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a b s t r a c t

In this paper, we consider sensor data scheduling with communication energy constraint. A sensor has to
decide whether to send its data to a remote estimator or not due to the limited available communication
energy. We construct effective sensor data scheduling schemes that minimize the estimation error and
satisfy the energy constraint. Two scenarios are studied: the sensor has sufficient computation capability
and the sensor has limited computation capability. For the first scenario, we are able to construct the
optimal scheduling scheme. For the second scenario, we are able to provide lower and upper bounds of
the minimum error and construct a scheduling scheme whose estimation error falls within the bounds.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Networked sensing and control systems have gained much in-
terest in the past decade (Hespanha, Naghshtabrizi, & Xu, 2007).
Applications of networked sensing and control systems are found
in a growing number of areas, including autonomous vehicles, en-
vironment and habitat monitoring, industrial automation, trans-
portation, etc.

In some networked sensing applications, sensors are battery-
powered, hence only limited energy is available for data collection
and transmission. Consequently a sensor cannot transmit its
measurement data at all times due to the energy constraint, and
it has to decide whether to send its current data packet or not. This
decision-making process is referred to as sensor data scheduling.

On one extreme, sending no data consumes no energy. How-
ever, without receiving and processing the sensor measurement
data, the estimation error of the underlying parameters may grow
rapidly which is undesirable in situations such as target tracking
and rescue and surveillance. On the other extreme, sending data
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at all times assures that the estimation error is a minimum but
at the price of high energy cost. The latter case may not even be
feasible due to the energy constraint. Thus proper schedule of the
sensor data transmission is needed such that the energy constraint
is satisfied and the estimation error is kept as small as possible.
Constructing such a proper sensor data scheduling scheme is the
focus of this paper.

Sensor scheduling has been a hot topic of research for many
years. Different formulations and approaches have been proposed.

Baras and Bensoussan (1988) studied nonlinear state estima-
tion problem and considered scheduling a set of sensors so as to
optimally estimate a function of an underlying parameter. Walsh
andYe (2001) andWalsh, Ye, andBushnell (2002) studied the prob-
lem of when to schedule which process to access to the network so
that all processes remain stable. Gupta, Chung, Hassibi, and Mur-
ray (2006) considered a different scheduling problem where there
is one process and multiple sensors. They proposed a stochastic
sensor scheduling scheme and provided the optimal probability
distribution over the sensors to be selected. Tiwari, Jun, Jeffcoat,
and Murray (2005) studied the problem of sensor scheduling for
discrete-time state estimation using a Kalman filter. They consid-
ered two processes and one sensor and proposed schemes to de-
termine which process that the sensor needs to observe in order
to minimize the total estimation error. Shi, Epstein, Sinopoli, and
Murray (2007) combined the ideas from Gupta et al. (2006) and
Tiwari et al. (2005) and proposed two novel scheduling schemes
in a sensor network by employing feedback from the estimator to
the sensors. Hovareshti, Gupta, and Baras (2007) considered sen-
sor scheduling using smart sensors, i.e., sensors with some mem-
ory and processing capabilities, and demonstrated that estimation
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Fig. 1. System block diagram.

performance can be improved. Sandberg, Rabi, Skoglund, and Jo-
hansson (2008) considered estimation over a heterogeneous sen-
sor network. Two types of sensors were investigated: the first type
has low-quality measurement but small processing delay, while
the second type has high-quality measurement but large process-
ing delay. Using a time-periodic Kalman filter, they showed how
to find an optimal schedule of the sensor communication. Similar
work has been done by Arai, Iwatani, and Hashimoto (2008, 2009)
where fast sensor scheduling was proposed for networked sensor
systems. Savage and Scala (2009) considered the problem of opti-
mal sensor scheduling for scalar systems that minimizes the ter-
minal error.

The main contributions of this paper and comparison with
existing work from the literature are summarized as follows.

(1) We develop sensor scheduling schemes that provide the best
estimation quality subject to sensor energy constraint. To the
best of our knowledge, the problem formulation is novel.

(2) We focus on scheduling of the sensormeasurement data, while
most of the existing work focused on scheduling of a set of
(heterogeneous) sensors.

(3) Since the solution space contains infinite scheduling schemes
which are discrete in nature, most existing work proposed al-
gorithms that typically generate a suboptimal schedule, and
nothing in general is said on the optimality of the proposed
schedule. However, in this paper, when the sensor has suf-
ficient computation capability, we are able to construct an
optimal scheduling scheme; when the sensor has limited com-
putation capability, we are able to provide a lower and upper
bound of the estimation error for the optimal scheme.

The remaining of the paper is organized as follows. In Section 2,
we introduce the system models and problem setup. In Section 3,
we define some frequently used notations and provide some
preliminaries on the Kalman filter. In Section 4, we provide the
necessary condition for optimal scheduling schemes. In Section 5,
we study the scenario when the sensor has sufficient computation
and present an optimal scheduling scheme. In Section 6, we study
the scenario when the sensor has limited computation and present
a suboptimal schedule. Concluding remarks are given in the end.

Notations. Z is the set of non-negative integers. k is the time index.
N is the set of natural numbers. Rn in n-dimensional Euclidian
space. Sn

+
is the set of n by n positive semi-definite matrices. When

X ∈ Sn
+
, we simply write X ≥ 0; when X is positive definite, we

write X > 0. For functions f , f1, f2 : Sn
+

→ Sn
+
, f1 ◦ f2 is defined as

f1 ◦ f2(X) , f1(f2(X)) and f t is defined as f t(X) , f ◦ f ◦ · · · ◦ f  
t times

(X).

2. Problem setup

2.1. System models

Consider the following discrete linear time-invariant system
(Fig. 1)

xk+1 = Axk + wk, (1)
yk = Cxk + vk. (2)

In the above equations, xk ∈ Rn represents the current state of the
process, yk ∈ Rm is the measurement data taken by the sensor at
time k, wk ∈ Rn and vk ∈ Rm are zero-mean Gaussian random
noises with covariances E[wkw

′

j] = δkjQ ≥ 0, E[vkv
′

j ] = δkjR > 0,
E[wkv

′

j ] = 0 ∀j, k, where δkj = 0 if k ≠ j and δkj = 1 otherwise.
The initial state x0 is also a zero-meanGaussian randomvector that
is uncorrelated with wk or vk and has covariance Π0 ≥ 0. Further
assume that (A,

√
Q ) is controllable and (C, A) is observable.

Assume that the sensor communicates its data packet with a
remote estimator via a network. Let

Yk = {y1, . . . , yk} (3)

be all the measurements collected by the sensor from time 1 to
k. The sensor’s local state estimate x̂sk and its corresponding error
covariance P s

k are calculated as

x̂sk = E[xk|Yk], (4)

P s
k = E[(xk − xsk) (xk − xsk)

′
|Yk]. (5)

Most commercially available sensor nodes nowadays have differ-
ent transmission power levels (Xiao, Cui, Luo, & Goldsmith, 2006).
Reliable data flow is typically achieved using high power transmis-
sion. Low power transmission may cause unreliable data flow and
data packet drops are typical consequences. For simplicity, we as-
sume the sensor operates in two energy levels. When the sensor
uses a high energy ∆ at time k, the data packet can be success-
fully delivered to the remote estimator; when the sensor uses a
low energy δ, the data packet can be successfully delivered only
with probability λ ∈ (0, 1). We assume both ∆ and δ are rational
numbers. When δ energy is used, let λk = 1 or 0 be the indicator
function whether the data packet arrives at the estimator success-
fully or not. Assume λk’s are i.i.d Bernoulli random variables and
E[λk] = λ.

Let γk = 1 or 0 be the sensor’s decision variable at time k
whether it should send its current data packet using∆ or δ energy.
Let θ denote a scheduling scheme that defines the value of γk at
each k. Clearly the set of all scheduling schemes consists of 2k

different schemes up to time k, most of which are unstructured
and are intractable to analyze. We thus focus on the subset of all
periodic scheduling schemes which we denote as Θ .

Denote Dk(θ) as the set of all data packets received by the
estimator up to time k. In general Dk(θ) could be different from
Yk defined in Eq. (3) due to the possible data packet drops. Similar
to calculating x̂sk and P s

k , for a given θ , the state estimate x̂k(θ) and
its associated error covariance Pk(θ) at the remote state estimator
are calculated as

x̂k(θ) = E[xk|Dk(θ)], (6)

Pk(θ) = E[(xk − x̂k)(xk − x̂k)′|Dk(θ)]. (7)

For simplicity, we shall write x̂k(θ) as x̂k, etc., when the underlying
scheduling scheme θ is clear from the context.

2.2. Problems of interest

For a given θ , define J(θ) as the average energy cost associated
with it, i.e.,

J(θ) , lim
N→∞

1
N

N−
k=1

(γk∆ + (1 − γk)δ), (8)

and Pa(θ) as the average expected estimation error covariance, i.e.,

Pa(θ) , lim
N→∞

1
N

N−
k=1

E[Pk]. (9)

LetΨ be a given energy budget. Assume thatΨ is a rational number
and δ ≤ Ψ ≤ ∆.

In this paper, we are interested in finding a periodic scheduling
scheme θ that solves the following optimization problem.
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Problem 2.1.
min
θ∈Θ

Pa(θ)

s.t. J(θ) ≤ Ψ .

In other words, we wish to seek a scheduling scheme θ ∈ Θ such
that the communication energy constraint is satisfied at the sensor
side and the average estimation error is minimum at the estimator
side. A scheme θ is feasible if J(θ) ≤ Ψ . A scheme θ∗ is optimal if it
is feasible and Pa(θ∗) ≤ Pa(θ) for any other feasible θ .

We consider two scenarios in this paper. In the first scenario,
the sensor has sufficient computation and memory. It runs a local
Kalman filter to compute x̂sk and P s

k , and sends x̂sk to the remote
estimator. We call this estimate communication. In the second
scenario, the sensor has limited computation and memory, and
only sends yk (or a few previous measurements packed together
with yk if C is not invertible) to the remote estimator. We call this
measurement communication.

3. Definitions and Kalman filter preliminaries

To facilitate the analysis in subsequent sections,we first present
some notations as well as a brief summary of the standard Kalman
filter. The following terms that are frequently used in subsequent
sections are defined. It is assumed that (A, C,Q , R) are the same as
they appear in Section 2.1. We define the function h and g : Sn

+
→

Sn
+
as

h(X) , AXA′
+ Q , (10)

g(X) , X − XC ′
[CXC ′

+ R]−1CX . (11)
It is straightforward to verify that if 0 ≤ X ≤ Y , then h(X) ≤ h(Y ),
g(X) ≤ g(Y ) and g(X) ≤ X (e.g., Lemma A.1 in Shi, Epstein, and
Murray (2010)). In particular, g ◦ h ≤ h.

3.1. Sensor with limited computation

Assume γk = 1∀ k ≥ 1. It iswell known that x̂k and Pk in Eqs. (6)
and (7) can be calculated alternatively using a Kalman filter (KF).
We write (x̂k, Pk) in compact form as (x̂k, Pk) = KF(x̂k−1, Pk−1, yk),
which represents the following set of recursive equations:
x̂−

k = Ax̂k−1,

P−

k = APk−1A′
+ Q ,

Kk = P−

k C ′
[CP−

k C ′
+ R]−1,

x̂k = Ax̂k−1 + Kk(yk − CAx̂k−1),

Pk = (I − KkC)P−

k .

The recursion starts from x̂0 = 0 and P0 = Π0. Since yk is always
available at the sensor side, if the sensor has sufficient computation
capability, x̂sk and P s

k in Eqs. (4) and (5) are also calculated following
the same procedure, i.e., (x̂sk, P

s
k) = KF(x̂sk−1, P

s
k−1, yk). With some

manipulation, Pk can be shown to satisfy
Pk = g ◦ h(Pk−1). (12)

Denote P as the steady-state error covariance, i.e., P is the unique
positive semi-definite solution1 to g ◦ h(X) = X . The following
lemma about P is useful in establishing some results in the next
few sections. The proof can be found in the Appendix.

Lemma 3.1. If 1 ≤ t1 ≤ t2, then ht1(P) ≤ ht2(P). Furthermore,
h(P) ≠ P.
If γk = 0, i.e., yk is not available at the estimator, then it can
be shown that the optimal estimate x̂k simply equals Ax̂k−1. The
corresponding error covariance matrix Pk is given by
Pk = h(Pk−1).

1 Since (C, A) is observable and (A,
√
Q ) is controllable, from standard Kalman

filtering analysis (Anderson & Moore, 1979), P ≥ 0 exists and is unique.
3.2. Sensor with sufficient computation

When the sensor has sufficient computation capability, it runs
a local Kalman filter to compute x̂sk and sends x̂sk to the remote esti-
mator. It is straightforward to show that the optimal state estimate
and error covariance at the estimator side are computed as

(x̂k, Pk) =


(Ax̂k−1, h(Pk−1)), if γk = 0,
(x̂sk, P

s
k), if γk = 1.

For any P s
0 ≥ 0, P s

k converges to P exponentially fast, therefore
without loss of generality, we assume that the Kalman filter enters
steady-state at the sensor side. Then Pk is simply given by

Pk =


h(Pk−1), if γk = 0 and λk = 0,
P, otherwise.

4. Necessary condition for optimal scheduling schemes

In this section, we present a necessary condition for an optimal
scheduling scheme.Wewill then use this condition to construct an
optimal scheme.

For a given θ , define π1 as the fraction of times that the sensor
uses high energy ∆, i.e.,

π1(θ) , lim
N→∞

1
N

N−
k=1

γk(θ). (13)

Similarly, defineπ2 as the fraction of times that the sensor uses low
energy δ, i.e., π2 = 1 − π1. Then we have the following necessary
condition of an optimal scheme θ∗.

Theorem 4.1. Let θ∗ be an optimal scheme to Problem 2.1. Then

π1(θ
∗) =

Ψ − δ

∆ − δ
. (14)

Proof. First consider the estimate communication. For simplicity,
we write π1(θ

∗) = π∗

1 . Notice that J(θ) in Eq. (8) can be written as

J(θ) =
1
N

lim
N→∞

N−
k=1

(γk∆ + (1 − γk)δ) = π1∆ + π2δ.

Therefore if π∗

1 is given by Eq. (14), then

J(θ∗) = π∗

1 ∆ + π∗

2 δ = Ψ .

Hence θ∗ is feasible. Now consider a different scheme θ with

π1 <
Ψ − δ

∆ − δ
.

We construct a scheme θ̂ according to the following two steps.

(1) Set θ̂ = θ .
(2) For arbitrary π∗

1 −π1
2π2

fraction of times in θ̂ that use δ energy,
change to use ∆ energy.

Notice that the sensor uses δ energy for π2 fraction of times in θ .
Thus after step (2), the sensor uses∆ energy for 1

2 (π1+π∗

1 ) fraction
of times in θ̂ . In other words

π̂1 =
1
2
(π1 + π∗

1 ) and π̂2 =
1
2
(π2 + π∗

2 ).

Therefore

J(θ̂) =
1
2
(π1 + π∗

1 )∆ +
1
2
(π2 + π∗

2 )δ

=
1
2
(π∗

1 ∆ + π∗

2 δ) +
1
2
(π1∆ + π2δ) < Ψ ,

i.e., θ̂ is feasible. Consider any N ≥ 1. For k ≤ N , if γk(θ) = 1, then
γk(θ̂) = 1, hence Pk(θ̂) = P = Pk(θ); if γk(θ) = 0, then γk(θ̂) = 1
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or 0. From Lemma 3.1, it is straightforward to show that

E[Pk(θ̂)] ≤ E[Pk(θ)] and E[Pk(θ)] ≠ E[Pk(θ̂)].

Consequently,
N−

k=1

E[Pk(θ̂)] ≤

N−
k=1

E[Pk(θ)]

and
N−

k=1

E[Pk(θ)] ≠

N−
k=1

E[Pk(θ̂)].

As the above two inequalities hold for any N ≥ 1, we conclude
that Pa(θ̂) ≤ Pa(θ) and Pa(θ) ≠ Pa(θ̂), i.e., θ cannot be optimal.
Therefore π∗

1 corresponding to any optimal scheme θ∗ has to
satisfy Eq. (14).

The proof for the measurement communication scenario fol-
lows similarly. �

5. Optimal scheduling scheme for estimate communication

In this section, we consider the estimate communication
scenario. We will construct an optimal scheduling scheme based
on the necessary condition in Theorem 4.1. Since the cost function
is over an infinite horizon, without loss of generality, we assume
that the Kalman filter at the sensor side has entered steady state
and we ignore its transient dynamics.

Let θT be a periodic scheme with period T which is defined as

γk(θT ) ,


1, if kmod T = 1,
0, otherwise.

Define ϵT , E[PT (θT )], which has the following property.

Lemma 5.1. ϵT ≤ ϵT+1 for any T ≥ 1.

Proof. First we have ϵ1 = P ≤ λP + (1 − λ)h(P) = ϵ2. For T ≥ 2,
with some manipulation, one can verify that

ϵT = λP + (1 − λ)T−1hT−1(P) +

T−2−
i=1

λ[(1 − λ)ihi(P)]. (15)

Therefore

ϵT+1 − ϵT = (1 − λ)ThT (P) + λ(1 − λ)T−1hT−1(P)

− (1 − λ)T−1hT−1(P)

= (1 − λ)ThT (P) − (1 − λ)ThT−1(P) ≥ 0. �

We are now ready to present an optimal scheduling scheme for
the estimate communication scenario. Since ∆, δ, and Ψ are all
rational numbers, π∗

1 given by Eq. (14) is also a rational number.
Therefore we can write π∗

1 as π∗

1 =
p
q for two co-prime integers

p ≤ q.

Theorem 5.2. Consider the estimate communication scenario.
(1) p < 1

2q: Let z be the largest integer such that z ≤
q
p . An optimal

scheduling scheme θ∗ can be constructed in terms of the values of
γk(θ

∗) over a period q as follows:

(1 0 · · · 0  
z−1 times

) · · · (1 0 · · · 0  
z−1 times

)

  
p(z+1)−q times

(1 0 · · · 0  
z times

) · · · (1 0 · · · 0  
z times

)

  
q−pz times

The average estimation error Pa(θ∗) is given by

Pa(θ∗) =
1
q


p

z−
i=1

ϵi + (q − pz)ϵz+1


where ϵ1 = P and ϵi is given by Eq. (15) for i ≥ 2.
(2) p ≥
1
2q: An optimal scheduling scheme θ∗ can be constructed in

terms of the values of γk(θ
∗) over a period q as follows:

(1 0) · · · (1 0)  
q−p times

(1) · · · (1)  
2p−q times

The average estimation error Pa(θ∗) is given by

Pa(θ∗) =
1
q
[pϵ1 + (q − p)ϵ2] .

Proof. Without loss of generality, we compare θ∗ with an arbitrary
schedule θ which has the same period q and underwhich∆ energy
is scheduled exactly p times over a period.2 Since the cost function
is taken over an infinite-horizon, to prove Pa(θ∗) ≤ Pa(θ), it is
sufficient to prove that

k∗1+q−1−
k=k∗1

Pk(θ∗) ≤

k1+q−1−
k=k1

Pk(θ)

where k∗

1 and k1 are any two times such that γk∗1
(θ∗) = 1 and

γk1(θ) = 1. Since k∗

1 = 1,without loss of generality,we can assume
k1 = 1. Thus we need to prove that
q−

k=1

Pk(θ∗) ≤

q−
k=1

Pk(θ).

Denote bα as the number of 0’s which appears α time steps after
a 1 in the set {γk(θ) : k = 1, . . . , q}. Since there are exact p 1’s
in {γk(θ) : k = 1, . . . , q}, there are at most p 0’s in {γk(θ) : k =

1, . . . , q} that are right following a 1. Therefore b1 ≤ p. Similarly
since there are b1 0’s that are right following a 1, there are at most
b1 0’s that are right following such a 0. This shows that b2 ≤ b1.
Continuing this argument, we arrive at bα+1 ≤ bα ≤ · · · ≤ b1 ≤ p
for any α ∈ N.

(1) p < 1
2q: Since

q
p > 2, from the definition of z, we conclude

z ≥ 2. From the construction of θ∗, we have
q−

k=1

Pk(θ∗) = pϵ1 + pϵ2 + · · · + pϵz + (q − pz)ϵz+1.

We also have, from the definition of bα , the following equality:
q−

k=1

Pk(θ) = pϵ1 + b1ϵ2 + b2ϵ3 + · · · + bq−pϵq−p+1

with the constraint that b1+b2+· · ·+bq−p = q−p. Therefore
q−

k=1

Pk(θ) −

q−
k=1

Pk(θ∗)

= (b1 − p)ϵ2 + (b2 − p)ϵ3 + · · · + (bz−1 − p)ϵz
− (q − pz)ϵz+1 + bzϵz+1 + · · · bq−pϵq−p+1

≥ (b1 − p)ϵz+1 + (b2 − p)ϵz+1 + · · · + (bz−1 − p)ϵz+1

− (q − pz)ϵz+1 + bzϵz+1 + · · · bq−pϵz+1

= [b1 + b2 + · · · + bq−p − (q − p)]ϵz+1 = 0,

where the inequality is from Lemma 5.1 as well as the fact that
bα ≤ p for any α ∈ N.

2 First, if θ has a different period q̃, then we can consider that θ∗ and θ have
a common period qq̃ and ∆ energy is scheduled pq̃ times over a period. Second,
if ∆ energy is scheduled for less than p times under θ , then from Theorem 4.1,
there always exists a θ̂ under which ∆ energy is scheduled exactly p times and
Pa(θ̂) ≤ Pa(θ).
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Fig. 2. Larger π∗

1 leads to smaller Pa(θ∗).

(2) p ≥
1
2q: In this case,

q−
k=1

Pk(θ∗) = pϵ1 + (q − p)ϵ2,

q−
k=1

Pk(θ) = pϵ1 + b1ϵ2 + b2ϵ3 + · · · + bq−pϵq−p+1.

The rest of the proof is similar to that of the case p < 1
2q.

The proof is thus complete. �

Remark 5.3. Theorem 5.2 states that under an optimal schedule,
the instances when ∆ energy is scheduled should be separated
as uniformly as possible. When the sensor has multiple energy
levels to choose from, which is typical inmost commercial sensors,
scheduling which energy level to use at what time is much more
complicated and challenging, especially when different power
levels introduce different packet drop rates. It is out of the scope
of this paper to address this more interesting and practical issue,
which will be pursued in future work.

Example 5.4. Considerπ∗

1 =
3
10 . Then θ∗ has period 10, z = 3, and

γk(θ
∗) for 1 ≤ k ≤ 10 is given by {1, 0, 0, 1, 0, 0, 1, 0, 0, 0}. When

π∗

1 =
7
10 , θ

∗ has period 10 and γk(θ
∗) for 1 ≤ k ≤ 10 is given by

{1, 0, 1, 0, 1, 0, 1, 1, 1, 1}. We also plot Pa(θ∗) as a function of π∗

1
in Fig. 2 when π∗

1 varies from 1
10 to 1. The system parameters are

A = 2, C = 1, Q = 1 and R = 1. As seen from the figure, larger
π∗

1 , i.e., more energy budget, leads to smaller Pa(θ∗), which makes
intuitive sense.

6. Error bounds for measurement communication

In this section, we consider the measurement communication
scenario. In particular, we consider the case that the measurement
matrix C is invertible. As shown in Shi et al. (2010), by sending a
few previous measurements together with yk, similar results can
be obtained.

DefineM , C−1RC−1′

. The following lemmas are from Shi et al.
(2010).

Lemma 6.1. For any k ≥ 1, if γk = 1 or γk = 0 with λk = 1, then
Pk ≤ M.

Lemma 6.2. Assume P0 ≥ P. Then for all k ≥ 0, Pk ≥ P.
Define ϵ̂T as follows. ϵ̂1 , M . For T ≥ 2,

ϵ̂T , λM + (1 − λ)T−1hT−1(M) +

T−2−
i=1

λ[(1 − λ)ihi(M)]. (16)

Finding the optimal scheduling scheme for measurement commu-
nication is more difficult than for estimate communication. Never-
theless, by applying the optimal scheme θ∗ in Theorem 5.2 to the
measurement communication, we obtain the following result.
Theorem 6.3. Assume π∗

1 =
p
q for two co-prime integers p ≤ q.

1. p ≤
1
2q: Pa(θ

∗) is bounded below by

Pa(θ∗) ≥
1
q


p

z−
i=1

ϵi + (q − pz)ϵz+1


and Pa(θ∗) is bounded above by

Pa(θ∗) ≤
1
q


p

z−
i=1

ϵ̂i + (q − pz)ϵ̂z+1


.

2. p > 1
2q: Pa(θ

∗) is bounded by

1
q
[pϵ1 + (q − p)ϵ2] ≤ Pa(θ∗) ≤

1
q
[pϵ̂1 + (q − p)ϵ̂2].

Proof. Direct result from Theorem 5.2, Lemmas 6.1 and 6.2. �

From Theorem 6.3, when P and M are close, we can approximate
the optimal scheduling for the measurement communication
scenario by the one obtained for the estimate communication
scenario (as in Theorem 5.2).

7. Conclusion

In this paper, we investigate the sensor data scheduling
problem. Two scenarios are studied. In the first scenario, we
assume that the sensor has sufficient computation and it runs a
Kalman filter and sends the estimate to a remote estimator. For
this scenario, we are able to construct a scheduling scheme that
minimizes the estimation error at the estimator yet satisfies the
sensor’s communication energy constraint. In the second scenario,
we assume that the sensor has limited computation and sends the
measurement data to the remote estimator. For this scenario, we
are able to construct lower and upper bounds of the minimum
estimation error.

There are many interesting future directions along the line of
this work: find tighter bounds for the measurement communi-
cation scenario; investigate the problem of multiple energy level
scheduling; close the control loop and schedule the control data;
study the dual problem, i.e., finding a scheduling scheme that min-
imizes the communication energy yet guarantees a desired estima-
tion quality.
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Appendix. Supporting lemmas

Lemma A.1. (1) Let X > 0. If CXC ′
= 0, then C = 0.

(2) Let O be an m by n matrix (m ≥ n) with full column rank and
Q ≥ 0 be an n by n matrix. If OQO′

= 0, then Q = 0.

Proof. (1) Let Y = [Yij] = CX
1
2 . Then−

i,j

Y 2
ij = Tr(YY ′) = 0

implies Y = 0. Therefore C = YX−
1
2 = 0. (2) Assume Q ≠ 0.

Since Q ≥ 0, it must have an eigenvalue β > 0. Let x ≠ 0 be an
eigenvector of Q corresponding to β , i.e., Qx = βx. Since O has full
column rank, there exists y such that O′y′

= x. We then obtain the
following contradiction 0 = yOQO′y′

= x′Qx = βx′x ≠ 0. �

Proof to Lemma 3.1. First notice that P = g ◦ h(P) ≤ h(P).
Therefore by applying h on both sides of the inequality we get
P ≤ h(P) ≤ h2(P). By repeating the same procedure, we obtain
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P ≤ h(P) ≤ · · · ≤ ht−1(P) ≤ ht(P) ∀t ≥ 0.

Next assume

P = h(P) (A.1)

Since P = g ◦ h(P), we get

h(P)C ′
[Ch(P)C ′

+ R]−1Ch(P) = 0.

As [Ch(P)C ′
+ R]−1 > 0, from part one of Lemma A.1,

h(P)C ′
= 0.

From Eq. (A.1), ht(P)C ′
= 0 ∀ t ≥ 0. Consider t = n. Then

0 = Chn(P)C ′
= CAnPA′nC ′

+

n−1−
i=0

CAiQA′iC ′.

As CAnPA′nC ′
≥ 0 and CAiQA′iC ′

≥ 0 for all i, we conclude

0 =

n−1−
i=0

Tr(CAiQA′iC ′) = Tr(OQO′)

where O = [C ′ A′C ′
· · · A′n−1C ′

]
′. Since OQO′

≥ 0, all eigenval-
ues of OQO′ must be zero. Consequently, OQO′

= 0. As (C, A) is
observable, O has full column rank, from part two of Lemma A.1,
OQO′

= 0 leads to the fact thatQ = 0,which violates the assump-
tion that (A,

√
Q ) is controllable. The proof is thus complete. �
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