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a b s t r a c t

We consider a discrete time state estimation problem over a packet-based network. In each discrete time
step, a measurement packet is sent across a lossy network to an estimator unit consisting of a modified
Kalman filter. Using the designed estimator algorithm, the importance of placing a measurement buffer
at the sensor that allows transmission of the current and several previous measurements is shown.
Previous pioneering work on Kalman filtering with intermittent observation losses is concerned with
the asymptotic behavior of the expected value of the error covariance, i.e. E [Pk] < ∞ as k → ∞.
We consider a different performance metric, namely a probabilistic statement of the error covariance
Pr [Pk ≤ M] ≥ 1 − ε, meaning that with high probability the error covariance is bounded above at any
instant in time. Provided the estimator error covariance has an upper bound whenever a measurement
packet arrives,we show that for any finiteM this statementwill hold so long as theprobability of receiving
a measurement packet is nonzero. We also give an explicit relationship between M and ε and provide
examples to illustrate the theory.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Traditionally the areas of control and communication networks
are decoupled from each other as they have almost distinctly
different underlying assumptions. For example, control engineers
generally assume perfect transmission of information within the
closed loop and that data processing is done with zero time
delay. On the other hand, in communication networks, data
packets that carry the information can be dropped, delayed or
even reordered due to the network traffic conditions. In the
past there was no pressing need to relax these assumptions,
however, as new applications emerge the two fields are coming
closer together. For instance, advances in large scale integration
andmicroelectromechanical system technology havemade sensor
networks a hot area of research. In sensor networks, the
measurement data from different sensors is sent to an estimator
through a data network where data packets might be dropped if
the network has severe traffic.
In recent years, networked control problems have gainedmuch

interest. In particular, the state estimation problem over a network
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has been widely studied. The problem of state estimation and
stabilization of a linear time invariant(LTI) system over a digital
communication channel which has a finite bandwidth capacity
was introduced by Wong and Brockett (1997, 1999) and further
pursued by Brockett and Liberzon (2000), Nair and Evans (2000),
Tatikonda (2000) and Petersen and Savkin (2001). In Sinopoli et al.
(2004), Sinopoli et al. discussed how packet loss can affect state
estimation. They showed there exists a certain threshold of the
packet loss rate above which the state estimation error diverges in
the expected sense, i.e. the expected value of the error covariance
matrix becomes unbounded as time goes to infinity. They also
provided lower andupper bounds of the threshold value. Following
the spirit of Sinopoli et al. (2004), in Liu and Goldsmith (2004),
Liu and Goldsmith extended the idea to the case where there are
multiple sensors and the packets arriving from different sensors
are dropped independently. They provided similar bounds on the
packet loss rate for a stable estimate, again in the expected sense.
The problem of state estimation of a dynamical system where

measurements are sent across a lossy network is also the focus of
this work. Despite the great progress of previous researchers, the
problems they have studied have certain limitations. For example,
in both Sinopoli et al. (2004) and Liu and Goldsmith (2004),
they assumed that packets are dropped independently, which is
certainly not true in the case where burst packets are dropped
or in queuing networks where adjacent packets are not dropped
independently. They also use the expected value of the error
covariancematrix as themeasure of performance. This can conceal
the fact that events with arbitrarily low probability can make the
expected value diverge, and itmight be better to ignore such events
that occur with extremely low probability. For example, consider
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the simple unstable scalar system with a = 2 in Sinopoli et al.
(2004). Let the arrival rate γ = 0.74 < 1 − 1/a2. According
to Sinopoli et al. (2004), the expected value of the estimation
error covariance, E [Pk], is unbounded. This is easily verifiable by
considering the event S where no packets are received in k time
steps. Then E [Pk] ≥ Pr [S]E [Pk | S] ≥ (0.26k)4kP0 = 1.04kP0.
By letting k go to infinity, we see that this event with almost zero
probability makes the expected error diverge.
The goal of the present work is to give a more complete char-

acterization of the estimator performance by instead considering
a probabilistic description of the error covariance. We show it is
bounded above by a given bound with a high probability, i.e.

Pr [Pk ≤ M] = 1− ε. (1)

The importance of this characterization lies in the fact that while
the expected value of Pk may diverge due to events with very low
probability, in fact the actual value of Pk can be below an acceptable
limit for a vast majority of the time. For this expression to hold, it
requires an estimator thatwill have a finite upper boundwhenever
a measurement packet is received. We will construct such an
estimator in this paper. We will also show how to determine the
relationship betweenM and ε.
The rest of the paper is organized as follows. In Section 2,

the mathematical model of our problem is given. The estimation
algorithm that provides an upper bound to the error covariance
whenever a measurement packet arrives is described in Section 3.
In Section 4, we show that M exists for any given ε. In Section 5,
we give an explicit relationship between the bound and probability
of the error covariance staying below the bound. In Section 6 we
compare our metric with that of Sinopoli et al. (2004) by means of
an example. The paper concludes with a summary of our results
and a discussion of the work that lies ahead.

2. Problem setup

2.1. Problem setting

We consider estimating the state of a discrete-time LTI system

xk+1 = Axk + wk
yk = Cxk + vk.

(2)

As usual, xk ∈ Rn is the state vector, yk ∈ Rm is the observation
vector, wk ∈ Rn and vk ∈ Rm are zero mean white Gaussian
random vectors with E [wkw′j] = δkjQ ≥ 0, E [vkv′j ] =
δkjR > 0, E [wkv′j ] = 0 ∀j, k. Where δkj = 0 if k 6= j and
δkj = 1 otherwise. We will assume the pair (A, C) is observable
and (A,Q

1
2 ) controllable and to make the estimation problem

interesting that A is unstable.
We assume the sensor measurements yk are to be sent

across a lossy network, with negligible quantization effects, to
the estimator. Thus the estimator will either receive a perfectly
communicated measurement packet or none at all. It is assumed
the network losses are random events. Let γk be the random
variable indicating whether a packet is dropped at time k or not,
i.e. γk = 0 if a packet is dropped and γk = 1 otherwise.
In addition, we assume the sensor has the ability to store

measurements in a buffer. Therefore each packet sent through
the network will contain a finite number of the previous
measurements. In packet based networks the transmitted packet
usually contains a fixed amount space for data, therefore if less
than this amount is needed to be transmitted the packet is padded
to meet the required length (Lian, Moyne, & Tillbury, 2001). We
assume all the data from the buffered measurements can fit into
a single packet and therefore the additional measurements do not
increase the bandwidth required nor the packet loss rates. Fig. 1
shows a schematic of the system setup.
Fig. 1. A schematic diagram of the system setup we are considering. Note the
measurement packets sent across the network consist of the previous S + p
measurements taken by the sensor.

2.2. Kalman filtering across a lossy network

Sinopoli et al. (2004) showed that the Kalman filter is still
the optimal estimator in this setting. There is a slight change
to the standard Kalman filter in that only the time update is
performed when the measurement packets are dropped. When a
measurement is received the time and measurement update steps
are performed. The filtering equations become

x̂k+1|k = Ax̂k|k (3)

Pk+1|k = APk|kA′ + Q (4)

x̂k+1|k+1 = x̂k+1|k + γk+1Kk+1(yk+1 − Cx̂k+1|k) (5)

Pk+1|k+1 = Pk+1|k − γk+1Kk+1CPk+1|k, (6)

where ′ is the transpose operator, γk+1 ∈ {0, 1} indicates if the
measurement yk+1 was received and Kk+1 = Pk+1|kC ′(CPk+1|kC ′ +
R)−1 is the Kalman gain matrix. Note Eq. (3)–(4) are the Kalman
Filter TimeUpdate equations and Eqs. (5)–(6) are theMeasurement
Update equations and Pk+1|k and Pk+1|k+1 are the a priori and a
posteriori error covariances respectively.
Unlike the standard Kalman filtering setting where the error

covariance matrix is a deterministic quantity (given an initial
value), the randomness of the lossy network makes it a random
variable as well. Nonetheless, its update equation can still be
characterized as

Pk+1 = APkA′ + Q − γkAPkC ′[CPkC ′ + R]−1CPkA′ (7)

where we simply write Pk = Pk|k−1. Given the system parameters
A, C,Q , R, then for any positive semidefinite matrix X ≥ 0 define
the following functions

h(X) = AXA′ + Q (8)

g(X) = AXA′ + Q − AXC ′(CXC ′ + R)−1CXA′. (9)

From Sinopoli et al. (2004) we have that X ≥ Y ≥ 0 ⇒ g(X) ≥
g(Y ) and h(X) ≥ h(Y ). We will adopt the notation that gm(X)
and hm(X) mean to apply the g and h functions m times starting
from X with g0(X) = h0(X) = X . Note that Eq. (9) is the discrete
Algebraic Riccati Equation. We will denote the solution to this
equation by P = g(P), which is also the steady state covariance
if all measurements are received (i.e. lim

k→∞
Pk = P if γk = 1 ∀k for

any P0 ≥ 0).
For the case where γk is an independent and identically

distributed random variable with mean γ , Sinopoli et al. (2004)
showed that there exists a critical value which determines the
stability of the expected value of the estimation error covariance
E [Pk] as k→∞. As mentioned in Section 1, we are interested in a
different metric to evaluate the estimator performance,

Pr [Pk ≤ M] = 1− ε. (10)

In Shi, Epstein, Tiwari, and Murray (2005) the present authors first
introduced this notion for this same problem setting but under
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the additional assumption that the measurement matrix, C , is
invertible. With C invertible the error covariance has an upper
boundwhenever the Kalman filter time andmeasurement updates
are applied, i.e. whenever a measurement packet arrives. This
was the key feature that allows the expression in Eq. (10) to be
evaluated.
With C not invertible, then given a single measurement update

step no such upper bound on the Kalman filter error covariance
can be determined. We seek an estimator algorithm that will
provide an upper bound whenever a measurement packet arrives.
As shown below, a suboptimal estimator can be constructed that
uses a series of previous measurements but has a fixed upper
bound. This estimator can be run in parallel with the Kalman
filter that uses a single measurement update, switching to the
suboptimal estimator when the error covariance of the Kalman
filter is above this bound.

2.3. Observer based estimator

The observer based estimator described in this section will
provide a state estimate by inverting out the knowndynamics from
a finite sequence of past measurements. Define

O(r) =


C
CA
...

CAr−1

 (11)

for any positive integer r ≥ 1. Next define S to be the smallest
integer such that the matrix is rank n, i.e.
S = min{r ≥ 1 : rank (O(r)) = n}. (12)
Since (A, C) is observable, S is guaranteed to exist and S ≤ n. Thus
by concatenating the previous S consecutive measurements the
augmented observation vector O(S) is full rank and hence has a
pseudo-inverse. Now denote the pseudo-inverse by

C =
(
O(S)′O(S)

)−1
O(S)′. (13)

Then at time k, given the sequence of measurements yk−S+1,
yk−S+2, . . . , yk, we can construct an estimate of the state according
to

xk = AS−1C
[
y′k−S+1 y′k−S+2 . . . y′k

]′
, (14)

and define the estimation error as ek = xk − xk.

Lemma 1. The a posteriori covariance, Pk|k = E [eke′k] is

Pk|k = Q̃ + AS−1CR̃C ′AS−1
′
− AS−1CT̃ − T̃ ′C ′AS−1

′
(15)

where

R̃ = diag
(
R̃S
)
+ US + US ′ (16)

Q̃ = Q̃S (17)

T̃ =
[
0mn , T̃2, T̃3, . . . , T̃S

]
, (18)

with

R̃S =
[
R, R+ CQ̃2C ′, R+ CQ̃3C ′, . . . , R+ CQ̃SC ′

]
Q̃i =

i−2∑
j=0

AjQAj
′
, for i = 2, . . . , S

US =

{[
0S·mm

′
, u2′, u3′, . . . , uS−1′, 0S·mm

′
]′
, if S ≥ 2

0S·mm , if S = 1

ui =
[
0i·mm , CQ̃iA

′C ′, CQ̃iA2
′
C ′, . . . , CQ̃iAS−i

′
C ′
]

T̃i =
S−2∑
j=S−i

AjQAj−S+i
′
C ′, for i = 2, . . . , S.
The term 0ji is used to represent a matrix with i rows and j columns
whose elements are all identically zero.

Proof. Note that for j ≥ k− S + 1 we can write

yj = C

(
Aj−k+S−1xk−S+1 +

j−k+S−2∑
i=0

Aiwj−i−1

)
+ vj.

The term in the parenthesis is xj, and note we have separated the
expression in terms of dependence on the state at time k − S + 1
and the noise sequence from k−S+1 to j−1.We can thenwrite the
estimator in Eq. (14) in terms of xk−S+1 by using these expressions
for the measurement signals.

xk =

AS−1C


Cxk−S+1 + vk−S+1

C(Axk−S+1 + wk−S+1)+ vk−S+2
...

C

(
AS−1xk−S+1 +

j−k+S−2∑
i=0

Aiwj−i−1

)
+ vk


= AS−1 C O(S) xk−S+1

+ AS−1C


vk−S+1

Cwk−S+1 + vk−S+2
...

C

(
j−k+S−2∑
i=0

Aiwj−i−1

)
+ vk

 .

Since xk = AS−1xk−S+1+
S−2∑
i=0
Aiwk−i−1, the estimation error for this

estimator can then be easily seen to be

ek =
S−2∑
i=0

Aiwk−i−1 − AS−1C


vk−S+1

Cwk−S+1 + vk−S+2
...

C

(
S−2∑
i=0

Aiwk−i−1

)
+ vk

 .

The error covariance Pk|k = E [eke′k] is then found by making use
of the standard assumptions on the covariances of the process and
sensor noise terms, resulting in Eq. (15). �

Remark 2. Note that Pk|k in Eq. (15) is independent of Pk−1|k−1.
In fact, it is a fixed quantity which depends only on A, C,Q , R
and S. So whenever S consecutive measurements are available the
error covariance using this observer based estimator has an upper
bound.

Remark 3. To assure that this upper bound exists whenever
a measurement packet is received simply requires the sensor
transmit the previous S measurements at each time step.

Since Eq. (7) gives the a priori covariance update for the Kalman
filter, we will likewise be concerned with the a priori covariance of
this estimator. Denote the a priori covariance by S̄ = Pk+1|k =
E [ek+1e′k+1 | yk−S+1, . . . , yk], then we have

S = APk|kA′ + Q . (19)
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3. Estimator algorithm

We saw in the previous section that the error covariance of
the observer based estimator is a fixed value. Thus if the previous
S measurements are transmitted to the estimator, it guarantees
that using the observer based estimator yields Pk ≤ S at each
time step the measurement packet is received. As to be expected,
inverting the dynamics to obtain the state estimate could cause
S to be quite large. If we include an additional p measurements
in the buffer, we can run the observer based algorithm using the
first S measurements and then a Kalman filter using the additional
p measurements to decrease the covariance upper bound after a
measurement packet is received.
The idea is to include a total of S + p measurements in the

buffer. The first S measurements, {yk−S−p+1, yk−S−p+1, . . . , yk−p},
are used to construct the estimate xk−p according to Eq. (14).
The remaining measurements, {yk−p+1, . . . , yk}, are then used in
running the Kalman filter time and measurement updates (Eqs.
(3)–(6) with γk+1 = 1 since all the necessary measurements are
included in the measurement packet) which are initialized with
x̂k−p = xk−p and Pk−p = S. After running a total of p Kalman filter
time andmeasurement updates wewill have an estimate x̂k whose
error covariance will be

M = gp(S). (20)

This will provide a smaller (than S) upper bound on the error
covariance that will hold whenever a measurement packet is
received, i.e.

Pk+1 ≤ M, if γk = 1. (21)

Note that since the covariance of the observer based estimator
is a fixed quantity, S, the subsequent p Kalman gains can be
computed off-line and stored in advance.Wewill call the estimator
just described an observer based estimator with Kalman filter
extension.
The estimator algorithm consists of running both the modified

Kalman filter algorithm and the observer based estimator with
the Kalman filter extension (as described above) along with some
logic to choose the estimate with the lower covariance. When no
measurement packet is received the estimator algorithm simply
performs the time update steps according to Eq. (3)–(4) using
the previous estimate and covariance. If a measurement packet is
received the measurement update steps of the Kalman filter are
run, Eq. (5)–(6) using only the most recent measurement (which
is from the current time-step yk) from the measurement packet.
The computed covariance is checked against M . If the Kalman
filter covariance is not less than this M , then the observer based
estimator with Kalman filter extension is run and the estimate
and covariance are set to these computed values. This estimation
algorithm will assure an upper bound on the error covariance
M always exists whenever a packet is received. The algorithm is
described in Table 1, that it consists of two distinct estimators: (i)
the Kalman filter using only the measurement from the current
time-step and (ii) the observer based estimator with Kalman filter
extension using the sequence of previous measurements.

Remark 4. It would be possible to use all themeasurements in the
packet with the Kalman filter by storing the previous estimate and
covariance from time-step k − S − p and then recomputing the
Kalman filter time and measurement update steps from time-step
k − S − p + 1 to k once a packet arrives. This would make use
of any lost information that eventually arrives at the filter, and as
shown in Epstein (2007) the resulting covariance after applying
S time and measurement updates has an upper bound that is
equivalent to the upper bound of the observer based estimator
under the extra condition that O(S) is square. The disadvantage
Table 1
Algorithm for estimation scheme.

(0) Given A, C,Q , R;
• Determine S and P;
• Choose the number of additional measurements, p,
to buffer and transmit so thatM = gp(S) is as close
to P as desired and so that
Pk ≤ M will hold whenever a packet is received ;
• Initialize x̂0 and P0;
(1) Wait for packet at time k;
• Kalman Filter Time Update ;
• If packet received at time k;
– Kalman Filter Measurement Update ;
– If Pk 6≤ M;
∗ Compute xk−p using Eq. (15);
∗ Set x̂k−p ← xk−p and Pk−p ← S;
∗ Loop j = 1 to p;
◦ Kalman Filter Time and
Measurement Updates
using measurement yk−p+j;

∗ EndLoop ;
– EndIf ;
– k← k+ 1;
• EndIf ;
• Goto 1 ;

of this approach is that the S Kalman gains would need to be
computed every time-step that a packet arrives (actually S +
p if we then use the extra p measurements to further reduce
the covariance), this would be computationally burdensome. As
noted above, the observer based estimator with Kalman filter
extension does not suffer from this computational burden since
the gains can be computed off-line. Furthermore, recomputing the
Kalman filter estimate with the older measurements in the packet
is only necessary if those measurements were never received.
It will not improve the estimate if the measurement update for
that corresponding time-step was already computed, i.e. if it is
not providing new information, so it would not unnecessary to
constantly utilize the old measurements to recompute the Kalman
filter estimate.

Remark 5. From the description of the algorithm and the remark
above, one can see that when the estimation algorithm is
implemented, the Kalman filter that uses the currentmeasurement
only will be selected during a sequence of packet receives. When
a packet is received after a long enough string of drops, however,
the algorithm will utilize the older measurements that had not
yet been received by choosing the observer based estimator with
Kalman filter extension, ultimately switching back to the Kalman
filter once a sequence of receives begins again.

4. Asymptotic properties of error covariance matrix

As the simple example in the introduction shows, some events
with almost zero probability can make the expected value of the
error covariance diverge. In practice, those rare events are unlikely
to happen and hence should be ignored. Therefore the expected
value of the error covariance matrix may not be the best metric
to evaluate the estimator performance. By ignoring these low
probability events, we hope that the error covariance matrix is
stable with arbitrarily high probability. This is precisely captured
in the following theorem.

Theorem 6. Assume the packet arrival sequences are i.i.d. Let πg be
the expected value of the packet arrival rate. If πg > 0, then for any
0 < ε < 1, there exists M(ε) < ∞ such that the error covariance
matrix Pk is bounded by M with probability 1− ε.
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Though we assume here that the packet drops occur indepen-
dently, it is shown later when we determine the relationship be-
tween M and ε, the condition can be relaxed to include the case
where the packet drops are described by an underlying Markov
chain.
The theorem also suggests that for a given error toleranceM >

0, we can find min(πg) such that the error covariance matrix Pk is
bounded byM with any specified probability.
Before we prove the theorem, we introduce the following

proposition.

Proposition 7. Define λh(X) = Tr(h(X))
Tr(X) . Then,

λh(X) ≤ 1+ λn(A′A) , λ̄n

for all X > 0 such that Tr(X) ≥ Tr(Q ), where λn(A′A) denotes the
largest eigenvalue of A′A.

Proof.

λh(X) =
Tr(AXA′)
Tr(X)

+
Tr(Q )
Tr(X)

≤ 1+
Tr(AXA′)
Tr(X)

= 1+
Tr(A′AX)
Tr(X)

= 1+
Tr(P ′A′APP ′XP)
Tr(P ′XP)

= 1+
Tr(SY )
Tr(Y )

,

where S = P ′A′AP is diagonal and Y = P ′XP > 0 and has the
same eigenvalues as X . Such P exists and P ′ = P−1, as A′A is real
symmetric. Hence,

λh(X) ≤ 1+
Tr(SY )
Tr(Y )

= 1+

n∑
i=1
λi(A′A)Yii

n∑
i=1
Yii

≤ 1+
λn(A′A)

n∑
i=1
Yii

n∑
i=1
Yii

= 1+ λn(A′A).

Notice that we implicitly used the fact that Yii > 0 for all i, this
follows as

Yii = e′iYei > 0. �

Now we are ready to prove Theorem 6.

Proof of Theorem 6. Without loss of generality assume at time k
the packet is not received, γk = 0, otherwise Pk ≤ M , M(ε) for
any ε. Defineπh = 1−πg and let k′ = max{s : s ≤ k, γs = 1}. Then
k − k′ = N with probability πgπNh . Further define M0 = Tr(P0),
M1 = Tr(M) and αN = λ̄Nh . We discuss two cases for a given ε.

(1) 0 < ε ≤ πg
Solve the following equation for N

πgπ
N
h = ε
to get

N =
⌈
log ε − logπg
logπh

⌉
,

where dxe denotes the smallest integer that is bigger or equal
to x. Assume first that k ≥ N so that k′ ≥ 0. Since γk′ = 1,
Pk′ ≤ M . Therefore

Pk ≤ αNM1I , M(ε)

with probability 1 − ε, where I is the identity matrix of
appropriate dimension.
Now consider the case k < N , it is easy to see

Pk ≤ αNM0I , M(ε)

with probability at least 1− ε.
(2) πg < ε ≤ 1.
Assume first k ≥ 2. Let N = 1 so that k′ = k − 1, i.e. , the
previous packet is received and Pk−1 ≤ M . Then

Pk ≤ α1M1I , M(ε)

with probability at least 1− ε. When k = 1,

Pk ≤ α1M0I , M(ε)

with probability at least 1− ε. �

5. Determining theM–ε relationship

It is apparent that M(ε) given in the Theorem above is very
conservative and we seek a tighter bound for the expression

Pr [Pk ≤ M] = 1− ε. (22)

Webegin by finding an upper bound on ε givenM . Recall the bound
on the error covariance after a packet is received is given by M as
in Eq. (21). Then define εi(k) as the probability that at least the
previous i consecutive packets are dropped at time k, i.e.

εi(k) = Pr[Nk ≥ i], (23)

withNk the number of consecutive packets dropped at time k. Note
that Nk = (1− γk)(1+ Nk−1). Clearly εi ≥ εj for i ≤ j. Next define

kmin , min{k ∈ Z+ : hk(M) 6≤ M}. (24)

Lemma 8. For 0 ≤ M <∞, the quantity kmin will always exist.

Proof. To prove the existence of kmin note that for any X > 0,
lim
k→∞

Tr(hk(X)) = ∞ if A is unstable. Thus for any scalar t > 0

there exists a kmin such that hkmin(M) 6≤ tI and t can be chosen
such that tI ≥ M . This means λn(hkmin(M)) > t and λn(M) < t ,
where λn is themaximum eigenvalue. Then usingWeyl’s Theorem,
(Horn& Johnson, 1985)we seeλn(hkmin(M)−M) ≥ λn(hkmin(M))−
λn(M) > 0 which implies hkmin(M) 6≤ M . �

Theorem 9. For unstable A assume the initial error covariancematrix
P0 is given by P0 ≤ M. Given a matrix bound M ≥ M then we have
the following lower bound

Pr [Pk ≤ M] = 1− ε ≥ 1− εkmin(k). (25)

That is the probability only depends on the number of consecutive
packets dropped at the current time and is independent of the packet
drop/receive sequence prior to the previous received packet.
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Proof. Since P0 ≤ M , then assuming the next k packets are
dropped we have Pk = hk(P0) and it is clear that P0 ≤ M ⇒
hk(P0) ≤ hk(M) so

Pk ≤ hk(M).

So the necessary condition that Pk 6≤ M is

hk(M) 6≤ M,

but by definition hk(M) ≤ M ∀k < kmin. Thus for Pk 6≤ M it is
necessary to drop at least the previous kmin consecutive packets.
Now assume a packet is not received until time m > kmin, that

is γk = 0 for k = 0, . . . ,m − 1 and γm = 1, then Pm+1 ≤ M from
Eq. (21). Thus for a packet received at timem, we have

Pm+1 ≤ M. (26)

Regardless of how large m is, i.e. how long between packet
receives, and how large the error covariance gets, Eq. (26) holds.
Hence the analysis above can always be repeated with Pm+1
replacing P0, and the probability Pk 6≤ M depends only on the
number of consecutive packets dropped and is independent of
what happens prior to the last packet received. �

Now we will also establish an upper bound on 1 − ε that
is valid under certain conditions. Recall P is the solution to the
Riccati equation, g(P) = P . The extra condition we will require
to establish a lower bound on ε is that the relation

P < M (27)

holds. Now define

kmax , min{k ∈ Z+ : hk(P) > M}. (28)

Lemma 10. It is always true that h(P) ≥ P which implies hk+1(P) ≥
hk(P).

Proof. Since P is the solution to the DARE we can write

P = g(P) = APA′ + Q − APC ′(CPC ′ + R)−1CPA′

≤ APA′ + Q
= h(P).

With h(P) ≥ P if we apply h to both sides k timeswe get hk+1(P) ≥
hk(P). �

Lemma 11. If A is purely unstable, kmax is guaranteed to exist.

Proof. If A is purely unstable then lim
k→∞

λmin(hk(X)) = ∞. Thus we

can again pick any finite scalar t > 0 such that tI > M and find a
kmax such that hkmax(P) ≥ tI > M . �

Lemma 12. With the definitions above, if kmin and kmax both exist
then kmin ≤ kmax.

Proof. This can easily be shown by contradiction. Assume kmin >
kmax. By assumption P < M implying hkmax(P) < hkmax(M) and
if kmin > kmax then hkmax(M) ≤ M . From the definition of kmax,
however, we see hkmax(P) > M which is a contradiction of the
previous inequality. Hence it must be true that kmin ≤ kmax. �

Corollary 13. If A is purely unstable and assuming P ≤ P0 ≤ M,
then we have the upper bound

Pr [Pk ≤ M] = 1− ε ≤ 1− εkmax(k). (29)
Fig. 2. Error covariance (log scale) for Example 14. For this system it will take at
least 2 and no more than 3 consecutive dropped packets for Pk 6≤ M .

Proof. Following theproof of Theorem9, assume the first kpackets
are dropped so Pk = hk(P0). A sufficient condition for Pk 6≤ M is
then

hk(P) > M,

since Pk = hk(P0) ≥ hk(P). By definition hk(P) > M will first
hold when k = kmax. Then since hk+1(P) ≥ hk(P), it will also hold
for k > kmax. Thus dropping at least the previous kmax consecutive
packets guarantees Pk 6≤ M . Now assume a packet is not received
until time m > kmax, then we know Pm = hm(P0) ≥ hm(P) > M
and P ≤ Pm+1 ≤ M so the analysis is repeated with Pm+1 replacing
P0 as before. �

The following example can help visualize the concepts of the
theorem.

Example 14. Consider the scalar system A = 1.3, C = 1, Q = 0.5
and R = 1. For this system we have P = 1.519 and with S = 1
and picking p = 0 we get M = 2.19. Picking M = 6.25 it is easy
to show kmin = 2 and kmax = 3. Thus there exists an P < X∗ ≤ M
such that all for P ≤ X < X∗ it requires 3 consecutive packets to
be dropped before the error covariance is greater thanM , while for
the region X∗ ≤ X ≤ M it only requires 2 consecutive packets be
dropped. In fact it can be easily shown that X∗ = 1.7174.
Fig. 2 shows the evolution of the error covariance for a

particular sequence of packet drops. The sequence used is
hhhhggghhghhhgh(P0). As can be seen, it requires at least 2
consecutive packets be dropped for the error covariance to rise
above the bound.

Remark 15. With the definition of εi(k) in Eq. (23) it is easy to see
εi(k) = 0,∀k < i. Which leads to Pr[Pk ≤ M] = 1,∀k < kmin.
In addition, for the estimator algorithm to be implemented and Eq.
(21) to hold requires at least S + p measurements. Therefore we
only consider time greater than max{kmin, S + p}.

For these results to be useful we need to calculate εi(k). Fig. 3
shows all possible packet sequences at time k for a packet dropping
network. From this it is clear to see that εi(k)will be the sum of the
probabilities of each of the instances with at least the previous i
packets dropped occurring.

Corollary 16. For k > i any packet dropping network that is either
i.i.d. or reaches a steady state (for example aMarkov network), εi(k) =
εi is independent of k.
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Fig. 3. A binary representation of the possible packet sequences (i.e. drop/receive)
at time k. A 0 signifies a packet was dropped and 1 signifies the packet was received.

Fig. 4. The states of theMarkov chain represent the number of consecutive packets
dropped at the current time, the final state represents kmin or more consecutive
packets dropped. The transition probability from state i to state j is given by Ti,j . The
same figure can be made for kmax .

The above corollary says the probability of dropping at least the
previous i packets is the same for all time. To calculate εkmin (or
εkmax ) we can make use of the Markov chain model in Fig. 4.
The states of the Markov chain represent the number of

consecutive packets dropped at the current time, the final
state represents kmin or more consecutive packets dropped. The
transition probability from state i to state j is given by Ti,j. It is
clear εkmin = πkmin , the steady state probability of theMarkov chain
being in state kmin. This is easily determined to be given by

πkmin =
D

D+ Tkmin,0 + Tkmin,0
kmin−1∑
l=1

l−1∏
j=0
Tj,j+1

(30)

with

D = 1− T0,0 −
kmin−1∑
l=1

Tl,0
l−1∏
j=0

Tj,j+1.

Note thatπkmin decreases as kmin increases. The same formula holds
for kmax by replacing kmin ← kmax.
The Ti,j are determined based on the type of network. For

example, an i.i.d. network with packet arrival rate γ and drop rate
1 − γ has Tj,0 = γ ∀j ≥ 0, Tj,j+1 = 1 − γ ∀j ≥ 0, and
Tkmin,kmin = 1 − γ . This leads to πkmin = (1 − γ )

kmin . A first order
Markov network with transition probabilities Thh, Thg , Tgh, and Tgg
leads to πkmin =

1−Tgg
2−Thh−Tgg

(Thh)kmin−1. The probability πkmin for any
arbitrary orderMarkov network can be determined in thismanner.
All the equations above can be used to calculate εkmax as well by
simply replacing kmin ← kmax
Theorem 9 and Corollary 13 provide bounds on ε for a givenM

and the network properties, i.e. πkmin and πkmax . It is also possible
to determine bounds onM and πkmin .
Fig. 5. The trace ofM bound vs. p.

Corollary 17. With the same assumptions as Theorem 9 and given
the transition probabilities Ti,j of the Markov model in Fig. 4 and a
lower bound 1 − εkmin it is possible to determine a suitable M such
that Pr[Pk ≤ M] ≥ 1− εkmin . To do so, define

kM , min{k ∈ Z+ : πk ≤ εkmin}, (31)

with πk given in Eq. (30). Then the tightest such bound is

M = hkM (M). (32)

Corollary 18. Likewise, given M and a lower bound 1 − εkmin it is
possible to determine limits on the transition probabilities Ti,j of the
Markov model in Fig. 4 such that Pr[Pk ≤ M] ≥ 1− εkmin . With kmin
as defined in Eq. (24), it is easy to see that we require

πkmin ≤ εmax. (33)

For the i.i.d. network this reduces to γ ≥ 1− εmax
1
kmin .

6. Simulation example

Consider the linearized pendubot system in Schenato et al.
(2007) with

A =

 1.001 0.005 0.000 0.000
0.35 1.001 −0.135 0.000
−0.001 0.000 1.001 0.005
−0.375 −0.001 0.590 1.001

 , B =

 0.0010.540
−0.002
−1.066

 ,
C =

[
1 0 0 0
0 0 1 0

]
, R =

[
0.001 0
0 0.001

]
,

Q = qq′, q′ =
[
0.003 1.000 −0.005 −2.150

]
and an i.i.d. network with packet acceptance rate γ = 0.75. For
this system we have S = 2, meaning [C, A′C ′]′ is full rank and
we need to transmit at least 2 measurements at each time step.
Using the analysis presented in this paper, we can predict with
what probability the error will remain below certain bounds. The
value of the trace of M as a function of the number of additional
measurements to buffer p is shown in Fig. 5. This curve can be used
as a guide to pick the amount of datameasurements to buffer. Note
the error covariance if all measurements were received, P , has a
trace of 16.27. For the simulations presented belowwe used p = 7
(so we transmit a total of S + p = 9 measurements) which gives
Tr(M) = 16.99.
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Fig. 6. M bound vs. ε. The solid (blue) line is the simulated 1 − ε and the dashed
(red and green) lines are the predicted 1− εmax and 1− ε .

Fig. 6 shows the M–ε relationship for this system. A total of
10,000 simulationswere runwith a random initial error covariance
in the range P ≤ P0 ≤ M chosen for each simulation.
The simulations were run for 500 time steps and the 1 − ε
calculated from the simulations corresponds to the average over all
simulations of the percent of time the error covariance was larger
than the M bound. The staircase-like plot can be explained by the
fact the probability bounds for 1 − ε are given by 1 − εkmin and
1 − εkmax which exhibit sharp jumps, i.e. the staircase, as kmin and
kmax change integer values.

7. Conclusions and future work

We analyzed the problem of state estimation where measure-
ment packets are sent across a lossy network.We designed an esti-
mator algorithm that is guaranteed to have an upper bound on the
estimation error covariancewhenever ameasurement packet is re-
ceived that relies on transmitting the current and several previous
sensor measurements.
We showed with this upper bound that as long as the expected

value of receiving packets is not identically zero, then for any given
0 < ε < 1 there exists an M(ε) < ∞ such that the error
covariance matrix Pk is bounded byM with probability 1− ε. This
analysis is independent of the probability distribution of packet
drops.
Next, we give explicit relations for upper and lower bounds on

the probability 1 − εmin ≤ Pr [Pk ≤ M] ≤ 1 − εmax. We observe
that Pk 6≤ M only if a large enough consecutive burst of packets are
dropped before time k. The size of the required burst is dependent
onM .
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