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a b s t r a c t

Weconsider sensor scheduling for state estimation of a scalar systemover a packet-delaying network. The
current measurement data can be sent over a delay-free channel if the sensor uses larger communication
energy; the data will be delayed for one time step if the sensor uses less communication energy. We
consider a cost function consisting of a weighted average estimation error and a weighted terminal
estimation error and explicitly construct optimal power schedules to minimize this cost function subject
to communication energy constraint. Simulations are provided to demonstrate the key ideas of the paper.
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1. Introduction

Networked control systems have gained much interest in the
past decade (Hespanha, Naghshtabrizi, & Xu, 2007). In many
networked control applications, available resources such as the
communication energy is limited which brings new issues to
networked controller and estimator design. In this paper, we
consider state estimation over a network. The current sensor
measurement data can be sent over a delay-free channel if the
sensor uses more communication energy, and the data will be
delayed for one time step if the sensor uses less communication
energy.

Before we state the main contribution of this paper, we
briefly go over some related works from literature. Quevedo
and Ahlén (2008) studied state estimation using wireless sensor
networks over fading channels. The packet loss probabilities were
partially controlled by the transmission power levels used by
the sensors. A predictive controller was developed which trades
off sensor energy expenditure versus state estimation accuracy.
Savage and Scala (2009) considered the problem of optimal
measurement scheduling for scalar systems that minimizes the
terminal error. Zhang, Basin, and Skliar (2007) considered optimal
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state estimation with continuous, multirate, randomly sampled,
and delayed measurements. Matveev and Savkin (2006, 2009)
considered optimal state estimation in networked systems with
asynchronous communication channels and switched sensors.
More related topics and results can be found from the references
in the aforementioned existing works.

One main difference between the current work and most of
the above works is that we focus on the design aspect, i.e., the
sensor decides whether to use the perfect channel using large
communication energy or to use the packet-delaying channel using
small communication energy, under the constraint of a total un-
delayed transmission, while they focused on how to optimally
estimate the system state under arbitrary data delay patterns.
Another difference is that the cost function considered in this
paper is rather general which consists of a weighted average
error and terminal error. The weight can be chosen appropriately
to reflect the requirement of different applications. The main
contribution of this paper is an explicit construction of optimal
sensor communication power schedules that minimize the cost
function subject to the communication energy constraint.

The rest of the paper is organized as follows. In Section 2,
we give the mathematical framework of the considered problem.
The optimal estimation procedure is introduced in Section 3.
The optimal schedules are then introduced in Section 4. Some
concluding remarks are provided in the end.

Notations. Z is the set of non-negative integers. N is the set of
natural numbers. k ∈ Z is the time index. R is the set of real
numbers.R+ is the set of non-negative real numbers. For functions
f1, f2, f : R+ → R+ and t ∈ Z, f 0(x) , x and f t , f · · · f  

ttimes

(x).
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Fig. 1. Example of a packet-delaying network.

2. Problem setup

Consider the following scalar system

xk+1 = axk + wk, (1)
yk = cxk + vk, (2)

where a, c ∈ R and a, c ≠ 0, xk ∈ R is the system state at time k, yk
is the sensor measurement at k, wk’s, vk’s are zero-mean Gaussian
noises with covariance q > 0 and r > 0. The initial state x0 is also
zero-mean Gaussian with covariance π0 > 0. Assume wk, vk and
x0 are mutually uncorrelated for all k.

After yk is obtained, the sensor sends yk to a remote estimator
which computes x̂k, the optimal estimate of xk, based on all
received data up to time k. A direct wireless communication with
long distance in general consumes much more energy than a short
one. In fact, the communication energy is roughly proportional
to dn where d is the distance between the sender and receiver
and n, typically between 2 and 6, is the path loss component
(Goldsmith, 2005). Therefore it is reasonable to assume that larger
communication energy leads to larger communication radius and
vice verse.

Inspired by this fact, we assume the sensor has two choices to
send yk at each k: if the sensor spends δ energy, yk will be delayed
for one step, e.g., via a gateway node (Fig. 1); and if the sensor
spends ∆ > δ energy, yk will arrive at the estimator without any
delay, e.g., communicate with the estimator directly.

We do not consider packet drops in this paper, which compli-
cate the problem and obtaining closed-form optimal power sched-
ules is challenging. A complete analysis of optimal sensor power
schedules involving both packet drops and delays is out of the
scope of this paper and will be considered further in the future
work.

Let pk = E[(xk − x̂k)2|all data received up to k] be the estima-
tion error covariance at the estimator. Consider the set of all deter-
ministic schedules Θ = {0, 1}T . A schedule θ ∈ Θ is represented
as {γk(θ) : k = 1, . . . , T } such that if γk = 0, δ energy is used at
time k; and if γk = 1, ∆ energy will be used. Clearly the estimation
error covariance pk depends on the underlying sensor data sched-
ule θ , thus we write it as pk(θ). Let α ∈ [0, 1] be given. Consider
the following problem (Problem 2.1)

min
θ∈Θ

J(θ) = α
1
T

T−
k=1

(pk(θ)) + (1 − α) (pT (θ))

s.t.
T−

k=1

γk(θ) = m.

Note that J(θ) consists of two components: when α = 0, J(θ) is
the terminal error covariance; andwhenα = 1, J(θ) is the average
error covariance.
3. Optimal state estimation

Recall that the optimal estimate x̂k for xk in (1) given yk in
(2), the previous optimal estimate x̂k−1, and the previous error
covariance pk−1 is computed recursively from the Kalman filter
(Anderson & Moore, 1979), which consists of a time update step
and a measurement update step. If yk is not available, then from
Shi, Epstein, and Murray (2010), only the time update step is
implemented. Define functions h and g : R+ → R+ as

h(x) , a2x + q and g(x) , h(x) −
c2h(x)2

c2h(x) + r
.

It is clear that g and h satisfy g(x) < h(x), ∀ x ≥ 0. From Shi et al.
(2010), the error covariance pk evolves as pk = g(pk−1) when yk
is available and pk = h(pk−1) otherwise. Following the estimation
scheme for delayed measurement in Shi, Xie, and Murray (2009),
the estimation procedure at time k consists of the following two
steps: first, if yk−1 arrives at k, recalculate x̂k−1 and pk−1 using yk−1
using the Kalman filter and go to the next step, and otherwise yk−1
must have arrived at time k − 1 and do nothing; second, if yk
arrives, calculate x̂k and pk using yk using the Kalman filter, and
otherwise calculate x̂k and pk only using the time update of the
Kalman filter. Under this procedure, for a given schedule θ , one has:
first, if γk = 1, then y1, . . . , yk have all arrived at the estimator.
Thus the estimator is simply the Kalman filter and

pk = gk(p0). (3)

Second, if γk = 0, then y1, . . . , yk−1 have all arrived at the
estimator. Thus the estimator is the Kalman filter up to time k − 1
and

pk = h(pk−1) = hgk−1(p0). (4)

4. Optimal schedules

In this section, we construct optimal power schedules to
Problem2.1. First considerα = 0. For two feasible schedules θ1 and
θ2, from (3), if γT (θ1) = 1 and γT (θ2) = 1, then pT (θ1) = pT (θ2).
If γT (θ1) = 1 and γT (θ2) = 0, then from (3) and (4), pT (θ1) =

gT (p0) < h

gT−1(p0)


= pT (θ2). Therefore we conclude that when

α = 0, any feasible schedule θ with γT (θ) = 1 is an optimal
schedule.

Now consider α = 1. Define p as the unique solution to p =

g(p). The next three lemmas, which are straightforward to verify
from the definitions of g and h, are essential to derive the optimal
power schedule in Theorem 4.4.

Lemma 4.1. If p0 > p then g(p0) < p0. And if 0 ≤ p0 < p then
g(p0) > p0.

Lemma 4.2. Let i ∈ Z and j ∈ N. If p0 > p, then

g i+1(p0) − hg i(p0) < g i+j+1(p0) − hg i+j(p0). (5)

And if p0 ≤ p, then

g i+1(p0) − hg i+1(p0) ≥ g i+j+1(p0) − hg i+j+1(p0) (6)

with equality iff p0 = p.

Lemma 4.3. If α = 1, the cost function J(θ) for a given schedule θ
with γki(θ) = 1 (i = 1, . . . ,m, 1 ≤ k1 < k2 < · · · < km ≤ T ) is
given as follows

J(θ) =

T−
k=1

hgk−1(p0) +

m−
i=1


gki(p0) − hgki−1(p0)


. (7)
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Fig. 2. p0 > p: Optimal schedule θ∗ and a general schedule θ .
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Fig. 3. α = 1 : J(θ) as a function of θ for different initial conditions.

Theorem 4.4. When α = 1, an optimal schedule θ∗ in terms of
γk(θ

∗) is given as follows:

(1) p0 > p : γk(θ
∗) = 1, 1 ≤ k ≤ m. Furthermore θ∗ is the unique

optimal schedule.
(2) p0 = p: any feasible schedule is optimal.
(3) p0 < p : γk(θ

∗) = 1, T −m+ 1 ≤ k ≤ T . Furthermore θ∗ is the
unique optimal schedule.

Proof. (1) p0 > p: Consider a general schedule θ . Fig. 2 shows the
schedule θ∗ and θ , where ki is such that γki(θ) = 1. One thing we
immediately notice is that ki ≥ i ∀ i = 1, . . . ,m. Furthermore
θ = θ∗ iff ki = i for all i = 1, . . . ,m. From (5), (7) and using the
fact that ki ≥ i, we easily arrive at J(θ∗)−J(θ) ≤ 0 and the equality
holds iff θ = θ∗. (2) p0 = p: It is straightforward to show that any
feasible schedule θ has cost J(θ) = mp + (T − m)h(p). (3) p0 < p:
Consider a general schedule θ which is the same as in the case
p0 > p. First note that ki now satisfies ki ≤ T−m+i, i = 1, . . . ,m.
Furthermore θ = θ∗ iff ki = T − m + i for all i = 1, . . . ,m.
Therefore from (6) and (7), we arrive at J(θ) − J(θ∗) ≥ 0 and the
equality holds iff θ = θ∗. �

Example 4.5. Consider system (1) and (2) with a = 1.1, q =

2, c = 0.5, r = 1, m = 1 and T = 20. Let k1 be the time that
the sensor uses the delay-free channel (i.e., γk1(θ) = 1). Fig. 3 plots
J(θ) as a function of k1. The red solid line is the plot for p0 = 5p > p.
The cyan dotted line is the plot for p0 = p. And the blue dashed line
is the plot for p0 = 0.2p < p. The result demonstrated from these
plots agrees with Theorem 4.4.

The following result gives the optimal schedule for a general
α ∈ (0, 1).

Theorem 4.6. An optimal schedule is given as follows.

(1) p0 > p: If α > α∗ , T
T−1+ ϵ1

ϵ2

where

ϵ1

ϵ2
=


hgm−1(p0)

2 
r + c2hgT−1(p0)


hgT−1(p0)

2 
r + c2hgm−1(p0)

 ,
then γk = 1, k = 1, . . . ,m. And if α ≤ α∗, then γk = 1, k =

1, . . . ,m − 1 and γT = 1.
(2) p0 = p: any feasible schedule with γT = 1.
(3) p0 < p : γk = 1, T − m + 1 ≤ k ≤ T .
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Fig. 4. p0 > p : J(θ) as a function of θ for different α.

Proof. We only prove the first part as the second and third parts
are direct results from the optimal power schedules for α = 0 and
α = 1. Let θ1 be the schedule with γk(θ1) = 1, k = 1, . . . ,m
and θ2 be the schedule with γk(θ2) = 1, 1 ≤ k ≤ m − 1 and
γT (θ2) = 1. Thus the first part is equivalent to say that if α > α∗

then θ1 is optimal; and if α ≤ α∗, then θ2 is optimal. First consider
α > α∗: since

J(θ1) =
α

T


m−

k=1

gk(p0) +

T−1−
k=m

hgk(p0)


+ (1 − α)hgT−1(p0),

J(θ2) =
α

T


m−1−
k=1

gk(p0) +

T−2−
k=m−1

hgk(p0) + gT (p0)


+ (1 − α)gT (p0),

after some manipulation we get

J(θ1) − J(θ2) = β
c2

h(y)

2
r + c2h(y)

− λ
c2

h(x)

2
r + c2h(x)

, (8)

where x , gm−1(p0) ≥ gT−1(p0) , y and λ =
α
T , β =

α
T + 1 − α.

Consequently J(θ1) < J(θ2) iff the right hand side of (8) is less than
0, which is equivalent to α > α∗.

Consider any other schedule θ different from θ1 and θ2. If
γT (θ) = 1, then consider Problem 2.1 with T changed to T − 1,m
changed to m − 1, and α = 1. From Theorem 4.4, θ2 restricted
from k = 1 to k = T − 1 is optimal. Thus J(θ) > J(θ2) > J(θ1).
If γT (θ) = 0, then pT (θ1) = hgT−1(p0) = pT (θ). Again consider
Problem 2.1with T changed to T −1 andα = 1. From Theorem 4.4,
θ1 restricted from k = 1 to k = T − 1 is optimal. Again we have
J(θ) > J(θ1). Therefore if α > α∗, θ1 is optimal.

Now let us consider α ≤ α∗. First note that from the above
proof, if α ≤ α∗, then J(θ2) ≤ J(θ1). Now consider any
other schedule θ different from θ1 and θ2. Similar to the previous
analysis, if γT (θ) = 1, then J(θ) ≥ J(θ2). And if γT (θ) = 0, then
J(θ) ≥ J(θ1) ≥ J(θ2). Hence if α ≤ α∗, then θ2 is optimal. �

Example 4.7. Consider the same system parameters as in Exam-
ple 4.5. One easily verifies that α∗

= 0.8401. Consider the initial
condition p0 = 5p. According to Theorem 4.6, if α ≤ α∗, choosing
k1 = T minimizes J; otherwise, choosing k1 = 1minimizes J . Fig. 4
plots J(θ) as a function of θ for different values of α in {0.7, 0.71,
0.72, . . . , 0.98, 0.99, 1}. The red solid lines correspond to those α’s
such that α > α∗ and the blue dashed lines correspond to those
α’s such that α < α∗. The bottom line corresponds to α = 0.7 and
the top line corresponds to α = 1. The result demonstrated from
these plots agrees with Theorem 4.6.

5. Conclusion

In this paper, we consider sensor data scheduling over a packet-
delaying network. Optimal schedules are explicitly constructed
which satisfy the communication energy constraint and at the
same time minimize a cost function consisting of a weighted
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average error and a weighted terminal error. There are many
interesting directions along the line of this work including
generalizing the results to some higher-order systems, considering
random delays and data packet drops, and scheduling of multi-
sensors in a bandwidth limited scenario.
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