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Kalman Filtering Over Graphs: Theory and Applications

Ling Shi, Member, IEEE

Abstract—In this technical note we consider the problem of distributed
discrete-time state estimation over sensor networks. Given a graph that
represents the sensor communications, we derive the optimal estimation
algorithm at each sensor. We further provide a closed-form expression for
the steady-state error covariance matrices when the communication graph
reduces to a directed tree. We then apply the developed theoretical tools
to compare the performance of two sensor trees and convert a random
packet-delay model to a random packet-dropping model. Examples are
provided throughout the technical note to support the theory.

Index Terms—XKalman filter.

I. INTRODUCTION

Advances in fabrication, modern sensor and communication tech-
nologies, and computer architecture have enabled a variety of new net-
worked sensing and control applications. For example, wireless sensor
networks form an important class of such applications, which have at-
tracted much attention in the past few years. Sensor networks can be
used for environment and habitat monitoring, health care, home and
office automation, traffic control, etc. [1]. This area of research brings
together researchers from computer science, communication, control,
etc. [2].

In many wireless sensor network applications, there is an economic
incentive towards using off-the-shelf sensors and standardized commu-
nication solutions. A consequence of this is that the individual hard-
ware components might be of relatively low quality and that commu-
nication resources are quite limited. Due to the limited communica-
tion resources, data packets generated at a particular time may arrive
at the sensors at variable times, not necessarily in order, and some-
times not at all. Estimation and control over such resource-constrained
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Fig. 1. State estimation using a wireless sensor network.

networks thus require new design paradigms beyond traditional sam-
pled-data control. For example, consider the problem of state estima-
tion over such a network using a Kalman filter. The Kalman filter is
a well-established methodology for model-based fusion of sensor data
[3]. In the standard Kalman filter, it is assumed that sensor data are
transmitted along perfect communication channels and are available to
the estimator instantaneously, and no interaction between communica-
tion and control is considered.

Kalman filtering under certain information constraints, such as de-
centralized implementation, has been extensively studied [4]. Imple-
mentations for which the computations are distributed among network
nodes were considered by Alriksson and Rantzer [5]. Sinopoli et al.
[6] studied Kalman filtering with intermittent sensor observations, and
they showed that there exists a critical packet arrival rate below which
the expected value of the estimation error covariance matrix becomes
unbounded. The problem of Kalman filtering for systems with delayed
measurements is not new and has been studied even before the emer-
gence of networked control [7], [8]. It is well known that discrete-time
systems with constant or known time-varying bounded measurement
delays may be handled by state augmentation in conjunction with the
standard Kalman filtering or by the reorganized innovation approach
[9].

This technical note focuses on developing theoretical tools for dis-
tributed estimation over sensor networks. The main contributions are
summarized as follows.

1) Given an undirected graph G that represents the sensor commu-
nications, we provide an optimal estimation algorithm at each
sensor. The algorithm is fully distributed, and can deal with ar-
bitrary data packet drops in the network.

2) When the communication graph reduces to a directed tree, we
provide an exact expression on the steady-state error covariance
matrices at each sensor.

3) We apply the developed theoretical tools to compare the perfor-
mance of two sensor trees and convert a random packet-delay
model to a random packet-dropping model.

The rest of the technical note is organized as follows. In Section I,
we give the mathematical models of the considered problems, and pro-
vide some preliminary results on Kalman filtering to facilitate the anal-
ysis in the remaining sections. In Section III, we present the main re-
sult of the technical note. Some concluding remarks and discussions
are given in Section IV.

II. PROBLEM SETUP

Consider the problem of distributed state estimation over a wireless
sensor network (Fig. 1). The process dynamics is described by

Trpp1 = Ay + we. (D
A wireless sensor network consisting of N  sensors

{So,S51,...,5nv_1} is used to measure the state. When S;
takes a measurement of the state in (1), it returns

yp = Hivg + 0. (i =0,1,...,N —1.) )

0018-9286/$26.00 © 2009 IEEE
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In (1) and (2), xr € R" is the state vector in the real n-dimensional
vector space, y,iC € R™ is the observation vector at S;, w; € R™ and
v}, € R™ are zero-mean Gaussian random vectors with E[wgw;] =
5:;Q,Q > 0, E[vivf] = 611, T, > 0, E[viv!’] = 0Vt k and
i # j, E[wgvi’] = 0 Vi, t,k, where 6,; = 0if k # j and 6., = 1
otherwise. We assume that (A, 1/@Q) is controllable.

We use an undirected graph G (e.g., Fig. 2) to represent the sensor
communications. The nodes A of G correspond to the /N sensors
{So0,S1,...,Snv—1}, and the edges £ of G correspond to the active
communication links between the sensors, e.g., e;; € & means 5;
communicates with S;, etc. We assume G is connected, i.e., there
exists a path between any S; and S; fori # j.

Attime k, S; generates the measurement packet % and sends it with
all previously received measurements from its neighbor sensors that are
after k£ — D to all its neighbors, where D > 1 is a constant. This is rea-
sonable, as when D is sufficiently large, the late-arriving measurement
related to the system state in the far past may not contribute much to
the improvement of the accuracy of the current estimate. We assume
all data packets i are time-stamped, therefore when a sensor receives
a data packet, it will know when the measurement is taken and from
which sensor it comes.

Let Bi\kfl(l = 0,...,D — 1) be the set of all measure-
ment packets that are taken at time k& — ! and are available at
S; at time k. For example, consider Sy in Fig. 2, when D = 2,

S sends {yt,yh_i.yi_i,ui_i} to So,S3,S: and receives
{wi-yi1,yia} from So. {yil.yi 1, vi—1.9i-1} from Sy, and
{y&-Y&—1.¥7_1,¥%_1} from Sy. Therefore

81 _ 0 1 2 3 o4 5 6
klk—1 = {ykflsyk—lvykfhykflaykflsykflvykfl}

1 0 1 3 4
Bl.~|k = {yk;ymymyk}-

Remark 2.1: Notice that since we only require G to be connected,
G may contain cycles. This implies that the same measurement packet
may arrive at a sensor node multiple times, e.g., yi_, is received twice
by S; in the previous example. When this happens, the sensor node
simply discards any packet that has been received before and the set
B | s— only includes distinct measurement packets that are taken at
time k — [. It is the set B3, | —¢ that will be processed by S; at time k
as we shall see in Section III.

In this technical note, we are interested in the following problem.

Problem 2.2: Given an undirected graph G that represents the sensor
communications with possible data packet drops, find out the optimal
state estimate k computed at each sensor 5;.

Before we provide an optimal estimation algorithm for each sensor
¢ in Section III, we first provide a short summary of Kalman filtering
upon which our main result relies.

A. Kalman Filtering Preliminaries

Consider the process in (1) with the following single sensor mea-
surement equation:

yr = Crar + v 3
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where vy, is zero-mean Gaussian random vectors with E[v,v,’] =
Oxj Ry, R > 0, and [E[wkvj'] = 0 Vj, k. Notice that we consider
time-varying C and Ry here. The Kalman filter in its most general
form can assume time-varying A and (). The special form we look at
here suffices for deriving the optimal estimation algorithms in subse-
quent sections.

Assume a linear estimator receives yx and computes the optimal state
estimate at each time k. Let Y, be the set of all measurements received
by the estimator at time k. Define

i 2 Elrg | Y] “
Py 2 E[(x — in)(wx — i) | Y] )
p £ Jim P if the limit exists. (6)

It is well known that 4 and P, can be computed as

(Zk, Pr) = KF(#x—1, Pe—1,Yx, Ck, Ri.)

where KF denotes the Kalman filter which consists of the following
update equations at time k:

T r—1 = Ap—1, @)
Ppjr—1 = AP 1A'+ Q (®)
Ky = Py 11 CL[Chk P k=1 Ch + R O]
Zp = A% 1+ Ki(yr — Cedp | p—1) (10)
Pp=(I—- KiCr)Pyjp—1. (11)

Let S’} be the set of n by n positive semi-definite matrices. For func-
tions f1, f2 : ST — S, define fi o f3 as f1 o fo(X) 2 F1(f2(X)).
Define the functions h, jjc r). g[c, 7] : ST — S} as

hX)2AXA 4+Q (12)
Jem(X) 2 X - XC'[CXC'+ R 'CX (13)
gior)(X) £ o gory (X). (14)

We write gic, 1 (X)) and gjc, i) as go and jo when there is no confu-
sion on the underlying parameters 1. With some manipulation, it can
then be shown that P |, and Px from (8) and (11) evolve as

15s)
(16)

Pk\k—l = ,(}Ck,l(Pk—1 | k—z)
Py = e, (Pryr—1)-

When the parameters C. and Rj. are not time-varying, i.e., C}, = C
and R, = R, we have the following result on the steady-state error
covariance matrix P.

Lemma 2.3: Assume C, = C,R, = R for all k& > 0. Further
assume that (A, C') is observable and (A4, /@) is controllable. Then
P exists and satisfies P = § o h(P).

Proof: Standard result from Kalman filtering analysis (e.g., [3])

and the proof is omitted. ]
Now consider the case when data packet can be dropped by the net-
work. Let v, be the indicator functor for y, at time %, i.e., 7 = 1

means yy, is received and 7, = O otherwise. In this case, (2%, Py) is
known to be computed by a modified Kalman filter (MKF') [6]. We
write (2x, P ) in compact form as

(24, Pi) = MKF (24 —1, P, vk, Y, Ci, Ric)
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Fig. 3. Kalman filter iterations at time k.

which represents the same set of update equations as in (7)—(9) together
with

Tk = Ak + e Ki(yp — CrAZL_1)
Py = (I = KpCr)Pryj—1-

a7
18)

Notice that if v, = 1 for all k£, then MKF simply reduces to the
standard Kalman filter.

III. KALMAN FILTERING OVER GRAPHS

Let the undirected graph G which represents the sensor communica-
tions be given, and consider any S; € G. Define #%(G), PL(G), P*(G)
at S; similar as that in (4)—(6). We write &} (G) as &, etc., for conve-
nience in this section.

In Section II, we denote 5;, | k— as the set of all measurement packets
that are taken at time k& — [ and are available at S; at time k. It is easy
to verify that

B _ije—i C Bijr—i,Visk, and 0 <1< D — 1,

In other words, §; has more measurements of time k — [ at time & than
at time & — [. Therefore, .S; can obtain a better estimate of x4 _; at time
k than at time & — [. This inspires us to recompute the optimal estimate
of the previous states and use them to generate the current estimate.
That is the basic idea contained in Theorem 3.1, where we recompute
the optimal estimate of x—p+1,...,2r—1 at time k and then make
use of the updated estimates to compute the current estimate & . Fig. 3
shows the overall estimation scheme at time k.

Theorem 3.1: For S; in the undirected graph § with communication
depth D, the optimal estimate &, and its error covariance matrix P can
be computed from D Kalman filters in sequence as

(£27D+17 P]sz+l)
= KF (#ips Pip. Bl jiopis

Chyk—p+1, B | k—D+1)

(#—1. Pi_1)

=KF (»ﬁ—m Pli—Za Bi [k—1> C;« | k—lsR;c | k—l)
(T, Pr)

= KF (& 1. P12 By Chy s Bl 1)
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where C} | k—t> R} [k—i(l=10,..., D —1) are the joint measurement
matrix and measurement noise covariance matrix of the measurement
data set B, | ,_;. In case B} ,_; = (), MKF is used to update &,_;
and P;_,;.

Proof: We know that the estimate & is generated from the es-
timate of 2, together with all the available measurements at time &
through a Kalman filter. Similarly, the estimate & _, is generated from
the estimate of & _, together with all the available measurements for
time k& — 1 at time k, etc. This recursion for D steps corresponds to the

D Kalman filters stated in the theorem. u
Remark 3.2: Notice that when implementing the algorithm in The-
orem 3.1, each S; only processes By, | ;. = 0,..., D—1. Asseenin

Section II, B;, | —¢ is obtained through communication with its one-hop
neighbors, and no complete knowledge of the graph is needed. There-
fore the estimation algorithm presented in Theorem 3.1 is fully dis-
tributed.

A. Kalman Filtering Over a Tree

In this section, we apply the estimation procedure in Theorem 3.1 to
a directed tree that is rooted at S; with depth D. The joint measurement
matrix C} | k—1 and noise covariance matrix R} | k— in this case can be
written as C; and R; respectively (I = 0,...,D — 1). It is easy to
verify that C} and R} satisfy the following:

Coy=T,.Cf =[C{_;T] . VI=1,...,D—1

and
Ry =Yy, R} = diag(R,_,,Y}),VI=1,...,D —1

where I} and Y} are the joint measurement matrix and the joint noise
covariance matrix of those sensors that are exactly ! + 1 hops away
from S;. Following the optimal estimation algorithm over a graph in
Theorem 3.1, we have the following result:

Corollary 3.3: Consider a sensor tree T; with depth D; that is rooted
atS;. If (A, Ch_ 1) is observable, then the steady-state error covariance
matrix P’ satisfies

P = 5’05 ©gei ot ogcb,z(P;:C) 19)

where P2, is the unique solution to Joi_, (P;O) = P’
Proof: Equation (19) follows directly from (15) and (16). |
For a given directed tree T" with root at So, define

Si—hop(T) & {S; : Siis within I — hops away from So}
(20)

for! = 1,...,D. For example, in Fig. 4, Si—top(T2) = {51,552},
and Sthop(Tg) = {51 ) 52, S'a 54}

Theorem 3.4: For two trees Ti and To, if Si—hop(T1) C
Sictop (To)VI = 1..... D, then P(Ty) < P(Th).
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Fig. 5. Performance of the three sensor trees.

Proof: Since Si—hop(Th) C Si—nop(T2)Vl = 1,...,D, it is
easy to verify that gc, (1) 2 9o, (1) andge,_y(11) 2 ey 1(T2)-
Therefore the theorem follows immediately from (19). |

Corollary 3.5: If T\ C T, then P(To) < P(Th).

These results provide an easy way to compare the performance of
different sensor trees.

Example 3.6: Consider the three sensor trees in Fig. 4. Apparently,
Ty C Tz, and Sj_hop(T2) C Si—hop(Ts),1 = 1,2, therefore from
Theorem 3.4 and Corollary 3.5, we immediately obtain

P(T3) < P(T») < P(Th).

This is indeed verified through the simulation in Fig. 5, where the
following parameters are used:

H, 10
1 01] | H 1 05 0
A= , - Q=
[o 1]1{3 0 1|9 {o 0.5}
H, 01

andII; = 0.5(0 = 1,...,4).

B. From Packet Delay to Packet Drop

Consider the problem of state estimation over a packet-delaying net-
work as seen from Fig. 6. The process dynamics is the same as in (1)
and sensor measurement equation is given by

ye = Cxp + vg. 1)
After taking a measurement at time %, the sensor sends y to a remote
estimator for generating the state estimate. We assume that the mea-
surement data packets from the sensor are to be sent across a packet-de-
laying network to the estimator. Each y;, is delayed by d,. times, where
dj, is a random variable described by a probability mass function f,
ie.,
() =Prldc =jl.j=0.1,... (22)
We assume dj, and dy, are independent if & # k2, and the estimator
discards any data y; (or &7, ) that are delayed by D times or more.

Given the system and the network delay models in (1), and (21)—-(22),
we are interested in computing Pr[P;, < M], the probability that Py
is bounded by a given matrix M € S. The probabilistic metric was
proposed in [10] for state estimation over packet-dropping networks.
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Fig. 6. Estimation over a packet-dropping network.

Let vF_, = 1 or 0 be the indicator function whether the measure-
ment packet generated at time & — ¢ arrives at the estimator at time %
or not. Define v, _; £ Z;:U q"',j:f , i.e., yk—; indicates whether yx_;
is received by the estimator at or before k.

The recursive Kalman filtering technique from Theorem 3.1 dealing
with delayed measurement provides a promising way to bridge the
gap between packet drop analysis and packet delay analysis. The basic
ideas is as follows. Since y,—; may arrive at time k, we can improve
the estimation quality by recalculating #;—; utilizing the new available
measurement y,—;. Once &—; is updated, we can update &x—;41 in a
similar fashion. The following proposition summarizes the estimation
process.

Proposition 3.7: Letyg—_;,t € [0, D —1] be the oldest measurement
received by the estimator at time %. Then &, is computed by ¢ + 1
MKFs as

(r—i, Pe—i) = MKF (#r_i—1, Po—i—1, 1, yr—;)
(Zk—igts Po—igr) = MKF(Er—iy Prjy Ye—ip1s Yr—it1)

(#r—1, Pee1) = MKF(#rp_2, Po—o, Yo—1.Yk—1)
(Zk, Pr) = MKF(Zr_1, Pee1. Yks Yi)-

Proof: Similar to the Proof of Theorem 3.1. ]
Define (D) as

(D) 2 Yo f(i). 0<i<D,
A Y% fG), ifi > D.

Then it is easy to verify that

Pry—; = 1] = 4(D). (23)
Notice that now Pr[v,_; = 1] becomes a constant, thus given a sto-
chastic description of the packet delays in (22), we can convert the
packet delay model into a packet drop model. Similar to [11], we are
then able to obtain similar bounds on Pr[P, < M] using the corre-
sponding new packet arrival rate 4;(D).

IV. DISCUSSIONS

In this technical note, we consider the problem of distributed esti-
mation over sensor networks. We derive the optimal estimation algo-
rithm at each sensor when the sensor communications are represented
by an undirected graph. When the communication graph reduces to a
directed tree, we also provide an exact expression on the steady-state
error covariance matrices at each sensor. We show in Section IV how
the previously developed theoretical tools can be applied to compare
the performance of two sensor trees and convert a random packet-delay
model to a random packet-dropping model.

There are many interesting directions that can be pursued along the
line of this work. For example, if the sensors communicate with their
neighbors using their state estimate instead of measurement data, how
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should the optimal estimation algorithm be in this case? What are the
tradeoffs using the state estimate communication and using the mea-
surement communication? Given a desired performance metric, for ex-
ample, it is required that Pr[P{ < M] > 1 — ¢, Vi for a given
0 < ¢; < 1, how should we determine the minimum number D ? This is
interesting as D determines the computational load at each sensor (i.e.,
running a chain of D Kalman filters at each time). If centralized control
and coordination is allowed, what is the optimal communication graph
for the sensors so that max; P; is minimized? Those problems will be
pursued in the future.
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On Structural Properties of the Lyapunov Matrix
Equation for Optimal Diagonal Solutions

Sandip Roy and Ali Saberi

Abstract—We revisit the classical problem of finding a positive diagonal
solution P to the Lyapunov equation ATP + PA < 0 that minimizes
the Lyapunov exponent (the maximum eigenvalue of A”P + P A) for
A € R™*™, with the aim of identifying structural properties of the Lya-
punov matrix equation at the optimum. Using eigenvalue sensitivity notions
together with optimization machinery, we are able to obtain an explicit
characterization of the minimum Lyapunov exponent that provides such
structural insight.

Index Terms—Lyapunov exponent.

I. INTRODUCTION

The construction of positive diagonal solutions P to the Lyapunov
equation AT P 4+ PA < 0, A € R"*"™, has been of interest to the
linear algebra and control systems communities (e.g., [1], [2])!. Re-
searchers in these fields have been motivated by a range of applications,
including analysis of economic systems over ranges of market speed
adjustment rates [3], characterization of singularly-perturbed systems
[4], analysis of interconnected systems [6], and design of neural net-
works [7], among others. Progress has been made in several fronts in
this body of research:

1) Algorithms to check for the existence of a diagonal solution have
been developed [2], [5]. More generally, Boyd has shown that the
existence of structured solutions to the Lyapunov equation—in-
cluding diagonal ones—can be found by solving a convex opti-
mization [8].

2) Explicit necessary and sufficient conditions for the existence of
a diagonal solution have been obtained in several special cases,
including for A € R**? (as developed by [9] in the linear al-
gebra literature and revisited by [7] in the controls community),
for block-triangular and normal A (e.g., [9]-[11]), and for A in
the class of M matrices (see, e.g., [12]). More generally, the the
existence of a diagonal solution has been equivalenced with other
linear algebraic conditions (e.g., [12], [13]), leading to the explicit
necessary and sufficient conditions as well as more general suffi-
cient conditions.

3) The methodologies have been extended (often trivially) to mini-
mize the Lyapunov exponent—the largest eigenvalue of A” P +
P A, which serves as measure of performance/robustness in sev-
eral applications—with respect to P (see e.g., [2], [5]).

d

In our recent studies of high-performance controller design for com-
municating-agent networks (e.g., teams of autonomous robots or net-
works of sensors), we also have encountered the problem of finding a
diagonal solution that minimizes the Lyapunov exponent, among other
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! A matrix that admits such a diagonal solution is termed diagonally Lyapunov
stable or alternatively Volterra Lyapunov stable in the literature.
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