.. It is proven
in [12] that this procedure leads to the optimal estimate. Furthermore
the error covariance matrix P, can be computed and closed-form ex-
pression can be obtained as seen from Example 1.

IV. NECESSARY CONDITION

In this section, we present a necessary condition for a schedule to be
optimal. This necessary condition is given in the following theorem.
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Lemma 4.1: An optimal schedule 8* to Problem 2.1 satisfies

Ji(8%) =Ty, Jo(67) = V. (16)

Proof: Without loss of generality, consider a feasible schedule
¢ with Jl(e) < ¥ and Jz(e) = W, Since ¥ + ¥y, = 1, we
must have J1(0) + J2(8) < ¥y + ¥, = 1. Define €(8) and 6(6)
as €(f) £ W, — J(A) and 6(8) £ 1 — J,(#) — Jo(A). Then the
communication channel is idle (i.e., both sensors are not transmitting)
for 6(8) portion of time. Construct a different schedule f based on 6 as
follows: whenever the communication channel is idle under 6, schedule
sensor one to send data. Notice that J, (6) = J\(8) + §(6) = ¥4,
thus the new schedule 6 is still feasible. From the optimal estimation in
Section III, we can write Py (6) as Px(0) = fr o fx—1 0 -0 fi(F),
where

h, neither y; nory? is available,
only y; is available,

g2, only y? is available,

¢, both y} and y? are available.

Similarly we write P, (é) as P.(0) = fkofk_l o-- -ofl(Po) where ft
is defined in the same way as f: is. Recall that we have defined S}, (t <
k) as the set of measurements collected at time ¢ that are available at
time %. From the construction of § , it is clear that
Sk(8) C Sk(8). a7
From (17), we immediately arrive at the following four cases:
1) ft = hand fK: h or g1 or g2 or g;
2) ft=g1and fr = g1 or g;
3) ft = gz and fi = g2 or g;
4)ft:gandft:g. R
In any of the above four cases, we have f; < f; V¢ < k, where the
inequality is from Lemma 3.1. Therefore we conclude that Py (6) >
P (é) Finally it is trivial to show that P (6) # Pi( é). This shows
that # cannot be optimal. In other words, the optimal 6™ satisfies (16).
u
Lemma 4.1 basically states that in order to achieve minimum error,
the available resources have to be fully utilized, which makes intuitive
sense. In the next section, we will rely on this necessary condition to
construct an optimal schedule.

V. OPTIMAL PERIODIC SCHEDULE

In this section, we first consider the limiting case D = oo. In other
words, when sensor ¢ is scheduled to send a data packet, it sends all the
data it has collected up to time k. This may not seem to be practical,
however, it has great theoretical values:

1) The estimation error covariance I’. can be proven to be the least
among all possible linear filters [13]. An optimal schedule #* can
be constructed and the resulting P.(oc,#™) thus serves as the
lower bound of P, (D, 8) for any D and any 6.

2) Based on the result obtained for D = oo, we are able to show that
the same schedule 6* satisfies P, (D, 8") = P.(occ, §*) for some
finite D.

We start this section by giving an explicit expression of Py (o0, 8),

abbreviated as Py (#), for a given schedule 6.

A. Error Covariance Calculation

Consider a periodic schedule ¢ with period N (#). From Lemma 4.1,
without loss of generality, we assume that v, = 1 or v = 1V k and
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sensor one or two is scheduled at least one time during a period of NV (8)
times. For nonzero v; and ~7, define 7(+;) and 7(~7) as

() &k —max{s: s < kandv2 =1},
(7)) &k —max{s:s < kand~! =1}.

If v; = 1, then the estimator has {y1., yf,k_r(yl)}. Therefore from
: 1
(13)—(15), the error covariance ;. is given by

P =E[(xr — &1)(wr — #6) [yt ks yf;k—r(y}%)]

(L (1t
=gl (400 (). (18)
Similarly, if ﬁ = 1, the error covariance satisfies
r(~2 —r(~2
P, :gz('rk)(gk (’k’)(PO))- 19)

As sensor one or two is scheduled at least once during a period of N (8)
times, we have T(’)";;,) < N(6),i¢ = 1, 2. Since the recursion P4 =
g(P:) converges to P exponentially fast for any P, > 0, and in con-
sideration of the fact that P,(#) is defined for infinite time-horizon
hence transient contributions of I’; may be neglected, we can assume

g"’_T(7Z-)(P0) = P,i = 1, 2. Consequently, (18)—(19) become

1y

Po=g, "W (P)if 4 =1 (20)
T ’2 - . Y

P =g} W (P)it 47 = 1. @1)

The following theorem, which provides a closed-form formula for
evaluating P, (6) for a given 8, is a direct consequence of this fact.

Theorem 5.1: For a given periodic schedule 6, P,(6) can be com-
puted as

1
P,(0) = ——
) N(&)
T4N(9) o T+N(9) ,
x| Y gWE e+ Y gY@ | @
k:T+1,~/}c¢o k:T+1.~,i¢o

where T is any integer with T > N (6).

B. Optimal Periodic Schedule Construction

In this section, we construct an optimal periodic schedule for D =
oo. Since ¥; is assumed to be a rational number, it can be written as
¥, = p/q for two co-prime integers p and ¢ satisfying p < g. There-
fore U5 = (q — p)/q. Without loss of generality assume p < (1/2)q.
Let s be an integer (s > 1) that satisfies

(s = L)p < gq—2p<sp. (23)
Notice that such an s always exists. In the special case when p =
(1/2)q,s = 0.

In the following proposition, a periodic schedule 8 is constructed
which is shown to be optimal.

Proposition 5.2: An optimal schedule ™ can be constructed as fol-
lows, where the values of ~7(#*) for a single period of ¢ is listed
belows3:

(101---1)---(101---1)(10 1---1 )---(10 1---1 )

g times s times s—1 times s—1 times

~
g—(s+1)p times (s+2)p—gq times

3If s = 0, s — 1 times is defined to be zero times.
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and 1 (6*) is given by 74 (8*) = 1 — ~7(8*) V k. The corresponding
P,(6") is given by+

s qg—(s+1 ))
rue)=Tr <g1 (P)+Y_ ¢ (F)) + (J(Q)Ig;“ (P)
=l
(24)
Proof: We prove the case s > 1. The proof for s = 0 is similar.
Notice thatg — (s + 1)p+ (s +2)p—g=pand[¢ — (s + 1)p](s +
1)+ [(s + 2)p — q]s = ¢ — p. Thus sensor one is scheduled p times
and sensor two is scheduled ¢ — p times within a period of ¢ times
exactly. Hence #* is feasible. Next from Theorem 5.1, one can verify
that P,(#™*) is given by (24).

We now prove the optimality of 8*. Consider any other schedule 6
with period ¢ under which sensor one is scheduled exactly p times>.
We shall prove 6* is indeed optimal by showing that

P.(6) > Pu(67). 25)
Without loss of generality, we assume ¢g*(P,) = P as the transient
contribution of P may be neglected. Since 7(+;) > 1, from Lemma
3.1 and Theorem 5.1, within a single period of ¢

1y _ _
S nw= Y aWPz Y a@P=pnP).
kv (00 kv (0)£0 kv (00

(26)
Consider all possible values of 7(77). Let B = {7(~}) : 7¢ # 0}.
First note that | B| = ¢ — p as sensor two is scheduled for ¢ — p times.
Letb; (1 < j < ¢ — p) be a member of B. Without loss of generality,
assume b; is in ascending order, i.e., by < by -+ < by_p,. From its
definition, 7(7#) = 1 if and only if sensor two is scheduled to send
data at time % and sensor one is scheduled to send data at time & — 1.
Since sensor one is scheduled for p times exactly, we must have b, > 1
and b,4+1 > 2. Next notice that 7(~;) = 2 if and only if sensor two is
scheduled to send data at time % and k& — 1 and sensor one is scheduled
to send data at time k£ — 2. Again, since sensor one is scheduled for p
times exactly, we must have b2,+1 > 3. Following a similar argument,
we conclude that b;,41 > 14+ 1, 1 <1 < s. Therefore we obtain the
following inequality:

P AG

k20

= 3 =)

I
]
£
_l’_
g
s
~
_l’_
+
g
=l

j=1 j=p+1 j=sp+1

q

b. —

+ Z g5’ (P)
J=(s+1)p+1
P 2p (s+1)p

— 9 — -

> 02(P)+ Y () -+ > g:(P)

j=t j=p+1 j=sp+1

q
Y e

F=(s+1)p+1

=p Zgé(ﬁ) + (q —(5+ 1)17)515“(7)-

“Ufs=0,7 , gi(P) = 0.

SAssuming 8 also has period ¢ is without loss of generality. If 8 has a different
period ¢, then 8* and 6 can be viewed as two periodic schedules with a common
period gg. From Lemma 4.1, sensor one must be scheduled for pg times within
a period of ¢¢ times. The proof then extends trivially to cover this case.
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Finally we have

qP.(8)
=Tr| Y PO+ Y. Po)
ki (6)#£0 kv 2(8)#0
>Tr <p91 (P)+p igi (P) + (q —(s+ 1)11)95+1 (F)>
=1
=qPa(07). ]
The proof is thus complete. |

Corollary 5.3: Let 6* be the optimal schedule stated in Proposition
5.2 with period N = N(#"). Consider a schedule # which also has
period N. Then for sufficiently large T, there exists a permutation ¢
on Pryyi(6),..., Pryayn(f) such that

P.(6")< Pi(8), TN+1<k<(T+1)N

where

(PTNH(H), el P(T+1)N(9)) =¢ (PTN+1(9), el P(T+1)N(9))-

Remark 5.4: From this corollary, #* not only minimizes the average
error, but also provides the minimum error at each time (with a time per-
mutation). Therefore §* is also optimal if we change the cost function
P,(#) to max P:.(9).

Remark 5.5: From the proof of Proposition 5.2, we can eliminate the
limitation of searching the optimal sequence within the set of periodic
sequences. The idea runs as follows: redefine the cost function P, ()
as P.(8,T) = (1/T)Y;_, Pi(8). For sufficiently large T' (hence
the transient period can be ignored), we can prove that the optimal se-
quence which minimizes P,(8,7") schedules the first sensor (or the
second sensor, depending on whether p < (1/2)g orp > (1/2)q)
as uniformly as possible. Furthermore, the relative time difference be-
tween two adjacent instances that the first (or second) sensor are sched-
uled remains constant for all sufficiently large 7'. Therefore, the op-
timal sequence converges to a periodic sequence over the infinite-time
horizon, which can be shown to be exactly the same as that given by
Proposition 5.2.

So far we have constructed an optimal schedule #* for the limiting
case D = oo. The following result is a straightforward extension of
Proposition 5.2.

Theorem 5.6: The schedule #* constructed in Proposition 5.2 is still
optimal for a finite D as long as D > s + 2 where s is given by (23).

Proof: For the 6* constructed in Proposition 5.2, sensor one is
scheduled exactly p times. Thus the maximum time gap between two
adjacent scheduling of sensor one is s + 2. Therefore when sensor
one sends a data packet, all its previously collected measurements are
available at the estimator side. Thus the case D > s + 2 is equivalent
to the limiting case. |

From (23), ¢/p —2 < s < ¢/p + 1. Thus 8 can be constructed if

p>%43=-1 43
P

T, 27

The interpretation of (27) is clear: the number of previous packets to
be sent at each time is inversely proportional to its duty cycle.

1) Example 2: Consider the process and sensors (1)—(3) with 4 =
[0.950.01;00.95], Cy = [10],Ce = [0 1], Q = diag(5,5), R =
2 and R, = 2. Let the maximum duty cycle of sensor one and two
be ¥, = 2/7 and ¥» = 5/7. The optimal schedule 6* is given by
Proposition 5.2, and the values of ~;(*) for a single period are ;. :
0100100and~7 : 101101 1. When compare §* with the following
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Fig. 4. Trace of the error covariance matrices of the two schedules.

schedule # (in a single period of seven times) v, () : 1100000 and
¥2(#): 0011111, we have the following results.

Figs. 2 and 3 show the estimator’s performance under the two sched-
ules. We plot the evolution of the two components of @y, £ (8% ), #1(6)
and their corresponding estimation errors. From the right half of these
two figures, we see that §* indeed provides smaller estimation error on
the average. Fig. 4 plots the evolution of the trace of the corresponding
error covariance matrices. The simulation results agree well with the
theories developed in the previous sections.

VI. CONCLUSION

In this technical note, we consider a sensor scheduling problem. Two
sensors with limited energy budget are to be scheduled over a finite
bandwidth communication network. We first derive a necessary condi-
tion for a schedule to be optimal. Based on this necessary condition,
we construct an optimal schedule that minimizes the error covariance
of the state estimate and at the same time satisfies the constraints on
the limited sensor energy and communication bandwidth. Examples
and simulation verify the results developed in the technical note.

Extending the result in this note to multiple sensor scenario will be
pursued in the future. The condition D > s+2 as stated in Theorem 5.6
is only sufficient to guarantee the cost function P,(D, #) can achieve
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its minimum, thus Theorem 5.6 can be viewed as providing an achiev-
able lower bound of P, (D, ) under the assumption that the sensor can
send s + 2 most recent data. An interesting problem is to consider how
does the cost function degrade when D decreases. In this case, quanti-
zation/coding issues will come into play. There exists a wealth body of
literature addressing quantization/coding issues. Combining these is-
sues with scheduling is worthwhile to study.
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On Solving Optimal Policies for Finite-Stage
Event-Based Optimization
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Abstract—Event-based optimization (EBO) has been developed to model
a specific type of problems, in which decisions can be made only when cer-
tain events occur. Because the event sequence usually is not Markovian,
how to solve optimal policies for EBOs remains open in general. Motivated
by real applications, we focus on finite-stage EBOs with discrete state space
in this technical note and make two contributions. First, we show that this
EBO can be converted to a partially observable Markov decision process
(POMDP). Based on this connection, existing exact and approximate so-
lution methodologies for POMDPs can then be applied to EBOs. Second,
we develop the performance difference and derivative formulas and the
potential-based policy iteration algorithm, which converges to the global
optimum. This algorithm is then applied to a node activation problem in
wireless sensor network.

Index Terms—Discrete event dynamic systems (DEDS’s), event-based op-
timization (EBO), partially observable Markov decision process (POMDP).

I. INTRODUCTION

The dynamics of many systems such as transportation system, manu-
facturing system, and electric power grid follow not only physical laws
but also man-made rules. These systems are known as discrete event
dynamic systems (DEDS’s) [1], where state transitions are triggered
by events. Event-based optimization (EBO) has been developed [2] to
model a specific type of problems, in which decisions can be made only
when certain events occur. However, it is known that the event sequence
usually is not Markovian. Thus how to solve the optimal policies for
EBOs remains open in general.

Though most existing studies on EBO focus on infinite-stage prob-
lems, finite-stage EBO captures the essence of many applications, too.
For example, consider a wireless sensor network (WSN) that is de-
ployed in an area of interest (Aol) to monitor some objects. When an
area is monitored by multiple sensors in the same time, the object in that
area is detected with higher probability, and the sensors receive a higher
reward. The batteries of the sensors can be recharged and have limited
cycle lifetimes. The central node can only activate fully-charged sen-
sors. In order to save the wireless communication power, an activation
decision is made only when some sensors just become fully charged
or discharged, i.e., when ready or sleep events occur. The question is
how to activate the sensors to maximize the total reward in the lifetime
of the network. As will be shown in Section V-B, this problem can be
modeled as a finite-stage EBO.

We focus on finite-stage EBOs with discrete state and action spaces
and make two contributions in this technical note. First, we show that
the EBO can be converted to a partially observable Markov decision
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