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a b s t r a c t

In this paper, we consider Kalman filtering over a packet-delaying network. Given the probability
distribution of the delay, we can characterize the filter performance via a probabilistic approach. We
assume that the estimator maintains a buffer of length D so that at each time k, the estimator is able to
retrieve all available data packets up to time k−D+1. Both the cases of sensorwith andwithout necessary
computation capability for filter updates are considered. When the sensor has no computation capability,
for a givenD, we give lower and upper bounds on the probability forwhich the estimation error covariance
is within a prescribed bound. When the sensor has computation capability, we show that the previously
derived lower and upper bounds are equal to each other. An approach for determining the minimum
buffer length for a required performance in probability is given and an evaluation on the number of
expected filter updates is provided. Examples are provided to demonstrate the theory developed in the
paper.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The Kalman filter has played a central role in systems
theory and has found wide applications in many fields such as
control, signal processing, and communications. In the standard
Kalman filter, it is assumed that sensor data are transmitted
along perfect communication channels and are available to the
estimator either instantaneously or with some fixed delays and
no interaction between communication and control is considered.
This abstraction has been adopted until recently when networks,
especially wireless networks, are used in sensing and control
systems for transmitting data from sensor to controller and/or
from controller to actuator. While having many advantages
such as low cost and flexibility, networks also induce many
new issues due to their limited capabilities and uncertainties
such as limited bandwidth, packet losses, and latency. On the
other hand, in wireless sensor networks, sensor nodes also have
limited computation capability in addition to their limitations
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in communications. These constraints undoubtedly affect system
performance or even stability and cannot be neglected when
designing estimation and control algorithms, which has inspired
a lot of research in control with communication constraints.
Sinopoli, Schenato, Franceschetti, Poolla, Jordan and Sastry

(2004) discussed how packet loss can affect state estimation.
They showed that there exists a certain threshold of the packet
loss rate above which the state estimation error diverges in the
expected sense, i.e., the expected value of the error covariance
matrix becomes unbounded as time goes to infinity. They also
provided lower and upper bounds of the threshold value. Huang
and Dey (2007) and Xie and Xie (2008) characterize packet losses
as a Markov chain and give some sufficient and necessary stability
conditions under the notion of peak covariance stability. The
drawback of using mean covariance matrix as a stability measure
is that it may conceal the fact that events with arbitrarily low
probability may make the mean value diverge. For example,
consider the simple unstable scalar system with a = 2 in Sinopoli
et al. (2004). Let the arrival rate γ = 0.74 < 1 − 1/a2. According
to Sinopoli et al. (2004), the expected value of the estimation
error covariance, E[Pk], is unbounded. This is easily verifiable by
considering the event S where no packets are received in k time
steps. Then E[Pk] ≥ Pr[S]E[Pk|S] ≥ (0.26k)4kP0 = 1.04kP0.
By letting k go to infinity, we see that this event with almost
zero probability makes the expected error diverge. Different
from Huang and Dey (2007), Sinopoli et al. (2004), Xie and Xie
(2008) and Shi, Epstein, Tiwari and Murray (2005) investigates the
stability of the Kalman filter via a probabilistic approach. Gupta,
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Spanos, Hassibi, and Murray (2005) considered LQG control over
a packet-dropping network. They showed that preprocessing the
measurement by the sensor before sending it to the controller is
better than post-processing the measurement after receiving it by
the controller. They also gave sufficient condition on the stability
of the closed-loop system.
The problem of state estimation and control with delayed

measurements is not new and has been studied even before the
emergence of networked control (Ray, Liou, & Shen, 1993; Yaz &
Ray, 1996). Nilsson (1998) analyzed delays that are either fixed or
random according to a Markov chain. He solves the LQG optimal
control problem for the different delay models. It has been well
known that discrete-time systems with constant or known time-
varying bounded measurement delays may be handled by state
augmentation in conjunction with the standard Kalman filtering
or by the reorganized innovation approach in Zhang, Xie, Zhang,
and Soh (2004) and Zhang andXie (2007). Although sensor data are
usually time-stamped and thus transmission delays are known to
the filter, the delays in networked systems are random in nature.
For example, the ZigBee/IEEE 802.15.4 protocol is widely used in
sensor network and wireless control applications (ZigBee, 2009).
When multiple sensor nodes simultaneously access the channel, a
random waiting time is generated by the CSMA/CA algorithm for
each node before they try to access the channel again. Thus the
experienced delay for data measurement is typically random.
Ray et al. (1993) present a modification of the conventional

minimum variance state estimator to accommodate the effects of
the random arrival of measurements whereas a suboptimal filter
in the least mean square sense is given in Yaz and Ray (1996).
InMatveev and Savkin (2003), a recursiveminimum variance state
estimator is presented for linear discrete-time partially observed
systems where the observations are transmitted by communica-
tion channelswith randomly independent delays. Using covariance
information, recursive least squares linear estimators for signals
with random delays are studied in Nakamori, Caballero-Aguila,
Hermoso-Carazo, and Linares-Perez (2005). Costa, Fragoso, and
Marques (2005) studied linear systems with random delays using
a Markovian jump linear systems approach.
The goal of the present work is to study the performance of

Kalman filter under random measurement delay. We assume that
the probability distribution of the delay is given and aim to give a
complete characterization of filter performance by a probabilistic
approach. Due to the limited computation capability of the filtering
center and also in consideration of the fact that a late arriving
measurement related to the system state in the far past may not
contributemuch to the improvement of the accuracy of the current
estimate, it is practically important to determine a proper buffer
length for measurement data within which a measurement will be
used to update the current state and beyond which the data will
be discarded. The buffer provides a tradeoff between performance
and computational load. In the paper, for a given buffer length,
we shall give lower and upper bounds for the probability at
which the filtering error covariance is within a prescribed bound,
i.e., Pr[Pk ≤ M] for some givenM . The upper and lower bounds can
be easily evaluated by the probability distribution of the delay and
the system dynamics. An approach for determining the minimum
buffer length for a required performance in probability is given and
an evaluation on the number of expected filter updates is provided.
Both the cases of sensor with and without necessary computation
capability for filter updates are considered. Our results will have
both theoretical and practical importance in networked sensing
and control.
The rest of the paper is organized as follows. In Section 2, the

mathematical models of the problem are given. In Section 3, we
consider the case when measurement data is sent via the delaying
network, and we provide lower and upper bounds for Pr[Pk ≤ M].
Fig. 1. System block diagram.

In Section 4, we consider the case when sensor estimate is sent via
the delaying network, and we show that the previously derived
lower and upper bounds equal to each other and hence give an
exact form of Pr[Pk ≤ M]. Examples are provided in Section 5 to
demonstrate the theory developed in the paper. Some concluding
remarks are given in the end.

2. Problem setup

2.1. System model

We consider the problem of discrete-time state estimation
over a packet-delaying network as seen from Fig. 1. The process
dynamics and sensor measurement equation are given as follows:
xk+1 = Axk + wk, (1)
yk = Cxk + vk. (2)
In the above equations, k is the discrete-time index which is an
integer, xk ∈ Rn is the state vector, yk ∈ Rm is the observation
vector, wk ∈ Rn and vk ∈ Rm are zero-mean Gaussian random
vectors with E[wkwj′] = δkjQ ,Q ≥ 0, E[vkvj′] = δkjR, R > 0,
E[wkvj′] = 0 ∀j, k, where δkj = 0 if k 6= j and δkj = 1 otherwise.
The initial state x0 is assumed to be zero-mean Gaussian with
covariance P0 ≥ 0 and is uncorrelated withwk and vk for all k. We
assume that the pair (A, C) is observable, (A,

√
Q ) is controllable.

Depending on its computational capability, the sensor can
either send yk or preprocess yk and send x̂sk to the remote estimator,
where x̂sk is defined at the sensor as
x̂sk , E[xk|y1, . . . , yk].
The two cases correspond to the two scenarios in Fig. 1, i.e., sensor
without/with computation capability.

2.2. Network delay model

After taking ameasurement at time k, the sensor sends yk (or x̂sk)
to a remote estimator for generating the state estimate.We assume
that the measurement data packets from the sensor are to be sent
across a packet-delaying network, with negligible quantization
effects, to the estimator. Each yk (or x̂sk) is delayed by dk times,
where dk is a random variable described by a probability mass
function f , i.e.,
f (j) = Pr[dk = j], j = 0, 1, . . . . (3)
For simplicity, we assume that dk1 and dk2 are independent if k1 6=
k2. We further assume that dk carries no information about the
state, e.g., dk is independent ofwk, vk and the initial state x0. Similar
to Shi, Epstein, and Murray (2008), we can use a Markov chain
to model consecutive data packet delays, and the results extend
straightforwardly to that case. Notice that the i.i.d packet dropwith
drop rate 1 − γ considered in the literature can be treated as a
special case here, i.e.,
f (0) = γ , f (∞) = 1− γ , f (j) = 0, 1 ≤ j <∞.
Thus the theory developed in the paper includes the packet drop
analysis as well.
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2.3. Problems of interest

Assume the estimator discards any data yk (or x̂sk) that are
delayed by D times or more. For example, if yk−D is not received
by the estimator before k, then even if yk−D arrives at k or at a later
time, it will be discarded by the estimator. This happens as long as
the delay dk−D associated with yk−D satisfies dk−D ≥ D. Therefore
‘‘discarding’’ always precedes ‘‘receiving’’ the data.
Define Yk as all the received data that are not discarded by the

estimator up to k. Further define
x̂k , E[xk|Yk], ek , xk − x̂k, Pk , E[eke′k|Yk].
Notice that Yk is a function of D and f , i.e., for different length of
the buffer and for different delay distribution of the data packets,
the received data that are not discarded would be different. Hence
x̂k, ek and Pk as defined above are also functions of D and f .
We sometimes write x̂k(D, f ), ek(D, f ), Pk(D, f ) as x̂k, ek, Pk for
simplicity if there is no confusion onwhat valueD and f takes. Since
Pk reflects howwell the state estimate x̂k is close to the true state xk
and Pk is a random quantity whose randomness is induced by the
randomness of di, i = 1, . . . , k, we focus on the statistic property
of Pk in this paper.
Given the system and the network delay models in Eqs. (1)–(3),

we are thus interested in the following problems.
(1) How should x̂k(D, f ) and Pk(D, f ) be computed?
(2) For a given data packet delay distribution f , M ≥ 0, and ε ∈
[0, 1]what is the minimum D such that

Pr[Pk(D, f ) ≤ M] ≥ 1− ε.

The first problem is a classic estimation problemand its solution
is actually known for a long time (e.g., Liptser and Shiryaev (1979)).
The second problem, to the best of our knowledge, seems to be
never studied in the literature. In the rest of the paper, we first
present an alternative solution for the first problem and then solve
the second problem for each of the two scenarios in Fig. 1.
The following terms that are frequently used in subsequent

sections are first defined. It is assumed that (A, C,Q , R) are the
same as they appear in Section 2; X ∈ Sn

+
where Sn

+
is the set of

n by n positive semi-definite matrices; h, g : Sn
+
→ Sn

+
are matrix

functions defined below:
h(X) , AXA′ + Q ,
g(X) , h(X)− AXC ′[CXC ′ + R]−1CXA′,
g̃(X) , X − XC ′[CXC ′ + R]−1CX,
h ◦ g(X) , h(g(X)),
ht(X) , h ◦ · · · ◦ h︸ ︷︷ ︸

t times

(X).

3. Sensor without computation capability

In this section, we consider the first scenario in Fig. 1, i.e., the
sensor has no computation and sends yk to the remote estimator.
We assume that C is full rank, and without loss of generality, we
assume that C−1 exists. The general C case will be considered in
Appendix B.

3.1. Modified Kalman filtering

Let γ kt be the indicator function for yt at time k, t ≤ k,
i.e., γ kt = 1 if yt arrives at k and γ

k
t = 0 otherwise. Further define

γk−i ,
∑i
j=0 γ

k−j
k−i , i.e., γk−i indicates whether yk−i is received by

the estimator at or before k.
Depending on whether yk is received or not, i.e., γ kk = 1 or

0, (x̂k, Pk) is known to be computed by a Modified Kalman Filter
(MKF) (Sinopoli et al., 2004). We write (x̂k, Pk) in compact form as
follows.
(x̂k, Pk) = MKF(x̂k−1, Pk−1, γ kk , yk)
which represents the following set of equations:
x̂−k = Ax̂k−1,
P−k = APk−1A

′
+ Q ,

Kk = P−k C
′
[CP−k C

′
+ R]−1,

x̂k = Ax̂k−1 + γ kk Kk(yk − CAx̂k−1),
Pk = (I − γ kk KkC)P

−

k .

Assume that γ kk = 1 for all k, then MKF reduces to the standard
Kalman filter. In this case, P−k and Pk can be shown to satisfy

P−k = g(P
−

k−1), Pk = g̃ ◦ h(Pk−1).

Let P∗ be the unique positive semi-definite solution1 to g(X) = X ,
i.e., P∗ = g(P∗). Define P as P , g̃(P∗). Then we have
g̃ ◦ h(P) = g̃ ◦ h ◦ g̃(P∗) = g̃ ◦ g(P∗) = g̃(P∗) = P,
where we use the fact that h ◦ g̃ = g . In other words,
P∗ = lim

k→∞
P−k , P = lim

k→∞
Pk.

3.2. Optimal estimation with delayed measurements

As yk−i may arrive at time k due to the delays introduced by the
network, we can improve the estimation quality by recalculating
x̂k−i utilizing the new available measurement yk−i. Once x̂k−i is
updated, we can update x̂k−i+1 in a similar fashion. The following
proposition summarizes the estimation process.

Proposition 3.1. Let yk−i, i ∈ [0,D− 1] be the oldest measurement
received by the estimator at time k. Then x̂k is computed by i+1MKF
s as

(x̂k−i, Pk−i) = MKF(x̂k−i−1, Pk−i−1, 1, yk−i)
(x̂k−i+1, Pk−i+1) = MKF(x̂k−i, Pk−i, γk−i+1, yk−i+1)
...

(x̂k−1, Pk−1) = MKF(x̂k−2, Pk−2, γk−1, yk−1)
(x̂k, Pk) = MKF(x̂k−1, Pk−1, γk, yk).

Proof. We know that the estimate x̂k is generated from the
estimate of x̂k−1 together with γkyk at time k through a MKF.
Similarly, the estimate x̂k−1 is generated from the estimate of
x̂k−2 together with γk−1yk−1 at time k through a MKF, etc. This
recursion for i + 1 steps corresponds to the i + 1 MKFs stated in
the proposition. �

Remark 3.2. Similar results on estimation with delayed packets
can be derived in other ways (e.g., Liptser and Shiryaev (1979) and
Matveev and Savkin (2003)) but the result in Proposition 3.1 fits
our intended uses later in the paper.

Remark 3.3. Although this section focuses on when C is invert-
ible. Proposition 3.1 does not need to assume C to be invertible.
Depending onwhether (A, C) is detectable or not, the error covari-
ancematrixmay diverge. However, the algorithm always produces
the optimal estimate at each time.

3.3. Lower and upper bounds of Pr[Pk(D, f ) ≤ M]

Since dk is random and described by the probability mass
function f , γ kk−i (i = 0, . . . ,D−1) is also random. As a consequence,
Pk computed as in Proposition 3.1 is a random variable. Let

1 Since (A, C) is observable and (A,
√
Q ) is controllable, from standard Kalman

filtering analysis, P∗ exists.
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F(i) =
i∑
j=0

f (j)

be the cumulative distribution function of dk. Define γ̂i(D) as

γ̂i(D) ,
{
F(i), if 0 ≤ i < D,
F(D− 1), if i ≥ D.

Recall that γk−i indicates whether yk−i is received by the estimator
at or before k, so it is easy to verify that

Pr[γk−i = 1] = γ̂i(D). (4)

Define M , C−1RC−1
′

. Then we have the following result that
shows the relationship between Pk andM .

Lemma 3.4. For any k ≥ 1, if γk = 1, then Pk ≤ M.

Proof. As γk = 1, we have Pk = g̃ ◦ h(Pk−1) ≤ M , where the
inequality is from Lemma A.1 in Appendix A. �

Remark 3.5. We can also interpret Lemma 3.4 as follows. Oneway
to obtain an estimate x̃k of xk when γk = 1 is simply by inverting
the measurement, i.e., x̃k = C−1yk. Therefore ẽk = C−1vk and
P̃k = E[ẽkẽ′k] = C

−1RC−1
′

= M . Since Kalman filter is optimal
among the set of all linear filters, we must have Pk ≤ P̃k = M .

Recall that P is defined in Section 3.1 as the steady state error
covariance for the Kalman filter. For M ≥ M , let us define k1(M)
and k2(M) as follows:

k1(M) , min{t ≥ 1 : ht(M) 6≤ M}, (5)

k2(M) , min{t ≥ 1 : ht(P) 6≤ M}. (6)

We sometimes write ki(M) as ki, i = 1, 2 for simplicity for the rest
of the paper. The following lemma shows the relationship between
P andM as well as k1 and k2.

Lemma 3.6. (1) P ≤ M; (2) If k1 <∞, then k1 ≤ k2.

Proof. (1) P = g̃(P∗) ≤ Mwhere the inequality is fromLemmaA.1
in Appendix A. (2)Without loss of generality, we assume that k2 <
∞. If k1 > k2, then according to their definitions, we must have

M ≥ hk1−1(M) ≥ hk1−1(P) ≥ hk2(P),

which violates the definition of k2. Notice that we use the property
that h is nondecreasing as well as h(P) ≥ P from Lemmas A.1 and
A.2 in Appendix A. �

Lemma 3.7. Assume that P0 ≥ P. Then Pk ≥ P for all k ≥ 0.

Proof. SinceMKF is used at each time k,

Pk = f̂ kk ◦ f̂
k
k−1 · · · f̂

k
1 (P0) ≥ P,

where f̂ kk−i = h or f̂
k
k−i = g̃ ◦ h depending on the packet arrival

sequence.2 The inequality is from Lemma A.1 in Appendix A. �

Define Nk as the number of consecutive packets not received by k,
i.e.,

Nk , min{t ≥ 0 : γk−t = 1}. (7)

Thus Nk is the minimum of a sequence of independent Bernoulli
random variables, therefore if we define

θ(ki,D) ,
ki−1∏
j=0

(
1− γ̂j(D)

)
, (8)

then Pr[Nk ≥ ki] can be easily shown to be

Pr[Nk ≥ ki] = θ(ki,D), i = 1, 2. (9)
Fig. 2. Nk ≥ k1 .

We are now ready to present the main result of this section.

Theorem 3.8. Given the buffer length D and the delay distribution
function f . Further assume that P ≤ P0 ≤ M. Then for any M ≥ M,
we have

1− θ(k1,D) ≤ Pr[Pk ≤ M] ≤ 1− θ(k2,D). (10)

Proof. Let us first prove 1 − θ(k1,D) ≤ Pr[Pk ≤ M], or in other
words, 1− Pr[Nk ≥ k1] ≤ Pr[Pk ≤ M]. As γk = 1 or 0, there are in
total 2k possible realizations of γ1 to γk as seen from Fig. 2. LetΣ1
denote those packet arrival sequences of γ1 to γk such thatNk ≥ k1.
Similarly let Σ2 denote those packet arrival sequences such that
Nk < k1. Let Pk(σi) be the error covariance at time k when the
underlying packet arrival sequence is σi, where σi ∈ Σi, i = 1, 2.
Consider a particular σ2 ∈ Σ2. As γk−k1+1 = 1, from Lemma 3.4,
Pk−k1+1 ≤ M . Therefore we have

Pk(σ2) ≤ hk1−1(Pk−k1+1) ≤ h
k1−1(M) ≤ M,

where the first and second inequalities are from Lemma A.1 in
Appendix A and the last inequality is from the definition of k1. In
other words, Pr[Pk ≤ M|σ2] = 1. Therefore we have

Pr[Pk ≤ M] =
∑

σ∈Σ1∪Σ2

Pr[Pk ≤ M|σ ]Pr(σ )

≥

∑
σ2∈Σ2

Pr[Pk ≤ M|σ2]Pr(σ2)

=

∑
σ2∈Σ2

Pr(σ2) = Pr(Σ2)

= 1− Pr(Σ1) = 1− Pr[Nk ≥ k1].

Similarly, we can prove that Pr[Pk ≤ M] ≤ 1− θ(k2,D). �

3.4. Computing the minimum D

Assume that we require Pr[Pk(D, f ) ≤ M] ≥ 1 − ε for a given
ε ∈ [0, 1]. Then according to Eq. (10), a sufficient condition is
θ(k1,D) ≤ ε and a necessary condition is θ(k2,D) ≤ ε.

3.4.1. Sufficient minimum D
Notice that θ(k1,D) is decreasing when 1 ≤ D ≤ k1 − 1 and

remains constant when D ≥ k1. Hence if ε < θ(k1, k1 − 1), no
matter how large D is, there is no guarantee that Pr[Pk(D, f ) ≤
M] ≥ 1 − ε. For any ε ∈ [0, 1], the corresponding sufficient
minimum D, denoted Ds is thus given by:

Ds =
{
∞, if 0 ≤ ε < θ(k1, k1 − 1),
min{D : θ(k1,D) ≤ ε}, if 1 ≥ ε ≥ θ(k1, k1 − 1).

2 Notice that we use the superscript k in f̂ kk−i to emphasize that it depends on the
current time k. For example, if dk−i = i + 1, i.e., γk−i = 0 and γ k+1k−i = 1, then
f̂ kk−i = h and f̂

k+1
k−i = g̃ ◦ h.
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Fig. 3. θ(ki,D) for differentM .

3.4.2. Necessary minimum D
Similarly, θ(k2,D) is decreasing when 1 ≤ D ≤ k2 − 1 and

remains constant when D ≥ k2. Hence if ε < θ(k2, k2 − 1), no
matter how large D is, it is guaranteed that Pr[Pk(D, f ) ≤ M] >
1 − ε. For any ε ∈ [0, 1], the corresponding necessary minimum
D, denoted Dn is thus given by:

Dn =
{
∞, if 0 ≤ ε < θ(k2, k2 − 1),
min{D : θ(k2,D) ≤ ε}, if 1 ≥ ε ≥ θ(k2, k1 − 1).

Remark 3.9. We can use binary search algorithm to find the
exact value of Ds and Dn efficiently as θ(ki,D) is a monotonically
decreasing function of D.

Example 3.10. Consider Eqs. (1) and (2) with

A = 1.4, C = 1, Q = 0.2, R = 0.5.

Wemodel the packet delay as a poisson distribution with mean d,
i.e., the probability density function f (i) satisfies

f (i) =
die−d

i!
, i = 0, 1, . . .

where d = E[dk] denotes the mean value of the packet delay.
WhenM = 50, it is calculated that k1(M) = k2(M) = 7, hence

θ(k1,D) = θ(k2,D) and θ(7, 6) = 0.0313 which can be seen from
the plot in Fig. 3. Thus we can find the minimum D that guarantees
Pr[Pk ≤ 50] ≥ 1 − ε for any ε ≥ 0.0313. For any ε < 0.0313, no
matter how large D is, Pr[Pk ≤ 50] < 1− ε.
WhenM = 150, it is calculated that k1(M) = 8 and k2(M) = 9,

hence θ(k1,D) > θ(k2,D). We also find that θ(8, 7) = 0.0042 and
θ(9, 8) = 0.0003. Therefore if ε > 0.0042, we can find minimum
D that guarantees Pr[Pk ≤ 150] ≥ 1− ε; if ε < 0.0003, no matter
how large D is, Pr[Pk ≤ 150] > 1− ε.

Remark 3.11. We find theminimum D that gives the desired filter
performance, i.e.,Pr[Pk ≤ M] ≥ 1−ε for a givenM and ε. Using the
results developed in this section, it is straightforward to find the
sufficient and necessary minimum D such that E[Pk(D)] is stable.

4. Sensor with computation capability

In this section, we consider the second scenario in Fig. 1, i.e., the
sensor has necessary computation capability and sends x̂sk to the
remote estimator. We assume that all the variables in this section,
e.g., γ kt , γk, etc are the same as they are defined in Section 3 unless
they are explicitly defined.
Consider the casewhen k is sufficiently large so that the Kalman

filter enters steady state at the sensor side, i.e., P sk = P . It is clear
Fig. 4. Optimal estimation: Sensor with computation capability.

that the optimal estimation at the remote estimator is as follows.
If γk = 1, then x̂k = x̂sk and Pk = P

s
k = P . If γk = 0 and γk−1 = 1,

then x̂k = Ax̂sk−1 and Pk = h(P). This is repeated until we examine
γk−D+1. The full optimal estimation algorithm is presented in Fig. 4.

Theorem 4.1. Given the buffer length D and the delay distribution
function f . Further assume that k is sufficiently large such that P sk = P.
Then for any M ≥ P, we have

Pr[Pk ≤ M] = 1− θ(k2,D). (11)

Proof. The proof is similar to the proof of Theorem 3.8. �

Computing Pr[Nk ≥ k2] follows exactly the same way as in
Section 3.4. Since we have a strict equality in Eq. (11), in order that
Pr[Pk(D, f ) ≤ M] ≥ 1 − ε, a necessary and sufficient condition is
Pr[Nk ≥ k2] ≤ ε, from which we can calculate the minimum D∗ as

D∗ = min{D : θ(k2,D) ≤ ε, 1 ≤ D ≤ k2 − 1}. (12)

Notice that since θ(k2,D) ≥ θ(k2, k2−1) = θ(k2, k2−1), D∗ from
the above equation exists if and only if ε ≥ θ(k2, k2 − 1).

5. Examples

5.1. Scalar system

Consider the same parameters as in Example 3.10. We run a
Monte Carlo simulation of Pr[Pk ≤ M] for different D and d to
demonstrate the result of Theorem 3.8. In Figs. 5–7, both the upper
and lower bounds of Pr[Pk ≤ M] are plotted. From those figures,
we can see that both smaller d and larger D lead to larger Pr[Pk ≤
M], which confirms the theory developed in this paper. We further
notice thatwhen d = 3, the filter’s performances usingD = 10 and
D = 5 only differ slightly (though the former one is slightly better
than the latter one), which confirms that using a large buffer may
not improve the filter performance drastically.
We also run a Monte Carlo simulation of Pr[Pk ≤ M] to

demonstrate the result of Theorem 4.1. Fig. 8 shows the result
when D = 10 and d = 5. As we can see, the predicted value of
Pr[Pk ≤ M] from Eq. (11) matches well with the actual value.

5.2. Vector system

Consider a vehicle moving in a two-dimensional space accord-
ing to the standard constant acceleration model, which assumes
that the vehicle has zero acceleration except for a small perturba-
tion. The state of the vehicle consists of its x and y positions as well
as velocities. Assume that a sensor measures the positions of the
vehicle and sends the measurements to a remote estimator over
a packet-delaying network. The system parameters are given ac-
cording to Eqs. (1)–(2) as follows:
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Fig. 5. Pr[Pk ≤ M]with D = 10, d = 5.

Fig. 6. Pr[Pk ≤ M]with D = 10, d = 3.

Fig. 7. Pr[Pk ≤ M]with D = 5, d = 3.

A =

1 0 0.5 0
0 1 0 0.5
0 0 1 0
0 0 0 1

 , C =
[
1 0 0 0
0 1 0 0

]
.

The process and measurement noise covariances are Q = diag
(0.01, 0.01, 0.01, 0.01) and R = diag(0.001, 0.001). We assume
the same delay profile as in the scalar system example with D = 5
and d = 3.
We run a Monte Carlo simulation for both cases when the

sensor has or has not computation capability. As we can see from
Fig. 9, the predicted values of Pr[Pk ≤ M] match well with the
actual values. We also notice that when sensor has computation
capability, the actual filter performance is better thanwhen sensor
Fig. 8. Pr[Pk ≤ M]with D = 10, d = 5.

Fig. 9. Pr[Pk ≤ M]with D = 5, d = 3.

has no computation capability. In Fig. 9, theM in the x-axis means
M × I4, where I4 is the identity matrix of dimension 4.

6. Conclusion

In this paper, we have considered Kalman filtering over a
packet-delaying network. Given the distribution of the network in-
duced delay as well as the size of the buffer at the remote estima-
tor, we have characterized the error covariance via a probabilistic
approach, i.e., by finding Pr[Pk ≤ M]. When measurement data is
sent, we give lower and upper bounds on Pr[Pk ≤ M]; when esti-
mate data is sent, we provide an exact form on Pr[Pk ≤ M].
There are many interesting works that lie ahead which include:

closing the loop using the filtering algorithms proposed in
the paper and study closed-loop performance; experimentally
evaluate the algorithms and theory developed in the paper; extend
the results to multi-sensor scenarios. It is also interesting to study
other buffering schemes, for example, consider theD available data
packets instead of Dmost recent data packets, and give conditions
on which scheme should be used under what circumstance.
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Appendix A. Supporting lemmas

Lemma A.1. For any 0 ≤ X ≤ Y ,
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h(X) ≤ h(Y ), g(X) ≤ g(Y ), g̃(X) ≤ g̃(Y ),
g̃(X) ≤ X, g(X) ≤ h(X), g̃(X) ≤ M.

Proof. h(X) ≤ h(Y ) holds as h(X) is affine in X . Proof for g(X) ≤
g(Y ) can be found in Lemma 1-c in Sinopoli et al. (2004). As g̃ is
a special form of g by setting A = I and Q = 0, we immediately
obtain g̃(X) ≤ g̃(Y ). Next we have

g̃(X) = X − XC ′[CXC ′ + R]−1CX ≤ X,
g(X) = h(X)− AXC ′[CXC ′ + R]−1CXA′ ≤ h(X).

For any t > 0, we have g̃(tM) = t
t+1M ≤ M . For all X ≥ 0, since

M > 0, it is clear that there exists t1 > 0 such that t1M > X .
Therefore g̃(X) ≤ g̃(t1M) ≤ M . �

Lemma A.2. P ≤ h(P).

Proof. h(P) = h ◦ g̃(P∗) = g(P∗) = P∗ ≥ g̃(P∗) = P , where the
first and the last equalities are from the definition of P , the third
equality is from the definition of P∗. The remaining equality and
inequality are from Lemma A.1. �

Appendix B. When C is not full rank

We consider the case when C is not full rank for the first
scenario, i.e., sensorwithout computation capability. Since (A, C) is
observable, there exists r (2 ≤ r ≤ n) such that [C; CA; · · · ; CAr−1]′
is full rank. In this section,we consider the special casewhen r = 2,

and in particular, we assume that
[
C
CA

]−1
exists. The idea readily

extends to the general case.
Unlike the case when C−1 exists, and yk is sent across the

network, here we assume that the previous measurement yk−1 is
sent along with yk. This only requires that the sensor has a buffer
that stores yk−1. Then if γk = 1, both yk and yk−1 are received. Thus
the following linear estimator can be constructed in parallel to the
Kalman filter

x̃k = A
[
CA
C

]−1 [
yk
yk−1

]
.

The corresponding error covariance can be calculated as

P̃k = M , AM1A′ + Q − A
[
CA
C

]−1 [
CQ
0

]
−

[
CQ
0

]′ [
CA
C

]−1′
A′,

where

M1 =
[
CA
C

]−1 [
CQC ′ + R 0
0 R

] [
CA
C

]−1′
.

Since Kalman filter is optimal among the set of linear estimators,
we have Pk ≤ P̃k. Therefore once the packet for time k is received,
i.e., γk = 1, we have Pk ≤ M . Therefore we obtained the same
results in Theorem 3.8.
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